8e8df7b4ca0e595f8d28f710a273357ab37da3ad
[linux-2.6.git] / drivers / media / dvb / frontends / tda1004x.c
1   /*
2      Driver for Philips tda1004xh OFDM Demodulator
3
4      (c) 2003, 2004 Andrew de Quincey & Robert Schlabbach
5
6      This program is free software; you can redistribute it and/or modify
7      it under the terms of the GNU General Public License as published by
8      the Free Software Foundation; either version 2 of the License, or
9      (at your option) any later version.
10
11      This program is distributed in the hope that it will be useful,
12      but WITHOUT ANY WARRANTY; without even the implied warranty of
13      MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
15      GNU General Public License for more details.
16
17      You should have received a copy of the GNU General Public License
18      along with this program; if not, write to the Free Software
19      Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20
21    */
22 /*
23  * This driver needs external firmware. Please use the commands
24  * "<kerneldir>/Documentation/dvb/get_dvb_firmware tda10045",
25  * "<kerneldir>/Documentation/dvb/get_dvb_firmware tda10046" to
26  * download/extract them, and then copy them to /usr/lib/hotplug/firmware
27  * or /lib/firmware (depending on configuration of firmware hotplug).
28  */
29 #define TDA10045_DEFAULT_FIRMWARE "dvb-fe-tda10045.fw"
30 #define TDA10046_DEFAULT_FIRMWARE "dvb-fe-tda10046.fw"
31
32 #include <linux/init.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/device.h>
36 #include <linux/jiffies.h>
37 #include <linux/string.h>
38 #include <linux/slab.h>
39
40 #include "dvb_frontend.h"
41 #include "tda1004x.h"
42
43 enum tda1004x_demod {
44         TDA1004X_DEMOD_TDA10045,
45         TDA1004X_DEMOD_TDA10046,
46 };
47
48 struct tda1004x_state {
49         struct i2c_adapter* i2c;
50         struct dvb_frontend_ops ops;
51         const struct tda1004x_config* config;
52         struct dvb_frontend frontend;
53
54         /* private demod data */
55         u8 initialised;
56         enum tda1004x_demod demod_type;
57 };
58
59 static int debug;
60 #define dprintk(args...) \
61         do { \
62                 if (debug) printk(KERN_DEBUG "tda1004x: " args); \
63         } while (0)
64
65 #define TDA1004X_CHIPID          0x00
66 #define TDA1004X_AUTO            0x01
67 #define TDA1004X_IN_CONF1        0x02
68 #define TDA1004X_IN_CONF2        0x03
69 #define TDA1004X_OUT_CONF1       0x04
70 #define TDA1004X_OUT_CONF2       0x05
71 #define TDA1004X_STATUS_CD       0x06
72 #define TDA1004X_CONFC4          0x07
73 #define TDA1004X_DSSPARE2        0x0C
74 #define TDA10045H_CODE_IN        0x0D
75 #define TDA10045H_FWPAGE         0x0E
76 #define TDA1004X_SCAN_CPT        0x10
77 #define TDA1004X_DSP_CMD         0x11
78 #define TDA1004X_DSP_ARG         0x12
79 #define TDA1004X_DSP_DATA1       0x13
80 #define TDA1004X_DSP_DATA2       0x14
81 #define TDA1004X_CONFADC1        0x15
82 #define TDA1004X_CONFC1          0x16
83 #define TDA10045H_S_AGC          0x1a
84 #define TDA10046H_AGC_TUN_LEVEL  0x1a
85 #define TDA1004X_SNR             0x1c
86 #define TDA1004X_CONF_TS1        0x1e
87 #define TDA1004X_CONF_TS2        0x1f
88 #define TDA1004X_CBER_RESET      0x20
89 #define TDA1004X_CBER_MSB        0x21
90 #define TDA1004X_CBER_LSB        0x22
91 #define TDA1004X_CVBER_LUT       0x23
92 #define TDA1004X_VBER_MSB        0x24
93 #define TDA1004X_VBER_MID        0x25
94 #define TDA1004X_VBER_LSB        0x26
95 #define TDA1004X_UNCOR           0x27
96
97 #define TDA10045H_CONFPLL_P      0x2D
98 #define TDA10045H_CONFPLL_M_MSB  0x2E
99 #define TDA10045H_CONFPLL_M_LSB  0x2F
100 #define TDA10045H_CONFPLL_N      0x30
101
