
NEPI v3.0 User Manual

Contents

2

1FAQ

1.1 What is NEPI?

NEPI is not a network simulator, nor an emulator or a testbed. NEPI is a Python
library that provides classes to describe and run network experiments on different
experimentation platforms (e.g. Planetlab, OMF wireless testbeds, network simula-
tors, etc).

Imagine that you want to run an experiment to test a distributed application you
just coded, on the Internet. You can use NEPI to deploy your application on Plan-
etLab nodes, run the experiment, and collect result files you might have generated
during the experiment (e.g. pcap files from tcpudmps).

Sure, you could do this by coding your own BASH script, but it will probably take
more time and painful hours of debugging if you want to do it right. NEPI aims at
providing a re-usable code base to run network experiments on target experimen-
tation platforms, so to decrease the time you spend in developing platform specific
scripts or programs, and debugging them.

In a nut-shell, NEPI is a network experiment management framework which pro-
vides a simple way of describing network experiments, and the logic to automati-
cally deploy those experiments on the target experimentation environments. It also
provides the means to control the resources used in the experiment (e.g. Nodes, ap-
plications, switches, virtual machines, routing table entries, etc) during experiment
execution, and to collect results generated by the experiment to a local repository.

The experiment deployment and control is done by the Experiment Controller
(EC) entity, which is responsible for the global orchestration of the experiment. The
EC knows nothing about how to manage specific resources (e.g. how to configure
a network interface in a PlanetLab node), instead it delegates those tasks to entities
called Resource Manager (RM).

The RMs are responsible of controlling single resources (e.g. a Linux host, an
Open vSwitched on PlanetLab nodes, etc). Different types of resources will be con-
trolled by different RMs, specifically adpated to control them. All RMs implement a
same external interface, that the EC uses to control them in a uniform way.

3

4 CHAPTER 1. FAQ

NEPI is not magical, it can not control all existing resources on all existing ex-
perimentation platforms by default. However, potentially any resource could be
controlled by NEPI if the adequate Resource Manager is implemented for it. For-
tunately, NEPI already provides several Resource Managers for different resources
on a variety of testbeds, and new Resource Manager classes can be extended from
existing ones, to control new types of resources.

The idea behind NEPI is to enable runing network experiments on potentially
any experimentation platform, using a single software tool, as opposite to using a
dedicated software for each platform. An additional perk is that you don’t have to
deal with a lot of platform-specific gory details of setting up and configuring the
resources (e.g. Creating a TAP device on Planetlab. If you ever had to do that, you
know what I mean). Also, you could combine resources from different platforms in
a same experiment, using just one script.

So, ’One ring to rule them all’, sorry I meant, ’One tool to control them all’... or
something like that. We though it was a good ide to abstract platform details behind
a common resource management interface, and let NEPI deal with the details and
give you back the results.

1.2 What does a NEPI script look like ?

Here is a very simple experiment example, which runs a PING to "nepi.inria.fr"
from a given host. Note that you will need to replace the hostname, username, and
ssh_key variables va to run the example.

from nepi.execution.ec import ExperimentController

ec = ExperimentController(exp_id = "myexperiment")

hostname = # Host that can be accessed with an SSH account

username = # SSH user account on host

ssh_key = # Path to SSH public key file to access host

node = ec.register_resource("LinuxNode")

ec.set(node, "hostname", host)

ec.set(node, "username", user)

ec.set(node, "identity", ssh_key)

app = ec.register_resource("LinuxApplication")

ec.set(app, "command", "ping -c3 nepi.inria.fr")

ec.register_connection(app, node)

ec.deploy()

1.3. WHAT DOES NEPI STANDS FOR? 5

ec.wait_finished(app)

print ec.trace(app, "stdout")

ec.shutdown()

1.3 What does NEPI stands for?

It stands for: Network Experiment Programming Interface.

