3b9e545d3a37de9bf21febb6bb57b68608c573e2
[linux-2.6.git] / arch / ia64 / kernel / mca.c
1 /*
2  * File:        mca.c
3  * Purpose:     Generic MCA handling layer
4  *
5  * Updated for latest kernel
6  * Copyright (C) 2003 Hewlett-Packard Co
7  *      David Mosberger-Tang <davidm@hpl.hp.com>
8  *
9  * Copyright (C) 2002 Dell Inc.
10  * Copyright (C) Matt Domsch (Matt_Domsch@dell.com)
11  *
12  * Copyright (C) 2002 Intel
13  * Copyright (C) Jenna Hall (jenna.s.hall@intel.com)
14  *
15  * Copyright (C) 2001 Intel
16  * Copyright (C) Fred Lewis (frederick.v.lewis@intel.com)
17  *
18  * Copyright (C) 2000 Intel
19  * Copyright (C) Chuck Fleckenstein (cfleck@co.intel.com)
20  *
21  * Copyright (C) 1999, 2004 Silicon Graphics, Inc.
22  * Copyright (C) Vijay Chander(vijay@engr.sgi.com)
23  *
24  * 03/04/15 D. Mosberger Added INIT backtrace support.
25  * 02/03/25 M. Domsch   GUID cleanups
26  *
27  * 02/01/04 J. Hall     Aligned MCA stack to 16 bytes, added platform vs. CPU
28  *                      error flag, set SAL default return values, changed
29  *                      error record structure to linked list, added init call
30  *                      to sal_get_state_info_size().
31  *
32  * 01/01/03 F. Lewis    Added setup of CMCI and CPEI IRQs, logging of corrected
33  *                      platform errors, completed code for logging of
34  *                      corrected & uncorrected machine check errors, and
35  *                      updated for conformance with Nov. 2000 revision of the
36  *                      SAL 3.0 spec.
37  * 00/03/29 C. Fleckenstein  Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
38  *                           added min save state dump, added INIT handler.
39  *
40  * 2003-12-08 Keith Owens <kaos@sgi.com>
41  *            smp_call_function() must not be called from interrupt context (can
42  *            deadlock on tasklist_lock).  Use keventd to call smp_call_function().
43  *
44  * 2004-02-01 Keith Owens <kaos@sgi.com>
45  *            Avoid deadlock when using printk() for MCA and INIT records.
46  *            Delete all record printing code, moved to salinfo_decode in user space.
47  *            Mark variables and functions static where possible.
48  *            Delete dead variables and functions.
49  *            Reorder to remove the need for forward declarations and to consolidate
50  *            related code.
51  */
52 #include <linux/config.h>
53 #include <linux/types.h>
54 #include <linux/init.h>
55 #include <linux/sched.h>
56 #include <linux/interrupt.h>
57 #include <linux/irq.h>
58 #include <linux/kallsyms.h>
59 #include <linux/smp_lock.h>
60 #include <linux/bootmem.h>
61 #include <linux/acpi.h>
62 #include <linux/timer.h>
63 #include <linux/module.h>
64 #include <linux/kernel.h>
65 #include <linux/smp.h>
66 #include <linux/workqueue.h>
67
68 #include <asm/delay.h>
69 #include <asm/machvec.h>
70 #include <asm/page.h>
71 #include <asm/ptrace.h>
72 #include <asm/system.h>
73 #include <asm/sal.h>
74 #include <asm/mca.h>
75
76 #include <asm/irq.h>
77 #include <asm/hw_irq.h>
78
79 #if defined(IA64_MCA_DEBUG_INFO)
80 # define IA64_MCA_DEBUG(fmt...) printk(fmt)
81 #else
82 # define IA64_MCA_DEBUG(fmt...)
83 #endif
84
85 typedef struct ia64_fptr {
86         unsigned long fp;
87         unsigned long gp;
88 } ia64_fptr_t;
89
90 /* Used by mca_asm.S */
91 ia64_mca_sal_to_os_state_t      ia64_sal_to_os_handoff_state;
92 ia64_mca_os_to_sal_state_t      ia64_os_to_sal_handoff_state;
93 u64                             ia64_mca_proc_state_dump[512];
94 u64                             ia64_mca_stack[1024] __attribute__((aligned(16)));
95 u64                             ia64_mca_stackframe[32];
96 u64                             ia64_mca_bspstore[1024];
97 u64                             ia64_init_stack[KERNEL_STACK_SIZE/8] __attribute__((aligned(16)));
98 u64                             ia64_mca_serialize;
99
100 /* In mca_asm.S */
101 extern void                     ia64_monarch_init_handler (void);
102 extern void                     ia64_slave_init_handler (void);
103
104 static ia64_mc_info_t           ia64_mc_info;
105
106 struct ia64_mca_tlb_info ia64_mca_tlb_list[NR_CPUS];
107
108 #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
109 #define MIN_CPE_POLL_INTERVAL (2*60*HZ)  /* 2 minutes */
110 #define CMC_POLL_INTERVAL     (1*60*HZ)  /* 1 minute */
111 #define CPE_HISTORY_LENGTH    5
112 #define CMC_HISTORY_LENGTH    5
113
114 static struct timer_list cpe_poll_timer;
115 static struct timer_list cmc_poll_timer;
116 /*
117  * This variable tells whether we are currently in polling mode.
118  * Start with this in the wrong state so we won't play w/ timers
119  * before the system is ready.
120  */
121 static int cmc_polling_enabled = 1;
122
123 /*
124  * Clearing this variable prevents CPE polling from getting activated
125  * in mca_late_init.  Use it if your system doesn't provide a CPEI,
126  * but encounters problems retrieving CPE logs.  This should only be
127  * necessary for debugging.