102 #define TDA10046H_CONFPLL1       0x2D
103 #define TDA10046H_CONFPLL2       0x2F
104 #define TDA10046H_CONFPLL3       0x30
105 #define TDA10046H_TIME_WREF1     0x31
106 #define TDA10046H_TIME_WREF2     0x32
107 #define TDA10046H_TIME_WREF3     0x33
108 #define TDA10046H_TIME_WREF4     0x34
109 #define TDA10046H_TIME_WREF5     0x35
110
111 #define TDA10045H_UNSURW_MSB     0x31
112 #define TDA10045H_UNSURW_LSB     0x32
113 #define TDA10045H_WREF_MSB       0x33
114 #define TDA10045H_WREF_MID       0x34
115 #define TDA10045H_WREF_LSB       0x35
116 #define TDA10045H_MUXOUT         0x36
117 #define TDA1004X_CONFADC2        0x37
118
119 #define TDA10045H_IOFFSET        0x38
120
121 #define TDA10046H_CONF_TRISTATE1 0x3B
122 #define TDA10046H_CONF_TRISTATE2 0x3C
123 #define TDA10046H_CONF_POLARITY  0x3D
124 #define TDA10046H_FREQ_OFFSET    0x3E
125 #define TDA10046H_GPIO_OUT_SEL   0x41
126 #define TDA10046H_GPIO_SELECT    0x42
127 #define TDA10046H_AGC_CONF       0x43
128 #define TDA10046H_AGC_THR        0x44
129 #define TDA10046H_AGC_RENORM     0x45
130 #define TDA10046H_AGC_GAINS      0x46
131 #define TDA10046H_AGC_TUN_MIN    0x47
132 #define TDA10046H_AGC_TUN_MAX    0x48
133 #define TDA10046H_AGC_IF_MIN     0x49
134 #define TDA10046H_AGC_IF_MAX     0x4A
135
136 #define TDA10046H_FREQ_PHY2_MSB  0x4D
137 #define TDA10046H_FREQ_PHY2_LSB  0x4E
138
139 #define TDA10046H_CVBER_CTRL     0x4F
140 #define TDA10046H_AGC_IF_LEVEL   0x52
141 #define TDA10046H_CODE_CPT       0x57
142 #define TDA10046H_CODE_IN        0x58
143
144
145 static int tda1004x_write_byteI(struct tda1004x_state *state, int reg, int data)
146 {
147         int ret;
148         u8 buf[] = { reg, data };
149         struct i2c_msg msg = { .flags = 0, .buf = buf, .len = 2 };
150
151         dprintk("%s: reg=0x%x, data=0x%x\n", __FUNCTION__, reg, data);
152
153         msg.addr = state->config->demod_address;
154         ret = i2c_transfer(state->i2c, &msg, 1);
155
156         if (ret != 1)
157                 dprintk("%s: error reg=0x%x, data=0x%x, ret=%i\n",
158                         __FUNCTION__, reg, data, ret);
159
160         dprintk("%s: success reg=0x%x, data=0x%x, ret=%i\n", __FUNCTION__,
161                 reg, data, ret);
162         return (ret != 1) ? -1 : 0;
163 }
164
165 static int tda1004x_read_byte(struct tda1004x_state *state, int reg)
166 {
167         int ret;
168         u8 b0[] = { reg };
169         u8 b1[] = { 0 };
170         struct i2c_msg msg[] = {{ .flags = 0, .buf = b0, .len = 1 },
171                                 { .flags = I2C_M_RD, .buf = b1, .len = 1 }};
172
173         dprintk("%s: reg=0x%x\n", __FUNCTION__, reg);
174
175         msg[0].addr = state->config->demod_address;
176         msg[1].addr = state->config->demod_address;
177         ret = i2c_transfer(state->i2c, msg, 2);
178
179         if (ret != 2) {
180                 dprintk("%s: error reg=0x%x, ret=%i\n", __FUNCTION__, reg,
181                         ret);
182                 return -1;
183         }
184
185         dprintk("%s: success reg=0x%x, data=0x%x, ret=%i\n", __FUNCTION__,
186                 reg, b1[0], ret);
187         return b1[0];
188 }
189
190 static int tda1004x_write_mask(struct tda1004x_state *state, int reg, int mask, int data)
191 {
192         int val;
193         dprintk("%s: reg=0x%x, mask=0x%x, data=0x%x\n", __FUNCTION__, reg,
194                 mask, data);
195
196         // read a byte and check
197         val = tda1004x_read_byte(state, reg);
198         if (val < 0)
199                 return val;
200
201         // mask if off
202         val = val & ~mask;
203         val |= data & 0xff;
204
205         // write it out again
206         return tda1004x_write_byteI(state, reg, val);
207 }
208