1.4 Who developed NEPI?

NEPI was developed at INRIA, Sophia Antipolis France. A first prototype was im-
plemented in 2010. Versions 1.0 and 2.0 were released in 2011 and 2012, respec-
tively. The current version is 3.0, and it was completely redesigned and rewritten to
broaden the scope, and to include several cool new features, which will be described
in detail in this document. The following people has contributed to the project:

• NEPI version 3.0: Alina Quereilhac, Julien Tribino, Lucia Guevgeozian Odizzio,
Alexandros Kouvakas

• NEPI versions 1.0 and 2.0: Alina Quereilhac, Claudio Freire, Martin Ferrari,
Mathieu Lacage

• NEPI prototype: Martin Ferrari, Mathieu Lacage

• Other contributors: Dirk Hasselbalch

1.5 Is it free?

Yes, NEPI is free software. It is free to use, free to to modify, free to share. NEPI v3.0
is licensed under GPL v3, so you can do whatever you want with it, as long as you
keep the same license.

1.6 How can I contribute?

There are many ways you can contribute to the project. The first one is using it and
reporting bugs. You can report bugs on the NEPI bugzilla page (not yet set-up, so
for now send the bugs by email to the users list):

6 CHAPTER 1. FAQ

https://nepi.inria.fr/bugzilla/

You can also become a part of the NEPI community and join our mailing lists:

• To subscribe to the users mailing list at nepi-users@inria.fr you can send an
email to sympa@inria.fr with subject Subscribe nepi-users <put-your-user-name-
here>

• To subscribe to the developers mailing list at nepi-developers@inria.fr you can
send an email to sympa@inria.fr with subject Subscribe nepi-developers <put-
your-user-name-here>

To contribute with bug fixes and new features, please send your code patch to
the nepi-developers list.

1.7 How can I report a bug ?

To report a bug take a look at the NEPI bugzilla page at:
https://nepi.inria.fr/bugzilla/

1.8 Where can I get more information ?

For more information visit NEPI web site at
https://nepi.inria.fr

https://nepi.inria.fr/bugzilla/
https://nepi.inria.fr/bugzilla/
https://nepi.inria.fr

2Getting started

NEPI is written in Python, so you will need to install Python before before being able
to run experiments with NEPI. NEPI is known to work on Linux (Fedore, Debian,
Ubuntu) and Mac (OS X).

2.1 Dependencies

Dependencies for NEPI vary according to the features you want to enable. Make sure
the following dependencies are correctly installed in your system before using NEPI.

Mandatory dependencies:

• Python 2.6+

• Mercurial

Optional dependencies:

• SleekXMPP - Required to run experiments on OMF testbeds

Install dependencies on Debian/Ubuntu
$ sudo aptitude install -y python mercurial

Install dependencies on Fedora
$ sudo yum install -y python mercurial

Install dependencies on Mac

First install homebrew (http://mxcl.github.io/homebrew/), then install Python.

$ brew install python

7

http://mxcl.github.io/homebrew/

8 CHAPTER 2. GETTING STARTED

Install SleekXMPP

You will need git to get the SleekXMPP sources.

$ git clone -b develop git://github.com/fritzy/SleekXMPP.git

$ cd SleekXMPP

$ sudo python setup.py install

2.2 The source code

To get NEPI’s source code you will need Mercurial version control system. The Mer-
curial NEPI repo can also be browsed online at:

http://nepi.inria.fr/code/nepi/

Clone the repo
$ hg clone http://nepi.inria.fr/code/nepi -r nepi-3.0-release

2.3 Install NEPI in your system

You don’t need to install NEPI in your system to be able to run experiments. How-
ever this might be convenient if you don’t plan to modify or extend the sources.

To install NEPI, just run make install in the NEPI source folder.

$ cd nepi

$ make install

If you are developing your own NEPI extensions, the installed NEPI version
might interfere with your work. In this case it is probably more convenient to tell
Python where to find the NEPI sources, using the PYTHONPATH environmental
variable, when you run a NEPI script.