128  */
129 static int cpe_poll_enabled = 1;
130
131 static int cpe_vector = -1;
132
133 extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
134
135 /*
136  * IA64_MCA log support
137  */
138 #define IA64_MAX_LOGS           2       /* Double-buffering for nested MCAs */
139 #define IA64_MAX_LOG_TYPES      4   /* MCA, INIT, CMC, CPE */
140
141 typedef struct ia64_state_log_s
142 {
143         spinlock_t      isl_lock;
144         int             isl_index;
145         unsigned long   isl_count;
146         ia64_err_rec_t  *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
147 } ia64_state_log_t;
148
149 static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
150
151 #define IA64_LOG_ALLOCATE(it, size) \
152         {ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \
153                 (ia64_err_rec_t *)alloc_bootmem(size); \
154         ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \
155                 (ia64_err_rec_t *)alloc_bootmem(size);}
156 #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
157 #define IA64_LOG_LOCK(it)      spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
158 #define IA64_LOG_UNLOCK(it)    spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
159 #define IA64_LOG_NEXT_INDEX(it)    ia64_state_log[it].isl_index
160 #define IA64_LOG_CURR_INDEX(it)    1 - ia64_state_log[it].isl_index
161 #define IA64_LOG_INDEX_INC(it) \
162     {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
163     ia64_state_log[it].isl_count++;}
164 #define IA64_LOG_INDEX_DEC(it) \
165     ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
166 #define IA64_LOG_NEXT_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
167 #define IA64_LOG_CURR_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
168 #define IA64_LOG_COUNT(it)         ia64_state_log[it].isl_count
169
170 /*
171  * ia64_log_init
172  *      Reset the OS ia64 log buffer
173  * Inputs   :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
174  * Outputs      :       None
175  */
176 static void
177 ia64_log_init(int sal_info_type)
178 {
179         u64     max_size = 0;
180
181         IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
182         IA64_LOG_LOCK_INIT(sal_info_type);
183
184         // SAL will tell us the maximum size of any error record of this type
185         max_size = ia64_sal_get_state_info_size(sal_info_type);
186         if (!max_size)
187                 /* alloc_bootmem() doesn't like zero-sized allocations! */
188                 return;
189
190         // set up OS data structures to hold error info
191         IA64_LOG_ALLOCATE(sal_info_type, max_size);
192         memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size);
193         memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size);
194 }
195
196 /*
197  * ia64_log_get
198  *
199  *      Get the current MCA log from SAL and copy it into the OS log buffer.
200  *
201  *  Inputs  :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
202  *              irq_safe    whether you can use printk at this point
203  *  Outputs :   size        (total record length)
204  *              *buffer     (ptr to error record)
205  *
206  */
207 static u64
208 ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
209 {
210         sal_log_record_header_t     *log_buffer;
211         u64                         total_len = 0;
212         int                         s;
213
214         IA64_LOG_LOCK(sal_info_type);
215
216         /* Get the process state information */
217         log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
218
219         total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
220
221         if (total_len) {
222                 IA64_LOG_INDEX_INC(sal_info_type);
223                 IA64_LOG_UNLOCK(sal_info_type);
224                 if (irq_safe) {
225                         IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. "
226                                        "Record length = %ld\n", __FUNCTION__, sal_info_type, total_len);
227                 }
228                 *buffer = (u8 *) log_buffer;
229                 return total_len;
230         } else {
231                 IA64_LOG_UNLOCK(sal_info_type);
232                 return 0;
233         }
234 }
235
236 /*
237  *  ia64_mca_log_sal_error_record
238  *
239  *  This function retrieves a specified error record type from SAL
240  *  and wakes up any processes waiting for error records.
241  *
242  *  Inputs  :   sal_info_type   (Type of error record MCA/CMC/CPE/INIT)
243  */
244 static void
245 ia64_mca_log_sal_error_record(int sal_info_type)
246 {
247         u8 *buffer;
248         u64 size;
249         int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA && sal_info_type != SAL_INFO_TYPE_INIT;
250 #ifdef IA64_MCA_DEBUG_INFO
251         static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
252 #endif
253
254         size = ia64_log_get(sal_info_type, &buffer, irq_safe);
255         if (!size)
256                 return;
257
258         salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
259
260         if (irq_safe)
261                 IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
262                         smp_processor_id(),
263                         sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
264
265         /* Clear logs from corrected errors in case there's no user-level logger */
266         if (sal_info_type == SAL_INFO_TYPE_CPE || sal_info_type == SAL_INFO_TYPE_CMC)
267                 ia64_sal_clear_state_info(sal_info_type);
268 }
269
270 /*
271  * platform dependent error handling
272  */
273 #ifndef PLATFORM_MCA_HANDLERS
274
275 #ifdef CONFIG_ACPI
276
277 static irqreturn_t
278 ia64_mca_cpe_int_handler (int cpe_irq, void *arg, struct pt_regs *ptregs)
279 {
280         static unsigned long    cpe_history[CPE_HISTORY_LENGTH];
281         static int              index;
282         static spinlock_t       cpe_history_lock = SPIN_LOCK_UNLOCKED;
283
284         IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
285                        __FUNCTION__, cpe_irq, smp_processor_id());
286
287         /* SAL spec states this should run w/ interrupts enabled */
288         local_irq_enable();
289
290         /* Get the CPE error record and log it */
291         ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
292
293         spin_lock(&cpe_history_lock);
294         if (!cpe_poll_enabled && cpe_vector >= 0) {
295
296                 int i, count = 1; /* we know 1 happened now */
297                 unsigned long now = jiffies;
298
299                 for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
300                         if (now - cpe_history[i] <= HZ)
301                                 count++;
302                 }
303
304                 IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
305                 if (count >= CPE_HISTORY_LENGTH) {
306
307                         cpe_poll_enabled = 1;
308                         spin_unlock(&cpe_history_lock);
309                         disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
310
311                         /*
312                          * Corrected errors will still be corrected, but
313                          * make sure there's a log somewhere that indicates
314                          * something is generating more than we can handle.