209 static int tda1004x_write_buf(struct tda1004x_state *state, int reg, unsigned char *buf, int len)
210 {
211         int i;
212         int result;
213
214         dprintk("%s: reg=0x%x, len=0x%x\n", __FUNCTION__, reg, len);
215
216         result = 0;
217         for (i = 0; i < len; i++) {
218                 result = tda1004x_write_byteI(state, reg + i, buf[i]);
219                 if (result != 0)
220                         break;
221         }
222
223         return result;
224 }
225
226 static int tda1004x_enable_tuner_i2c(struct tda1004x_state *state)
227 {
228         int result;
229         dprintk("%s\n", __FUNCTION__);
230
231         result = tda1004x_write_mask(state, TDA1004X_CONFC4, 2, 2);
232         msleep(20);
233         return result;
234 }
235
236 static int tda1004x_disable_tuner_i2c(struct tda1004x_state *state)
237 {
238         dprintk("%s\n", __FUNCTION__);
239
240         return tda1004x_write_mask(state, TDA1004X_CONFC4, 2, 0);
241 }
242
243 static int tda10045h_set_bandwidth(struct tda1004x_state *state,
244                                    fe_bandwidth_t bandwidth)
245 {
246         static u8 bandwidth_6mhz[] = { 0x02, 0x00, 0x3d, 0x00, 0x60, 0x1e, 0xa7, 0x45, 0x4f };
247         static u8 bandwidth_7mhz[] = { 0x02, 0x00, 0x37, 0x00, 0x4a, 0x2f, 0x6d, 0x76, 0xdb };
248         static u8 bandwidth_8mhz[] = { 0x02, 0x00, 0x3d, 0x00, 0x48, 0x17, 0x89, 0xc7, 0x14 };
249
250         switch (bandwidth) {
251         case BANDWIDTH_6_MHZ:
252                 tda1004x_write_buf(state, TDA10045H_CONFPLL_P, bandwidth_6mhz, sizeof(bandwidth_6mhz));
253                 break;
254
255         case BANDWIDTH_7_MHZ:
256                 tda1004x_write_buf(state, TDA10045H_CONFPLL_P, bandwidth_7mhz, sizeof(bandwidth_7mhz));
257                 break;
258
259         case BANDWIDTH_8_MHZ:
260                 tda1004x_write_buf(state, TDA10045H_CONFPLL_P, bandwidth_8mhz, sizeof(bandwidth_8mhz));
261                 break;
262
263         default:
264                 return -EINVAL;
265         }
266
267         tda1004x_write_byteI(state, TDA10045H_IOFFSET, 0);
268
269         return 0;
270 }
271
272 static int tda10046h_set_bandwidth(struct tda1004x_state *state,
273                                    fe_bandwidth_t bandwidth)
274 {
275         static u8 bandwidth_6mhz_53M[] = { 0x7b, 0x2e, 0x11, 0xf0, 0xd2 };
276         static u8 bandwidth_7mhz_53M[] = { 0x6a, 0x02, 0x6a, 0x43, 0x9f };
277         static u8 bandwidth_8mhz_53M[] = { 0x5c, 0x32, 0xc2, 0x96, 0x6d };
278
279         static u8 bandwidth_6mhz_48M[] = { 0x70, 0x02, 0x49, 0x24, 0x92 };
280         static u8 bandwidth_7mhz_48M[] = { 0x60, 0x02, 0xaa, 0xaa, 0xab };
281         static u8 bandwidth_8mhz_48M[] = { 0x54, 0x03, 0x0c, 0x30, 0xc3 };
282         int tda10046_clk53m;
283
284         if ((state->config->if_freq == TDA10046_FREQ_045) ||
285             (state->config->if_freq == TDA10046_FREQ_052))
286                 tda10046_clk53m = 0;
287         else
288                 tda10046_clk53m = 1;
289         switch (bandwidth) {
290         case BANDWIDTH_6_MHZ:
291                 if (tda10046_clk53m)
292                         tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_6mhz_53M,
293                                                   sizeof(bandwidth_6mhz_53M));
294                 else
295                         tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_6mhz_48M,
296                                                   sizeof(bandwidth_6mhz_48M));
297                 if (state->config->if_freq == TDA10046_FREQ_045) {
298                         tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0a);
299                         tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0xab);