$ PYTHONATH=$PYTHONPATH:<path-to-nepi>/src python experiment.py

2.4 Run experiments

There are two ways you can use NEPI to run your experiments. The first one is
writing a Python script, which will import NEPI libraries, and run it. The second
one is in interactive mode by using Python console.

http://nepi.inria.fr/code/nepi/

2.4. RUN EXPERIMENTS 9

Run from script

Writing a simple NEPI expeiment script is easy. Take a look at the example in the
FAQ section ??. Once you have written down the script, you can run it using Python.
Note that since NEPI is not yet installed in your system, you will need to export
the path to NEPI’s source code to the PYTHONPATH environment variable, so that
Python can find NEPI’s libraries.

$ export PYTHONPATH=<path-to-nepi>/src:$PYTHONPATH

$ python first-experiment.py

Run interactively

The Python interpreter can be used as an interactive console to execute Python in-
structions. We can take advantage of this feature, to interactively run experiments
with NEPI. We use the ipython console for the example below, you can install it with
sudo yum/aptitude install ipython on Fedora/Debian.

$ export PYTHONPATH=<path-to-nepi>/src:$PYTHONPATH

$ ipython

Python 2.7.3 (default, Jan 2 2013, 13:56:14)

Type "copyright", "credits" or "license" for more information.

IPython 0.13.1 -- An enhanced Interactive Python.

? -> Introduction and overview of IPython’s features.

%quickref -> Quick reference.

help -> Python’s own help system.

object? -> Details about ’object’, use ’object??’ for extra details.

With ipython, if you want to paste many lines at once you will need to type
%cpaste and finish the paste block with .

The first thing we have to do is to import the NEPI classes we will use. In partic-
ular we need to import the ExperimentController class.

from nepi.execution.ec import ExperimentController

Then we need to create an ExperimentController instance. The exp-id argument
serves as a human readable identifier for the experiment to be ran.

ec = ExperimentController(exp_id = "<your-exp-id>")

10 CHAPTER 2. GETTING STARTED

Next we will define two Python functions, one to register LinuxNode resources
and the other to register LinuxApplication resources. A LinuxNode resource (or Re-
sourceManager) will serve as an abstraction to a Linux host resource, that can be
accessed using SSH key authentication. A LinuxApplication resource represents any-
thing that can be executed on a Linux host as a BASH command.

%cpaste

def add_node(ec, host, user, ssh_key):

node = ec.register_resource("LinuxNode")

ec.set(node, "hostname", host)

ec.set(node, "username", user)

ec.set(node, "identity", ssh_key)

ec.set(node, "cleanHome", True)

ec.set(node, "cleanProcesses", True)

return node

def add_app(ec, command, node):

app = ec.register_resource("LinuxApplication")

ec.set(app, "command", command)

ec.register_connection(app, node)

return app

--

The method register_resource declares a resource instance to the Experiment Con-
troller. The method register_connection indicates that two resource will interact dur-
ing the experiment. Note that invoking add_node or add_app has no effect other than
informing the EC about the resources that will be used during the experiment. The
actual deployment of the experiment requires the method deploy to be invoked.

The Resource Managers (RM) that abstract the concrete resources expose con-
figuration attributes. In the LinuxNode RM we set the hostname and username as
attributes, while in the LinuxApplication RM we set the command attribute.

Apart from teh command attribute, the LinuxApplication ResourceManager ex-
posed several other attributes that permit to upload, compile and install arbitrary
sources, to run any application might be needed to run an experiment. More details
will be given in the following sections of this document.

Lets now use these functions to describe the experiment we will run. Choose
a host where you have an account, and can access using SSH key authentication.
Define string variables with the right values for the hostname, username and path to
the SSH public key in as ssh_key, and then type the following lines.

node = add_node(ec, hostname, username, ssh_key)

app = add_app(ec, "ping -c3 nepi.inria.fr", node)

2.4. RUN EXPERIMENTS 11

Now that we have described our simple PING experiment, we can deploy it. In-
voking the deploy command will not only configure the resource but also automati-
cally launch the applications.

ec.deploy()

After some seconds, we should see some log messages informing about the progress
of the deployment. If you now open another terminal and connect to the host
through SSH, you should find some directories created by NEPI. You should see
a directory named nepi-exp, and under that directory you will find another with
the identifier you gave when you created the experiment controller (the <exp-id>).
Under the experiment directory, you will find directories for each of the resources
deployed (e.g. node-1, app-2). The resource directories are named with a short string
that identifies the type of resource (e.g. ’node’, ’app’, etc), followed by a unique
number that uniquely identifies a given resource within the experiment, the global
unique identifier (guid).