315                          */
316                         printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
317
318                         mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
319
320                         /* lock already released, get out now */
321                         return IRQ_HANDLED;
322                 } else {
323                         cpe_history[index++] = now;
324                         if (index == CPE_HISTORY_LENGTH)
325                                 index = 0;
326                 }
327         }
328         spin_unlock(&cpe_history_lock);
329         return IRQ_HANDLED;
330 }
331
332 #endif /* CONFIG_ACPI */
333
334 static void
335 show_min_state (pal_min_state_area_t *minstate)
336 {
337         u64 iip = minstate->pmsa_iip + ((struct ia64_psr *)(&minstate->pmsa_ipsr))->ri;
338         u64 xip = minstate->pmsa_xip + ((struct ia64_psr *)(&minstate->pmsa_xpsr))->ri;
339
340         printk("NaT bits\t%016lx\n", minstate->pmsa_nat_bits);
341         printk("pr\t\t%016lx\n", minstate->pmsa_pr);
342         printk("b0\t\t%016lx ", minstate->pmsa_br0); print_symbol("%s\n", minstate->pmsa_br0);
343         printk("ar.rsc\t\t%016lx\n", minstate->pmsa_rsc);
344         printk("cr.iip\t\t%016lx ", iip); print_symbol("%s\n", iip);
345         printk("cr.ipsr\t\t%016lx\n", minstate->pmsa_ipsr);
346         printk("cr.ifs\t\t%016lx\n", minstate->pmsa_ifs);
347         printk("xip\t\t%016lx ", xip); print_symbol("%s\n", xip);
348         printk("xpsr\t\t%016lx\n", minstate->pmsa_xpsr);
349         printk("xfs\t\t%016lx\n", minstate->pmsa_xfs);
350         printk("b1\t\t%016lx ", minstate->pmsa_br1);
351         print_symbol("%s\n", minstate->pmsa_br1);
352
353         printk("\nstatic registers r0-r15:\n");
354         printk(" r0- 3 %016lx %016lx %016lx %016lx\n",
355                0UL, minstate->pmsa_gr[0], minstate->pmsa_gr[1], minstate->pmsa_gr[2]);
356         printk(" r4- 7 %016lx %016lx %016lx %016lx\n",
357                minstate->pmsa_gr[3], minstate->pmsa_gr[4],
358                minstate->pmsa_gr[5], minstate->pmsa_gr[6]);
359         printk(" r8-11 %016lx %016lx %016lx %016lx\n",
360                minstate->pmsa_gr[7], minstate->pmsa_gr[8],
361                minstate->pmsa_gr[9], minstate->pmsa_gr[10]);
362         printk("r12-15 %016lx %016lx %016lx %016lx\n",
363                minstate->pmsa_gr[11], minstate->pmsa_gr[12],
364                minstate->pmsa_gr[13], minstate->pmsa_gr[14]);
365
366         printk("\nbank 0:\n");
367         printk("r16-19 %016lx %016lx %016lx %016lx\n",
368                minstate->pmsa_bank0_gr[0], minstate->pmsa_bank0_gr[1],
369                minstate->pmsa_bank0_gr[2], minstate->pmsa_bank0_gr[3]);
370         printk("r20-23 %016lx %016lx %016lx %016lx\n",
371                minstate->pmsa_bank0_gr[4], minstate->pmsa_bank0_gr[5],
372                minstate->pmsa_bank0_gr[6], minstate->pmsa_bank0_gr[7]);
373         printk("r24-27 %016lx %016lx %016lx %016lx\n",
374                minstate->pmsa_bank0_gr[8], minstate->pmsa_bank0_gr[9],
375                minstate->pmsa_bank0_gr[10], minstate->pmsa_bank0_gr[11]);
376         printk("r28-31 %016lx %016lx %016lx %016lx\n",
377                minstate->pmsa_bank0_gr[12], minstate->pmsa_bank0_gr[13],
378                minstate->pmsa_bank0_gr[14], minstate->pmsa_bank0_gr[15]);
379
380         printk("\nbank 1:\n");
381         printk("r16-19 %016lx %016lx %016lx %016lx\n",
382                minstate->pmsa_bank1_gr[0], minstate->pmsa_bank1_gr[1],
383                minstate->pmsa_bank1_gr[2], minstate->pmsa_bank1_gr[3]);
384         printk("r20-23 %016lx %016lx %016lx %016lx\n",
385                minstate->pmsa_bank1_gr[4], minstate->pmsa_bank1_gr[5],
386                minstate->pmsa_bank1_gr[6], minstate->pmsa_bank1_gr[7]);
387         printk("r24-27 %016lx %016lx %016lx %016lx\n",
388                minstate->pmsa_bank1_gr[8], minstate->pmsa_bank1_gr[9],
389                minstate->pmsa_bank1_gr[10], minstate->pmsa_bank1_gr[11]);
390         printk("r28-31 %016lx %016lx %016lx %016lx\n",
391                minstate->pmsa_bank1_gr[12], minstate->pmsa_bank1_gr[13],
392                minstate->pmsa_bank1_gr[14], minstate->pmsa_bank1_gr[15]);
393 }
394
395 static void
396 fetch_min_state (pal_min_state_area_t *ms, struct pt_regs *pt, struct switch_stack *sw)
397 {
398         u64 *dst_banked, *src_banked, bit, shift, nat_bits;
399         int i;
400
401         /*
402          * First, update the pt-regs and switch-stack structures with the contents stored
403          * in the min-state area:
404          */
405         if (((struct ia64_psr *) &ms->pmsa_ipsr)->ic == 0) {
406                 pt->cr_ipsr = ms->pmsa_xpsr;
407                 pt->cr_iip = ms->pmsa_xip;
408                 pt->cr_ifs = ms->pmsa_xfs;
409         } else {
410                 pt->cr_ipsr = ms->pmsa_ipsr;
411                 pt->cr_iip = ms->pmsa_iip;
412                 pt->cr_ifs = ms->pmsa_ifs;
413         }
414         pt->ar_rsc = ms->pmsa_rsc;
415         pt->pr = ms->pmsa_pr;
416         pt->r1 = ms->pmsa_gr[0];
417         pt->r2 = ms->pmsa_gr[1];
418         pt->r3 = ms->pmsa_gr[2];
419         sw->r4 = ms->pmsa_gr[3];
420         sw->r5 = ms->pmsa_gr[4];
421         sw->r6 = ms->pmsa_gr[5];
422         sw->r7 = ms->pmsa_gr[6];
423         pt->r8 = ms->pmsa_gr[7];
424         pt->r9 = ms->pmsa_gr[8];
425         pt->r10 = ms->pmsa_gr[9];
426         pt->r11 = ms->pmsa_gr[10];
427         pt->r12 = ms->pmsa_gr[11];
428         pt->r13 = ms->pmsa_gr[12];
429         pt->r14 = ms->pmsa_gr[13];
430         pt->r15 = ms->pmsa_gr[14];
431         dst_banked = &pt->r16;          /* r16-r31 are contiguous in struct pt_regs */
432         src_banked = ms->pmsa_bank1_gr;
433         for (i = 0; i < 16; ++i)
434                 dst_banked[i] = src_banked[i];
435         pt->b0 = ms->pmsa_br0;
436         sw->b1 = ms->pmsa_br1;
437
438         /* construct the NaT bits for the pt-regs structure: */
439 #       define PUT_NAT_BIT(dst, addr)                                   \