300                 }
301                 break;
302
303         case BANDWIDTH_7_MHZ:
304                 if (tda10046_clk53m)
305                         tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_7mhz_53M,
306                                                   sizeof(bandwidth_7mhz_53M));
307                 else
308                         tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_7mhz_48M,
309                                                   sizeof(bandwidth_7mhz_48M));
310                 if (state->config->if_freq == TDA10046_FREQ_045) {
311                         tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0c);
312                         tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x00);
313                 }
314                 break;
315
316         case BANDWIDTH_8_MHZ:
317                 if (tda10046_clk53m)
318                         tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_8mhz_53M,
319                                                   sizeof(bandwidth_8mhz_53M));
320                 else
321                         tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_8mhz_48M,
322                                                   sizeof(bandwidth_8mhz_48M));
323                 if (state->config->if_freq == TDA10046_FREQ_045) {
324                         tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0d);
325                         tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x55);
326                 }
327                 break;
328
329         default:
330                 return -EINVAL;
331         }
332
333         return 0;
334 }
335
336 static int tda1004x_do_upload(struct tda1004x_state *state,
337                               unsigned char *mem, unsigned int len,
338                               u8 dspCodeCounterReg, u8 dspCodeInReg)
339 {
340         u8 buf[65];
341         struct i2c_msg fw_msg = { .flags = 0, .buf = buf, .len = 0 };
342         int tx_size;
343         int pos = 0;
344
345         /* clear code counter */
346         tda1004x_write_byteI(state, dspCodeCounterReg, 0);
347         fw_msg.addr = state->config->demod_address;
348
349         buf[0] = dspCodeInReg;
350         while (pos != len) {
351                 // work out how much to send this time
352                 tx_size = len - pos;
353                 if (tx_size > 0x10)
354                         tx_size = 0x10;
355
356                 // send the chunk
357                 memcpy(buf + 1, mem + pos, tx_size);
358                 fw_msg.len = tx_size + 1;
359                 if (i2c_transfer(state->i2c, &fw_msg, 1) != 1) {
360                         printk(KERN_ERR "tda1004x: Error during firmware upload\n");
361                         return -EIO;
362                 }
363                 pos += tx_size;
364
365                 dprintk("%s: fw_pos=0x%x\n", __FUNCTION__, pos);
366         }
367         // give the DSP a chance to settle 03/10/05 Hac
368         msleep(100);
369
370         return 0;
371 }
372
373 static int tda1004x_check_upload_ok(struct tda1004x_state *state)
374 {
375         u8 data1, data2;
376         unsigned long timeout;
377
378         if (state->demod_type == TDA1004X_DEMOD_TDA10046) {
379                 timeout = jiffies + 2 * HZ;
380                 while(!(tda1004x_read_byte(state, TDA1004X_STATUS_CD) & 0x20)) {
381                         if (time_after(jiffies, timeout)) {
382                                 printk(KERN_ERR "tda1004x: timeout waiting for DSP ready\n");
383                                 break;
384                         }
385                         msleep(1);
386                 }
387         } else