From the ipython console, we can check the deployment status of each resource
by querying the EC with the method state. The argument hr stand for ‘human read-
able‘, and will return a string state instead of a state number.

ec.state(app, hr=True)

Once the LinuxApplication is STARTED, we can retrieve the PING output using
stored as a trace file on the host. For this we use use trace method, and specify the
resource and the trace name (i.e. stdout).

ec.trace(app, "stdout")

That is it. We can terminate the experiment by invoking the method shutdown.

ec.shutdown()

3Introduction to NEPI

During the past decades, a wide variety of platforms to conduct network experi-
ments, including simulators, emulators and live testbeds, have been made available
to the research community. Some of these platforms are tailored for very specific use
cases (e.g. PlanetLab for very realistic Internet application level scenarios), while
others support more generic ones (e.g. ns-3 for controllable and repeatable experi-
mentation). Nevertheless, no single platform is able to satisfy all possible scenarios,
and so researchers often rely on different platforms to evaluate their ideas.

Given the huge diversity of available platforms, it is to be expected a big disparity
in the way to carry out an experiment between one platform and another. Indeed,
different platforms provide their own mechanisms to access resources and different
tools to conduct experiments. These tools vary widely, for instance, to run a ns-3
simulation it is necessary to write a C++ program, while to conduct and experiment
using PlanetLab nodes, one must first provision resources through a special web
service, and then connect to the nodes using SSH to launch any applications involved
in the experiment.

Mastering such diversity of tools can be a daunting task, but the complexity of
conducting network experiments is not only limited to having to master different
tools and services. Designing and implementing the programs and scripts to run
an experiment can be a time consuming and difficult task, specially if distributed
resources need to be synchronised to perform the right action at the right time.
Detecting and handling possible errors during experiment execution also posses a
challenge, even more so when dealing with large size experiments. Additionally,
difficulties related to instrumenting the experiment and gathering the results must
also be considered.

In this context, the challenges that NEPI addresses are manifold. Firstly, sim-
plifying the complexity of running network experiments. Secondly, simplifying the
use of different experimentation platforms, allowing to easily switch from one to an-
other. Thirdly, simplifying the use of resources from different platforms at the same
time in a single experiment.

The approach proposed by NEPI consists on exposing a generic API that re-

12

3.1. EXPERIMENT DESCRIPTION 13

searchers can use to program experiments, and providing the libraries that can exe-
cute those experiments on target network experimentation platforms. The API ab-
stracts the researchers from the details required to actually run an experiment on
a given platform, while the libraries provide the code to automatically perform the
steps necessary to deploy the experiment and manage resources.

The API is generic enough to allow describing potentially any type of experiment,
while the architecture of the libraries was designed to be extensible to support arbi-
trary platforms. A consequence of this is that any new platform can be supported in
NEPI without changing the API, in a way that is transparent to the users.

3.1 Experiment Description

NEPI represents experiments as graphs of interconnected resources. A resource is
an abstraction of any component that takes part of an experiment and that can be
controlled by NEPI. It can be a software or hardware component, it could be a virtual
machine, a switch, a remote application process, a sensor node, etc.

Resources in NEPI are described by a set of attributes, traces and connections.
The attributes define the configuration of the resource, the traces represent the re-
sults that can be collected for that resource during the experiment and the connec-
tions represent how a resource relates to other resources in th experiment.

Resource type: LinuxApplication

RR Resource Properties

Attributes
● Command
● Sources
● ...