440         do {                                                            \
441                 bit = nat_bits & 1; nat_bits >>= 1;                     \
442                 shift = ((unsigned long) addr >> 3) & 0x3f;             \
443                 dst = ((dst) & ~(1UL << shift)) | (bit << shift);       \
444         } while (0)
445
446         /* Rotate the saved NaT bits such that bit 0 corresponds to pmsa_gr[0]: */
447         shift = ((unsigned long) &ms->pmsa_gr[0] >> 3) & 0x3f;
448         nat_bits = (ms->pmsa_nat_bits >> shift) | (ms->pmsa_nat_bits << (64 - shift));
449
450         PUT_NAT_BIT(sw->caller_unat, &pt->r1);
451         PUT_NAT_BIT(sw->caller_unat, &pt->r2);
452         PUT_NAT_BIT(sw->caller_unat, &pt->r3);
453         PUT_NAT_BIT(sw->ar_unat, &sw->r4);
454         PUT_NAT_BIT(sw->ar_unat, &sw->r5);
455         PUT_NAT_BIT(sw->ar_unat, &sw->r6);
456         PUT_NAT_BIT(sw->ar_unat, &sw->r7);
457         PUT_NAT_BIT(sw->caller_unat, &pt->r8);  PUT_NAT_BIT(sw->caller_unat, &pt->r9);
458         PUT_NAT_BIT(sw->caller_unat, &pt->r10); PUT_NAT_BIT(sw->caller_unat, &pt->r11);
459         PUT_NAT_BIT(sw->caller_unat, &pt->r12); PUT_NAT_BIT(sw->caller_unat, &pt->r13);
460         PUT_NAT_BIT(sw->caller_unat, &pt->r14); PUT_NAT_BIT(sw->caller_unat, &pt->r15);
461         nat_bits >>= 16;        /* skip over bank0 NaT bits */
462         PUT_NAT_BIT(sw->caller_unat, &pt->r16); PUT_NAT_BIT(sw->caller_unat, &pt->r17);
463         PUT_NAT_BIT(sw->caller_unat, &pt->r18); PUT_NAT_BIT(sw->caller_unat, &pt->r19);
464         PUT_NAT_BIT(sw->caller_unat, &pt->r20); PUT_NAT_BIT(sw->caller_unat, &pt->r21);
465         PUT_NAT_BIT(sw->caller_unat, &pt->r22); PUT_NAT_BIT(sw->caller_unat, &pt->r23);
466         PUT_NAT_BIT(sw->caller_unat, &pt->r24); PUT_NAT_BIT(sw->caller_unat, &pt->r25);
467         PUT_NAT_BIT(sw->caller_unat, &pt->r26); PUT_NAT_BIT(sw->caller_unat, &pt->r27);
468         PUT_NAT_BIT(sw->caller_unat, &pt->r28); PUT_NAT_BIT(sw->caller_unat, &pt->r29);
469         PUT_NAT_BIT(sw->caller_unat, &pt->r30); PUT_NAT_BIT(sw->caller_unat, &pt->r31);
470 }
471
472 static void
473 init_handler_platform (pal_min_state_area_t *ms,
474                        struct pt_regs *pt, struct switch_stack *sw)
475 {
476         struct unw_frame_info info;
477
478         /* if a kernel debugger is available call it here else just dump the registers */
479
480         /*
481          * Wait for a bit.  On some machines (e.g., HP's zx2000 and zx6000, INIT can be
482          * generated via the BMC's command-line interface, but since the console is on the
483          * same serial line, the user will need some time to switch out of the BMC before
484          * the dump begins.
485          */
486         printk("Delaying for 5 seconds...\n");
487         udelay(5*1000000);
488         show_min_state(ms);
489
490         printk("Backtrace of current task (pid %d, %s)\n", current->pid, current->comm);
491         fetch_min_state(ms, pt, sw);
492         unw_init_from_interruption(&info, current, pt, sw);
493         ia64_do_show_stack(&info, NULL);
494
495 #ifdef CONFIG_SMP
496         /* read_trylock() would be handy... */
497         if (!tasklist_lock.write_lock)
498                 read_lock(&tasklist_lock);
499 #endif
500         {
501                 struct task_struct *g, *t;
502                 do_each_thread (g, t) {
503                         if (t == current)
504                                 continue;
505
506                         printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
507                         show_stack(t, NULL);
508                 } while_each_thread (g, t);
509         }
510 #ifdef CONFIG_SMP
511         if (!tasklist_lock.write_lock)
512                 read_unlock(&tasklist_lock);
513 #endif
514
515         printk("\nINIT dump complete.  Please reboot now.\n");
516         while (1);                      /* hang city if no debugger */
517 }
518
519 #ifdef CONFIG_ACPI
520 /*
521  * ia64_mca_register_cpev
522  *
523  *  Register the corrected platform error vector with SAL.
524  *
525  *  Inputs
526  *      cpev        Corrected Platform Error Vector number
527  *
528  *  Outputs
529  *      None
530  */
531 static void
532 ia64_mca_register_cpev (int cpev)
533 {
534         /* Register the CPE interrupt vector with SAL */
535         struct ia64_sal_retval isrv;
536
537         isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
538         if (isrv.status) {
539                 printk(KERN_ERR "Failed to register Corrected Platform "
540                        "Error interrupt vector with SAL (status %ld)\n", isrv.status);
541                 return;
542         }
543
544         IA64_MCA_DEBUG("%s: corrected platform error "
545                        "vector %#x setup and enabled\n", __FUNCTION__, cpev);
546 }
547 #endif /* CONFIG_ACPI */
548
549 #endif /* PLATFORM_MCA_HANDLERS */
550
551 /*
552  * ia64_mca_cmc_vector_setup
553  *
554  *  Setup the corrected machine check vector register in the processor and
555  *  unmask interrupt.  This function is invoked on a per-processor basis.
556  *
557  * Inputs
558  *      None
559  *
560  * Outputs
561  *      None
562  */
563 void
564 ia64_mca_cmc_vector_setup (void)
565 {
566         cmcv_reg_t      cmcv;
567
568         cmcv.cmcv_regval        = 0;
569         cmcv.cmcv_mask          = 0;        /* Unmask/enable interrupt */
570         cmcv.cmcv_vector        = IA64_CMC_VECTOR;
571         ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
572
573         IA64_MCA_DEBUG("%s: CPU %d corrected "
574                        "machine check vector %#x setup and enabled.\n",
575                        __FUNCTION__, smp_processor_id(), IA64_CMC_VECTOR);
576
577         IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
578                        __FUNCTION__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
579 }
580
581 /*
582  * ia64_mca_cmc_vector_disable
583  *
584  *  Mask the corrected machine check vector register in the processor.