388                 msleep(100);
389
390         // check upload was OK
391         tda1004x_write_mask(state, TDA1004X_CONFC4, 0x10, 0); // we want to read from the DSP
392         tda1004x_write_byteI(state, TDA1004X_DSP_CMD, 0x67);
393
394         data1 = tda1004x_read_byte(state, TDA1004X_DSP_DATA1);
395         data2 = tda1004x_read_byte(state, TDA1004X_DSP_DATA2);
396         if (data1 != 0x67 || data2 < 0x20 || data2 > 0x2e) {
397                 printk(KERN_INFO "tda1004x: found firmware revision %x -- invalid\n", data2);
398                 return -EIO;
399         }
400         printk(KERN_INFO "tda1004x: found firmware revision %x -- ok\n", data2);
401         return 0;
402 }
403
404 static int tda10045_fwupload(struct dvb_frontend* fe)
405 {
406         struct tda1004x_state* state = fe->demodulator_priv;
407         int ret;
408         const struct firmware *fw;
409
410         /* don't re-upload unless necessary */
411         if (tda1004x_check_upload_ok(state) == 0)
412                 return 0;
413
414         /* request the firmware, this will block until someone uploads it */
415         printk(KERN_INFO "tda1004x: waiting for firmware upload (%s)...\n", TDA10045_DEFAULT_FIRMWARE);
416         ret = state->config->request_firmware(fe, &fw, TDA10045_DEFAULT_FIRMWARE);
417         if (ret) {
418                 printk(KERN_ERR "tda1004x: no firmware upload (timeout or file not found?)\n");
419                 return ret;
420         }
421
422         /* reset chip */
423         tda1004x_write_mask(state, TDA1004X_CONFC4, 0x10, 0);
424         tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 8);
425         tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 0);
426         msleep(10);
427
428         /* set parameters */
429         tda10045h_set_bandwidth(state, BANDWIDTH_8_MHZ);
430
431         ret = tda1004x_do_upload(state, fw->data, fw->size, TDA10045H_FWPAGE, TDA10045H_CODE_IN);
432         release_firmware(fw);
433         if (ret)
434                 return ret;
435         printk(KERN_INFO "tda1004x: firmware upload complete\n");
436
437         /* wait for DSP to initialise */
438         /* DSPREADY doesn't seem to work on the TDA10045H */
439         msleep(100);
440
441         return tda1004x_check_upload_ok(state);
442 }
443
444 static void tda10046_init_plls(struct dvb_frontend* fe)
445 {
446         struct tda1004x_state* state = fe->demodulator_priv;
447         int tda10046_clk53m;
448
449         if ((state->config->if_freq == TDA10046_FREQ_045) ||
450             (state->config->if_freq == TDA10046_FREQ_052))
451                 tda10046_clk53m = 0;
452         else
453                 tda10046_clk53m = 1;
454
455         tda1004x_write_byteI(state, TDA10046H_CONFPLL1, 0xf0);
456         if(tda10046_clk53m) {
457                 printk(KERN_INFO "tda1004x: setting up plls for 53MHz sampling clock\n");
458                 tda1004x_write_byteI(state, TDA10046H_CONFPLL2, 0x08); // PLL M = 8
459         } else {
460                 printk(KERN_INFO "tda1004x: setting up plls for 48MHz sampling clock\n");
461                 tda1004x_write_byteI(state, TDA10046H_CONFPLL2, 0x03); // PLL M = 3
462         }
463         if (state->config->xtal_freq == TDA10046_XTAL_4M ) {
464                 dprintk("%s: setting up PLLs for a 4 MHz Xtal\n", __FUNCTION__);
465                 tda1004x_write_byteI(state, TDA10046H_CONFPLL3, 0); // PLL P = N = 0
466         } else {
467                 dprintk("%s: setting up PLLs for a 16 MHz Xtal\n", __FUNCTION__);
468                 tda1004x_write_byteI(state, TDA10046H_CONFPLL3, 3); // PLL P = 0, N = 3
469         }
470         if(tda10046_clk53m)
471                 tda1004x_write_byteI(state, TDA10046H_FREQ_OFFSET, 0x67);