Traces
● Stdin
● Stdout
● Stderr

Figure 3.1: Properties of a resource of type LinuxApplication

Examples of attributes are a linux host host name, an IP address to be assigned to
a network interface, a command to run as a remote application. Examples of traces

14 CHAPTER 3. INTRODUCTION TO NEPI

are the standard output or standard error of a running application, a tcpdump on a
network interface, etc.

Resources are also associated to a type (e.g. a Linux host, a Tap device on Plan-
etLab, an application running on a Linux host, etc). Different types of resources
expose different attributes and traces and can be connected to other specific types
(e.g. A resource representing a wireless channel can have an attribute SSID and be
connected to a Linux interface but not directly to a Linux host resource) Figure ??
exemplifies this concept.

There are two different types of connections between resources, the first one is
used to define the topology graph of the experiment. This graph provides informa-
tion about which resources will interact with which other resources during the ex-
periment (e.g. application A should run in host B, and host B will be connected to
wireless channel D through a network interface C). Figure ?? shows a representation
of the concept of topology graph to describe the an experiment.

Link

Interface F Interface G

Application C

Node A Node B

Application S

Figure 3.2: A topology graph representation of an abstract experiment

The second type of connections (called conditions to differentiate them from the
first type) specifies the dependencies graph. This graph is optional and imposes con-
straints on the experiment workflow, that is the order in which different events oc-
cur during the experiment. For instance, as depicted in Figure ?? a condition on the
experiment could specify that a server application has to start before a client appli-
cation does, or that an network interface needs to be stopped (go down) at a certain
time after the beginning of the experiment.

It is important to note, that the topology graph also defines implicit and com-
pulsory workflow constraints (e.g. if an application is topologically connected to a
host, the host will always need to be up and running before an application can run

3.2. EXPERIMENT LIFE CYCLE 15

Application C Application S

AFTER
STARTEDSTART

ResourceAction ResourceState

Figure 3.3: A dependencies graph representation involving two applications re-
sources in an experiment

on it). The difference is that the dependency graph adds complementary constraints
specified by the user, related to the behavior of the experiment.

This technique for modeling experiments is generic enough that can be used to
describe experiments involving resources from any experimentation environment
(i.e. testbed, simulator, emulator, etc). However, it does not provide by itself any
information about how to actually deploy and run an experiment using concrete
resources.

3.2 Experiment Life Cycle

The Experiment Description by itself is not enough to conduct an experiment. In
order to run an experiment it is necessary to translate the description into concrete
actions and to perform these actions on the specific resources taking part of the
experiment. NEPI does this for the user in an automated manner.

Given that different resources will require performing actions in different ways
(e.g. deploying an application on a Linux machine is different than deploying a
mobile wireless robot), NEPI abstracts the life cycle of resources into common stages
associated to generic actions, and allows to plug-in different implementation of these
actions for different types of resources. Figure ?? shows the three main stages of the
network experiment life cycle, Deployment, Control and Result (collection), and the
actions that are involved in each of them.

In order to be able to control different types of resources in a uniform way, NEPI
assigns a generic state to each of these actions and expects all resources to follow

16 CHAPTER 3. INTRODUCTION TO NEPI

Deployment Control Results

● Discover
● Provision
● Configure
● Synchronize
● Instrument
● Start

● Changes configuration
● Monitor status
● Detect errors
● Stop
● Release resources

● Query information
● Collect traces

Figure 3.4: Common stages of a network experiment life cycle

RELEASED

Initial state for all resources

A resource matching the
requirements has been identified *

Access to the resources has been
granted to the user *

The resource is configured and
ready to be used

The resource has started taking
part of the experiment

An error occurred and the resource
could not perform its task

Final state of all resources. The
resource is no longer in use

The resource is no longer taking
part in the experiment

* To achieve a uniform control interface, all resources
go through the same states. However, not all states

have a well defined meaning for all types of
resources.

FINISHEDFINISHED

STARTEDSTARTED

READYREADY

PROVISIONEDPROVISIONED

DISCOVEREDDISCOVERED

NEWNEW

FAILEDFAILED

Figure 3.5: Resources state transitions

the same set of state transitions during the experiment life. The states and state
transitions are depicted in Figure ??.