585  *  This function is invoked on a per-processor basis.
586  *
587  * Inputs
588  *      dummy(unused)
589  *
590  * Outputs
591  *      None
592  */
593 static void
594 ia64_mca_cmc_vector_disable (void *dummy)
595 {
596         cmcv_reg_t      cmcv;
597
598         cmcv = (cmcv_reg_t)ia64_getreg(_IA64_REG_CR_CMCV);
599
600         cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
601         ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
602
603         IA64_MCA_DEBUG("%s: CPU %d corrected "
604                        "machine check vector %#x disabled.\n",
605                        __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
606 }
607
608 /*
609  * ia64_mca_cmc_vector_enable
610  *
611  *  Unmask the corrected machine check vector register in the processor.
612  *  This function is invoked on a per-processor basis.
613  *
614  * Inputs
615  *      dummy(unused)
616  *
617  * Outputs
618  *      None
619  */
620 static void
621 ia64_mca_cmc_vector_enable (void *dummy)
622 {
623         cmcv_reg_t      cmcv;
624
625         cmcv = (cmcv_reg_t)ia64_getreg(_IA64_REG_CR_CMCV);
626
627         cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
628         ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
629
630         IA64_MCA_DEBUG("%s: CPU %d corrected "
631                        "machine check vector %#x enabled.\n",
632                        __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
633 }
634
635 /*
636  * ia64_mca_cmc_vector_disable_keventd
637  *
638  * Called via keventd (smp_call_function() is not safe in interrupt context) to
639  * disable the cmc interrupt vector.
640  */
641 static void
642 ia64_mca_cmc_vector_disable_keventd(void *unused)
643 {
644         on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 1, 0);
645 }
646
647 /*
648  * ia64_mca_cmc_vector_enable_keventd
649  *
650  * Called via keventd (smp_call_function() is not safe in interrupt context) to
651  * enable the cmc interrupt vector.
652  */
653 static void
654 ia64_mca_cmc_vector_enable_keventd(void *unused)
655 {
656         on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 1, 0);
657 }
658
659 /*
660  * ia64_mca_wakeup_ipi_wait
661  *
662  *      Wait for the inter-cpu interrupt to be sent by the
663  *      monarch processor once it is done with handling the
664  *      MCA.
665  *
666  *  Inputs  :   None
667  *  Outputs :   None
668  */
669 static void
670 ia64_mca_wakeup_ipi_wait(void)
671 {
672         int     irr_num = (IA64_MCA_WAKEUP_VECTOR >> 6);
673         int     irr_bit = (IA64_MCA_WAKEUP_VECTOR & 0x3f);
674         u64     irr = 0;
675
676         do {
677                 switch(irr_num) {
678                       case 0:
679                         irr = ia64_getreg(_IA64_REG_CR_IRR0);
680                         break;
681                       case 1:
682                         irr = ia64_getreg(_IA64_REG_CR_IRR1);
683                         break;
684                       case 2:
685                         irr = ia64_getreg(_IA64_REG_CR_IRR2);
686                         break;
687                       case 3:
688                         irr = ia64_getreg(_IA64_REG_CR_IRR3);
689                         break;
690                 }
691         } while (!(irr & (1UL << irr_bit))) ;
692 }
693
694 /*
695  * ia64_mca_wakeup
696  *
697  *      Send an inter-cpu interrupt to wake-up a particular cpu
698  *      and mark that cpu to be out of rendez.
699  *
700  *  Inputs  :   cpuid
701  *  Outputs :   None
702  */
703 static void
704 ia64_mca_wakeup(int cpu)
705 {
706         platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
707         ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
708
709 }
710
711 /*
712  * ia64_mca_wakeup_all
713  *
714  *      Wakeup all the cpus which have rendez'ed previously.
715  *
716  *  Inputs  :   None
717  *  Outputs :   None
718  */
719 static void
720 ia64_mca_wakeup_all(void)
721 {
722         int cpu;
723
724         /* Clear the Rendez checkin flag for all cpus */
725         for(cpu = 0; cpu < NR_CPUS; cpu++) {
726                 if (!cpu_online(cpu))
727                         continue;
728                 if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
729                         ia64_mca_wakeup(cpu);
730         }
731
732 }
733
734 /*
735  * ia64_mca_rendez_interrupt_handler
736  *
737  *      This is handler used to put slave processors into spinloop
738  *      while the monarch processor does the mca handling and later
739  *      wake each slave up once the monarch is done.
740  *
741  *  Inputs  :   None
742  *  Outputs :   None
743  */
744 static irqreturn_t
745 ia64_mca_rendez_int_handler(int rendez_irq, void *arg, struct pt_regs *ptregs)
746 {
747         unsigned long flags;
748         int cpu = smp_processor_id();
749
750         /* Mask all interrupts */
751         local_irq_save(flags);
752
753         ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
754         /* Register with the SAL monarch that the slave has
755          * reached SAL
756          */
757         ia64_sal_mc_rendez();
758
759         /* Wait for the wakeup IPI from the monarch
760          * This waiting is done by polling on the wakeup-interrupt
761          * vector bit in the processor's IRRs
762          */
763         ia64_mca_wakeup_ipi_wait();
764
765         /* Enable all interrupts */
766         local_irq_restore(flags);
767         return IRQ_HANDLED;
768 }
769
770 /*
771  * ia64_mca_wakeup_int_handler
772  *
773  *      The interrupt handler for processing the inter-cpu interrupt to the
774  *      slave cpu which was spinning in the rendez loop.
775  *      Since this spinning is done by turning off the interrupts and
776  *      polling on the wakeup-interrupt bit in the IRR, there is
777  *      nothing useful to be done in the handler.
778  *
779  *  Inputs  :   wakeup_irq  (Wakeup-interrupt bit)
780  *      arg             (Interrupt handler specific argument)
781  *      ptregs          (Exception frame at the time of the interrupt)
782  *  Outputs :   None
783  *
784  */
785 static irqreturn_t
786 ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg, struct pt_regs *ptregs)
787 {
788         return IRQ_HANDLED;
789 }
790
791 /*
792  * ia64_return_to_sal_check
793  *
794  *      This is function called before going back from the OS_MCA handler
795  *      to the OS_MCA dispatch code which finally takes the control back
796  *      to the SAL.
797  *      The main purpose of this routine is to setup the OS_MCA to SAL
798  *      return state which can be used by the OS_MCA dispatch code
799  *      just before going back to SAL.