It is important to note that NEPI does not require these states to be globally
synchronized for all resources (e.g. resources are not required to be all ready or
started at the same time). NEPI does not even require all resources to be declared
and known at the beginning of the experiment, making it possible to use an in-
teractive deployment mode, where new resources can de declared and deployed on
the fly, according to the experiment needs. This interactive mode can be useful to

3.3. RESOURCE MANAGEMENT: THE EC & THE RMS 17

run experiments with the purpose of exploring a new technology, or to use NEPI
as a adaptive experimentation tool, that could change an experiment according to
changing external conditions or measurements.

3.3 Resource Management: The EC & The RMs

The Experiment Controller (EC) is the entity that is responsible for translating the
Experiment Description into a running experiment. It holds the topology and depen-
dencies graphs, and it exposes a generic experiment control API that the user can
invoke to deploy experiments, control resources and collect results.

AFTER
STARTEDSTART

Topology

Dependencies

ECEC API

 User
 Desktop

Figure 3.6: User interacting with the Experiment Controller

As shown in Figure ??, the user declares the resources and their dependencies
directly with the EC. When the user requests the EC to deploy a certain resource
or a group of resources, the EC will take care of performing all the necessary ac-
tions without further user intervention, including the sequencing of actions to re-
spect user defined and topology specific dependencies, through internal scheduling
mechanisms.

The EC is a generic entity responsible for the global orchestration of the experi-
ment. As such, it abstracts itself from the details of how to control concrete resources
and relies on other entities called Resource Managers (RM)s to perform resource spe-
cific actions.

For each resource that the user registers in the topology graph, the EC will in-
stantiate a RM of a corresponding type. A RM is a resource specific controller and

18 CHAPTER 3. INTRODUCTION TO NEPI

different types of resources require a different type of RM, specifically adapted to
manage them.

The EC communicates with the RMs through a well defined API that exposes the
necessary methods (actions) to achieve all the state transitions defined by the com-
mon resource life-cycle. Each type of RM must provide a specific implementation
for each action and ensure that the correct state transition has been achieved for the
resource (e.g. upon invocation of the START action, the RM must take the necessary
steps to start the resource and set itself to state STARTED). This decoupling between
the EC and the RMs makes it possible to extend the control capabilities of NEPI to
arbitrary resources, as long as a RM can be implemented to support it.

As an example, a testbed X could allow to control host resources using a certain
API X, which could be accessed via HTTP, XMLRPC, or via any other protocol. In
order to allow NEPI to run experiments using this type of resource, it would suf-
fice to create a new RM of type host X, which extends the common RM API, and
implements the API X to manage the resources.

Figure ?? illustrates how the user, the EC, the RMs and the resources collaborate
together to run an experiment.

RM

XMPP

 XMPP SSH

SSH

API x

API x

Resources

 User
 Desktop

RM RM
RM API

EC API ECEC

Figure 3.7: Resource management in NEPI

4The ExperimentController API

• EC API

– register resource

– RM States (State transition DIAGRAM)

– RM Actions

– Attributes

– The critical attribute

– Traces (how to collect traces to the local repo, talk about the Collector
RM)

– deploy (interactive deployment)

– workflow - register condition

• Resource Factory

– Populate factory (happens automatically)

– How to discover available rm types and their resources

19

5Supported resources

5.1 Linux resources

• SSH

• The directory structure

• Linux Node (Clean home, etc)

• The api (run, exceute, x11, etc)

• Traces and collection

• Linux Application

• LinuxPing, LinuxTraceroute, etc

• CCNx

5.2 Planetlab resources

• how to get an account

• The vsys system

• python-vsys

• TAP/TUN/TUNNEL

• Note on PL inestability

• differences between PLE and PLC

20

5.3. OMF RESOURCES 21

5.3 OMF resources

• available OMF testbeds

• how to get an account

• the concept of resource reservation

6Debbuging

TODO

22