800  *
801  *  Inputs  :   None
802  *  Outputs :   None
803  */
804
805 static void
806 ia64_return_to_sal_check(int recover)
807 {
808
809         /* Copy over some relevant stuff from the sal_to_os_mca_handoff
810          * so that it can be used at the time of os_mca_to_sal_handoff
811          */
812         ia64_os_to_sal_handoff_state.imots_sal_gp =
813                 ia64_sal_to_os_handoff_state.imsto_sal_gp;
814
815         ia64_os_to_sal_handoff_state.imots_sal_check_ra =
816                 ia64_sal_to_os_handoff_state.imsto_sal_check_ra;
817
818         if (recover)
819                 ia64_os_to_sal_handoff_state.imots_os_status = IA64_MCA_CORRECTED;
820         else
821                 ia64_os_to_sal_handoff_state.imots_os_status = IA64_MCA_COLD_BOOT;
822
823         /* Default = tell SAL to return to same context */
824         ia64_os_to_sal_handoff_state.imots_context = IA64_MCA_SAME_CONTEXT;
825
826         ia64_os_to_sal_handoff_state.imots_new_min_state =
827                 (u64 *)ia64_sal_to_os_handoff_state.pal_min_state;
828
829 }
830
831 /*
832  * ia64_mca_ucmc_handler
833  *
834  *      This is uncorrectable machine check handler called from OS_MCA
835  *      dispatch code which is in turn called from SAL_CHECK().
836  *      This is the place where the core of OS MCA handling is done.
837  *      Right now the logs are extracted and displayed in a well-defined
838  *      format. This handler code is supposed to be run only on the
839  *      monarch processor. Once the monarch is done with MCA handling
840  *      further MCA logging is enabled by clearing logs.
841  *      Monarch also has the duty of sending wakeup-IPIs to pull the
842  *      slave processors out of rendezvous spinloop.
843  *
844  *  Inputs  :   None
845  *  Outputs :   None
846  */
847 void
848 ia64_mca_ucmc_handler(void)
849 {
850         pal_processor_state_info_t *psp = (pal_processor_state_info_t *)
851                 &ia64_sal_to_os_handoff_state.proc_state_param;
852         int recover = psp->tc && !(psp->cc || psp->bc || psp->rc || psp->uc);
853
854         /* Get the MCA error record and log it */
855         ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
856
857         /*
858          *  Wakeup all the processors which are spinning in the rendezvous
859          *  loop.
860          */
861         ia64_mca_wakeup_all();
862
863         /* Return to SAL */
864         ia64_return_to_sal_check(recover);
865 }
866
867 static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd, NULL);
868 static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd, NULL);
869
870 /*
871  * ia64_mca_cmc_int_handler
872  *
873  *  This is corrected machine check interrupt handler.
874  *      Right now the logs are extracted and displayed in a well-defined
875  *      format.
876  *
877  * Inputs
878  *      interrupt number
879  *      client data arg ptr
880  *      saved registers ptr
881  *
882  * Outputs
883  *      None
884  */
885 static irqreturn_t
886 ia64_mca_cmc_int_handler(int cmc_irq, void *arg, struct pt_regs *ptregs)
887 {
888         static unsigned long    cmc_history[CMC_HISTORY_LENGTH];
889         static int              index;
890         static spinlock_t       cmc_history_lock = SPIN_LOCK_UNLOCKED;
891
892         IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
893                        __FUNCTION__, cmc_irq, smp_processor_id());
894
895         /* SAL spec states this should run w/ interrupts enabled */
896         local_irq_enable();
897
898         /* Get the CMC error record and log it */
899         ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
900
901         spin_lock(&cmc_history_lock);
902         if (!cmc_polling_enabled) {
903                 int i, count = 1; /* we know 1 happened now */
904                 unsigned long now = jiffies;
905
906                 for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
907                         if (now - cmc_history[i] <= HZ)
908                                 count++;
909                 }
910
911                 IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
912                 if (count >= CMC_HISTORY_LENGTH) {
913
914                         cmc_polling_enabled = 1;
915                         spin_unlock(&cmc_history_lock);
916                         schedule_work(&cmc_disable_work);
917
918                         /*
919                          * Corrected errors will still be corrected, but
920                          * make sure there's a log somewhere that indicates
921                          * something is generating more than we can handle.
922                          */
923                         printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
924
925                         mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
926
927                         /* lock already released, get out now */
928                         return IRQ_HANDLED;
929                 } else {
930                         cmc_history[index++] = now;
931                         if (index == CMC_HISTORY_LENGTH)
932                                 index = 0;
933                 }
934         }
935         spin_unlock(&cmc_history_lock);
936         return IRQ_HANDLED;
937 }
938
939 /*
940  *  ia64_mca_cmc_int_caller
941  *
942  *      Triggered by sw interrupt from CMC polling routine.  Calls
943  *      real interrupt handler and either triggers a sw interrupt
944  *      on the next cpu or does cleanup at the end.
945  *
946  * Inputs
947  *      interrupt number
948  *      client data arg ptr
949  *      saved registers ptr
950  * Outputs
951  *      handled
952  */
953 static irqreturn_t
954 ia64_mca_cmc_int_caller(int cmc_irq, void *arg, struct pt_regs *ptregs)
955 {
956         static int start_count = -1;
957         unsigned int cpuid;
958
959         cpuid = smp_processor_id();
960
961         /* If first cpu, update count */
962         if (start_count == -1)
963                 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
964
965         ia64_mca_cmc_int_handler(cmc_irq, arg, ptregs);
966
967         for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
968
969         if (cpuid < NR_CPUS) {
970                 platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
971         } else {
972                 /* If no log record, switch out of polling mode */
973                 if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
974
975                         printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
976                         schedule_work(&cmc_enable_work);
977                         cmc_polling_enabled = 0;
978
979                 } else {
980
981                         mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
982                 }
983
984                 start_count = -1;
985         }
986
987         return IRQ_HANDLED;
988 }
989
990 /*
991  *  ia64_mca_cmc_poll
992  *
993  *      Poll for Corrected Machine Checks (CMCs)
994  *
995  * Inputs   :   dummy(unused)
996  * Outputs  :   None
997  *
998  */
999 static void
1000 ia64_mca_cmc_poll (unsigned long dummy)
1001 {
1002         /* Trigger a CMC interrupt cascade  */
1003         platform_send_ipi(first_cpu(cpu_online_map), IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1004 }
1005
1006 /*
1007  *  ia64_mca_cpe_int_caller
1008  *
1009  *      Triggered by sw interrupt from CPE polling routine.  Calls
1010  *      real interrupt handler and either triggers a sw interrupt
1011  *      on the next cpu or does cleanup at the end.
1012  *
1013  * Inputs
1014  *      interrupt number
1015  *      client data arg ptr
1016  *      saved registers ptr
1017  * Outputs
1018  *      handled
1019  */
1020 #ifdef CONFIG_ACPI
1021
1022 static irqreturn_t
1023 ia64_mca_cpe_int_caller(int cpe_irq, void *arg, struct pt_regs *ptregs)
1024 {
1025         static int start_count = -1;
1026         static int poll_time = MIN_CPE_POLL_INTERVAL;
1027         unsigned int cpuid;
1028
1029         cpuid = smp_processor_id();
1030
1031         /* If first cpu, update count */
1032         if (start_count == -1)
1033                 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1034
1035         ia64_mca_cpe_int_handler(cpe_irq, arg, ptregs);
1036
1037         for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1038
1039         if (cpuid < NR_CPUS) {
1040                 platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1041         } else {
1042                 /*
1043                  * If a log was recorded, increase our polling frequency,
1044                  * otherwise, backoff or return to interrupt mode.
1045                  */
1046                 if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1047                         poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1048                 } else if (cpe_vector < 0) {
1049                         poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1050                 } else {
1051                         poll_time = MIN_CPE_POLL_INTERVAL;
1052
1053                         printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1054                         enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1055                         cpe_poll_enabled = 0;
1056                 }
1057
1058                 if (cpe_poll_enabled)
1059                         mod_timer(&cpe_poll_timer, jiffies + poll_time);
1060                 start_count = -1;
1061         }
1062
1063         return IRQ_HANDLED;
1064 }
1065
1066 #endif /* CONFIG_ACPI */
1067
1068 /*
1069  *  ia64_mca_cpe_poll
1070  *
1071  *      Poll for Corrected Platform Errors (CPEs), trigger interrupt
1072  *      on first cpu, from there it will trickle through all the cpus.
1073  *
1074  * Inputs   :   dummy(unused)
1075  * Outputs  :   None
1076  *
1077  */
1078 static void
1079 ia64_mca_cpe_poll (unsigned long dummy)
1080 {
1081         /* Trigger a CPE interrupt cascade  */
1082         platform_send_ipi(first_cpu(cpu_online_map), IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1083 }
1084
1085 /*
1086  * C portion of the OS INIT handler
1087  *
1088  * Called from ia64_monarch_init_handler
1089  *
1090  * Inputs: pointer to pt_regs where processor info was saved.
1091  *
1092  * Returns:
1093  *   0 if SAL must warm boot the System
1094  *   1 if SAL must return to interrupted context using PAL_MC_RESUME
1095  *
1096  */
1097 void
1098 ia64_init_handler (struct pt_regs *pt, struct switch_stack *sw)
1099 {
1100         pal_min_state_area_t *ms;
1101
1102         oops_in_progress = 1;   /* avoid deadlock in printk, but it makes recovery dodgy */
1103
1104         printk(KERN_INFO "Entered OS INIT handler. PSP=%lx\n",
1105                 ia64_sal_to_os_handoff_state.proc_state_param);
1106
1107         /*
1108          * Address of minstate area provided by PAL is physical,
1109          * uncacheable (bit 63 set). Convert to Linux virtual
1110          * address in region 6.
1111          */
1112         ms = (pal_min_state_area_t *)(ia64_sal_to_os_handoff_state.pal_min_state | (6ul<<61));
1113
1114         init_handler_platform(ms, pt, sw);      /* call platform specific routines */
1115 }
1116
1117 static int __init
1118 ia64_mca_disable_cpe_polling(char *str)
1119 {
1120         cpe_poll_enabled = 0;
1121         return 1;
1122 }
1123
1124 __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1125
1126 static struct irqaction cmci_irqaction = {
1127         .handler =      ia64_mca_cmc_int_handler,
1128         .flags =        SA_INTERRUPT,
1129         .name =         "cmc_hndlr"
1130 };
1131
1132 static struct irqaction cmcp_irqaction = {
1133         .handler =      ia64_mca_cmc_int_caller,
1134         .flags =        SA_INTERRUPT,
1135         .name =         "cmc_poll"
1136 };
1137
1138 static struct irqaction mca_rdzv_irqaction = {
1139         .handler =      ia64_mca_rendez_int_handler,
1140         .flags =        SA_INTERRUPT,
1141         .name =         "mca_rdzv"
1142 };
1143
1144 static struct irqaction mca_wkup_irqaction = {
1145         .handler =      ia64_mca_wakeup_int_handler,
1146         .flags =        SA_INTERRUPT,
1147         .name =         "mca_wkup"
1148 };
1149
1150 #ifdef CONFIG_ACPI
1151 static struct irqaction mca_cpe_irqaction = {
1152         .handler =      ia64_mca_cpe_int_handler,
1153         .flags =        SA_INTERRUPT,
1154         .name =         "cpe_hndlr"
1155 };
1156
1157 static struct irqaction mca_cpep_irqaction = {
1158         .handler =      ia64_mca_cpe_int_caller,
1159         .flags =        SA_INTERRUPT,
1160         .name =         "cpe_poll"
1161 };
1162 #endif /* CONFIG_ACPI */
1163
1164 /*
1165  * ia64_mca_init
1166  *
1167  *  Do all the system level mca specific initialization.
1168  *
1169  *      1. Register spinloop and wakeup request interrupt vectors
1170  *
1171  *      2. Register OS_MCA handler entry point
1172  *
1173  *      3. Register OS_INIT handler entry point
1174  *
1175  *  4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1176  *
1177  *  Note that this initialization is done very early before some kernel
1178  *  services are available.
1179  *
1180  *  Inputs  :   None
1181  *
1182  *  Outputs :   None
1183  */
1184 void __init
1185 ia64_mca_init(void)
1186 {
1187         ia64_fptr_t *mon_init_ptr = (ia64_fptr_t *)ia64_monarch_init_handler;
1188         ia64_fptr_t *slave_init_ptr = (ia64_fptr_t *)ia64_slave_init_handler;
1189         ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1190         int i;
1191         s64 rc;
1192         struct ia64_sal_retval isrv;
1193         u64 timeout = IA64_MCA_RENDEZ_TIMEOUT;  /* platform specific */
1194
1195         IA64_MCA_DEBUG("%s: begin\n", __FUNCTION__);
1196
1197         /* Clear the Rendez checkin flag for all cpus */
1198         for(i = 0 ; i < NR_CPUS; i++)
1199                 ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1200
1201         /*
1202          * Register the rendezvous spinloop and wakeup mechanism with SAL
1203          */
1204
1205         /* Register the rendezvous interrupt vector with SAL */
1206         while (1) {
1207                 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1208                                               SAL_MC_PARAM_MECHANISM_INT,
1209                                               IA64_MCA_RENDEZ_VECTOR,
1210                                               timeout,
1211                                               SAL_MC_PARAM_RZ_ALWAYS);
1212                 rc = isrv.status;
1213                 if (rc == 0)
1214                         break;
1215                 if (rc == -2) {
1216                         printk(KERN_INFO "Increasing MCA rendezvous timeout from "
1217                                 "%ld to %ld milliseconds\n", timeout, isrv.v0);
1218                         timeout = isrv.v0;
1219                         continue;
1220                 }
1221                 printk(KERN_ERR "Failed to register rendezvous interrupt "
1222                        "with SAL (status %ld)\n", rc);
1223                 return;
1224         }
1225
1226         /* Register the wakeup interrupt vector with SAL */
1227         isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
1228                                       SAL_MC_PARAM_MECHANISM_INT,
1229                                       IA64_MCA_WAKEUP_VECTOR,
1230                                       0, 0);
1231         rc = isrv.status;
1232         if (rc) {
1233                 printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
1234                        "(status %ld)\n", rc);
1235                 return;
1236         }
1237
1238         IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __FUNCTION__);
1239
1240         ia64_mc_info.imi_mca_handler        = ia64_tpa(mca_hldlr_ptr->fp);
1241         /*
1242          * XXX - disable SAL checksum by setting size to 0; should be
1243          *      ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
1244          */
1245         ia64_mc_info.imi_mca_handler_size       = 0;
1246
1247         /* Register the os mca handler with SAL */
1248         if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
1249                                        ia64_mc_info.imi_mca_handler,
1250                                        ia64_tpa(mca_hldlr_ptr->gp),
1251                                        ia64_mc_info.imi_mca_handler_size,
1252                                        0, 0, 0)))
1253         {
1254                 printk(KERN_ERR "Failed to register OS MCA handler with SAL "
1255                        "(status %ld)\n", rc);
1256                 return;
1257         }
1258
1259         IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __FUNCTION__,
1260                        ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
1261
1262         /*
1263          * XXX - disable SAL checksum by setting size to 0, should be
1264          * size of the actual init handler in mca_asm.S.
1265          */
1266         ia64_mc_info.imi_monarch_init_handler           = ia64_tpa(mon_init_ptr->fp);
1267         ia64_mc_info.imi_monarch_init_handler_size      = 0;
1268         ia64_mc_info.imi_slave_init_handler             = ia64_tpa(slave_init_ptr->fp);
1269         ia64_mc_info.imi_slave_init_handler_size        = 0;
1270
1271         IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __FUNCTION__,
1272                        ia64_mc_info.imi_monarch_init_handler);
1273
1274         /* Register the os init handler with SAL */
1275         if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
1276                                        ia64_mc_info.imi_monarch_init_handler,
1277                                        ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1278                                        ia64_mc_info.imi_monarch_init_handler_size,
1279                                        ia64_mc_info.imi_slave_init_handler,
1280                                        ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1281                                        ia64_mc_info.imi_slave_init_handler_size)))
1282         {
1283                 printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
1284                        "(status %ld)\n", rc);
1285                 return;
1286         }
1287
1288         IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __FUNCTION__);
1289
1290         /*
1291          *  Configure the CMCI/P vector and handler. Interrupts for CMC are
1292          *  per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
1293          */
1294         register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction);
1295         register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction);
1296         ia64_mca_cmc_vector_setup();       /* Setup vector on BSP & enable */
1297
1298         /* Setup the MCA rendezvous interrupt vector */
1299         register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction);
1300
1301         /* Setup the MCA wakeup interrupt vector */
1302         register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction);
1303
1304 #ifdef CONFIG_ACPI
1305         /* Setup the CPEI/P vector and handler */
1306         {
1307                 irq_desc_t *desc;
1308                 unsigned int irq;
1309
1310                 cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
1311
1312                 if (cpe_vector >= 0) {
1313                         for (irq = 0; irq < NR_IRQS; ++irq)
1314                                 if (irq_to_vector(irq) == cpe_vector) {
1315                                         desc = irq_descp(irq);
1316                                         desc->status |= IRQ_PER_CPU;
1317                                         setup_irq(irq, &mca_cpe_irqaction);
1318                                 }
1319                         ia64_mca_register_cpev(cpe_vector);
1320                 }
1321                 register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction);
1322         }
1323 #endif
1324
1325         /* Initialize the areas set aside by the OS to buffer the
1326          * platform/processor error states for MCA/INIT/CMC
1327          * handling.
1328          */
1329         ia64_log_init(SAL_INFO_TYPE_MCA);
1330         ia64_log_init(SAL_INFO_TYPE_INIT);
1331         ia64_log_init(SAL_INFO_TYPE_CMC);
1332         ia64_log_init(SAL_INFO_TYPE_CPE);
1333
1334         printk(KERN_INFO "MCA related initialization done\n");
1335 }
1336
1337 /*
1338  * ia64_mca_late_init
1339  *
1340  *      Opportunity to setup things that require initialization later
1341  *      than ia64_mca_init.  Setup a timer to poll for CPEs if the
1342  *      platform doesn't support an interrupt driven mechanism.
1343  *
1344  *  Inputs  :   None
1345  *  Outputs :   Status
1346  */
1347 static int __init
1348 ia64_mca_late_init(void)
1349 {
1350         init_timer(&cmc_poll_timer);
1351         cmc_poll_timer.function = ia64_mca_cmc_poll;
1352
1353         /* Reset to the correct state */
1354         cmc_polling_enabled = 0;
1355
1356         init_timer(&cpe_poll_timer);
1357         cpe_poll_timer.function = ia64_mca_cpe_poll;
1358
1359 #ifdef CONFIG_ACPI
1360         /* If platform doesn't support CPEI, get the timer going. */
1361         if (cpe_vector < 0 && cpe_poll_enabled) {
1362                 ia64_mca_cpe_poll(0UL);
1363         } else {
1364                 cpe_poll_enabled = 0;
1365         }
1366 #endif
1367
1368         return 0;
1369 }
1370
1371 device_initcall(ia64_mca_late_init);