472         else
473                 tda1004x_write_byteI(state, TDA10046H_FREQ_OFFSET, 0x72);
474         /* Note clock frequency is handled implicitly */
475         switch (state->config->if_freq) {
476         case TDA10046_FREQ_045:
477                 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0c);
478                 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x00);
479                 break;
480         case TDA10046_FREQ_052:
481                 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0d);
482                 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0xc7);
483                 break;
484         case TDA10046_FREQ_3617:
485                 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0xd7);
486                 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x59);
487                 break;
488         case TDA10046_FREQ_3613:
489                 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0xd7);
490                 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x3f);
491                 break;
492         }
493         tda10046h_set_bandwidth(state, BANDWIDTH_8_MHZ); // default bandwidth 8 MHz
494         /* let the PLLs settle */
495         msleep(120);
496 }
497
498 static int tda10046_fwupload(struct dvb_frontend* fe)
499 {
500         struct tda1004x_state* state = fe->demodulator_priv;
501         int ret;
502         const struct firmware *fw;
503
504         /* reset + wake up chip */
505         if (state->config->xtal_freq == TDA10046_XTAL_4M) {
506                 tda1004x_write_byteI(state, TDA1004X_CONFC4, 0);
507         } else {
508                 dprintk("%s: 16MHz Xtal, reducing I2C speed\n", __FUNCTION__);
509                 tda1004x_write_byteI(state, TDA1004X_CONFC4, 0x80);
510         }
511         tda1004x_write_mask(state, TDA10046H_CONF_TRISTATE1, 1, 0);
512         /* let the clocks recover from sleep */
513         msleep(5);
514
515         /* The PLLs need to be reprogrammed after sleep */
516         tda10046_init_plls(fe);
517
518         /* don't re-upload unless necessary */
519         if (tda1004x_check_upload_ok(state) == 0)
520                 return 0;
521
522         if (state->config->request_firmware != NULL) {
523                 /* request the firmware, this will block until someone uploads it */
524                 printk(KERN_INFO "tda1004x: waiting for firmware upload...\n");
525                 ret = state->config->request_firmware(fe, &fw, TDA10046_DEFAULT_FIRMWARE);
526                 if (ret) {
527                         printk(KERN_ERR "tda1004x: no firmware upload (timeout or file not found?)\n");
528                         return ret;
529                 }
530                 tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 8); // going to boot from HOST
531                 ret = tda1004x_do_upload(state, fw->data, fw->size, TDA10046H_CODE_CPT, TDA10046H_CODE_IN);
532                 release_firmware(fw);
533                 if (ret)
534                         return ret;
535         } else {
536                 /* boot from firmware eeprom */
537                 printk(KERN_INFO "tda1004x: booting from eeprom\n");
538                 tda1004x_write_mask(state, TDA1004X_CONFC4, 4, 4);
539                 msleep(300);
540         }
541         return tda1004x_check_upload_ok(state);
542 }
543
544 static int tda1004x_encode_fec(int fec)
545 {
546         // convert known FEC values
547         switch (fec) {
548         case FEC_1_2:
549                 return 0;
550         case FEC_2_3:
551                 return 1;
552         case FEC_3_4:
553                 return 2;
554         case FEC_5_6:
555                 return 3;
556         case FEC_7_8:
557                 return 4;
558         }
559
560         // unsupported
561         return -EINVAL;
562 }
563
564 static int tda1004x_decode_fec(int tdafec)
565 {
566         // convert known FEC values
567         switch (tdafec) {
568         case 0:
569                 return FEC_1_2;
570         case 1:
571                 return FEC_2_3;
572         case 2:
573                 return FEC_3_4;
574         case 3:
575                 return FEC_5_6;
576         case 4:
577                 return FEC_7_8;
578         }
579
580         // unsupported
581         return -1;
582 }
583
584 int tda1004x_write_byte(struct dvb_frontend* fe, int reg, int data)
585 {
586         struct tda1004x_state* state = fe->demodulator_priv;
587
588         return tda1004x_write_byteI(state, reg, data);
589 }
590
591 static int tda10045_init(struct dvb_frontend* fe)
592 {
593         struct tda1004x_state* state = fe->demodulator_priv;
594
595         dprintk("%s\n", __FUNCTION__);
596
597         if (state->initialised)
598                 return 0;
599
600         if (tda10045_fwupload(fe)) {
601                 printk("tda1004x: firmware upload failed\n");
602                 return -EIO;
603         }
604
605         tda1004x_write_mask(state, TDA1004X_CONFADC1, 0x10, 0); // wake up the ADC
606
607         // Init the PLL
608         if (state->config->pll_init) {
609                 tda1004x_enable_tuner_i2c(state);
610                 state->config->pll_init(fe);
611                 tda1004x_disable_tuner_i2c(state);
612         }
613
614         // tda setup
615         tda1004x_write_mask(state, TDA1004X_CONFC4, 0x20, 0); // disable DSP watchdog timer
616         tda1004x_write_mask(state, TDA1004X_AUTO, 8, 0); // select HP stream
617         tda1004x_write_mask(state, TDA1004X_CONFC1, 0x40, 0); // set polarity of VAGC signal
618         tda1004x_write_mask(state, TDA1004X_CONFC1, 0x80, 0x80); // enable pulse killer
619         tda1004x_write_mask(state, TDA1004X_AUTO, 0x10, 0x10); // enable auto offset
620         tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0xC0, 0x0); // no frequency offset
621         tda1004x_write_byteI(state, TDA1004X_CONF_TS1, 0); // setup MPEG2 TS interface
622         tda1004x_write_byteI(state, TDA1004X_CONF_TS2, 0); // setup MPEG2 TS interface
623         tda1004x_write_mask(state, TDA1004X_VBER_MSB, 0xe0, 0xa0); // 10^6 VBER measurement bits
624         tda1004x_write_mask(state, TDA1004X_CONFC1, 0x10, 0); // VAGC polarity
625         tda1004x_write_byteI(state, TDA1004X_CONFADC1, 0x2e);
626
627         tda1004x_write_mask(state, 0x1f, 0x01, state->config->invert_oclk);
628
629         state->initialised = 1;
630         return 0;
631 }
632
633 static int tda10046_init(struct dvb_frontend* fe)
634 {
635         struct tda1004x_state* state = fe->demodulator_priv;
636         dprintk("%s\n", __FUNCTION__);
637
638         if (state->initialised)
639                 return 0;
640
641         if (tda10046_fwupload(fe)) {
642                 printk("tda1004x: firmware upload failed\n");
643                         return -EIO;
644         }
645
646         // Init the tuner PLL
647         if (state->config->pll_init) {
648                 tda1004x_enable_tuner_i2c(state);
649                 if (state->config->pll_init(fe)) {
650                         printk(KERN_ERR "tda1004x: pll init failed\n");
651                         return  -EIO;
652                 }
653                 tda1004x_disable_tuner_i2c(state);
654         }
655
656         // tda setup
657         tda1004x_write_mask(state, TDA1004X_CONFC4, 0x20, 0); // disable DSP watchdog timer
658         tda1004x_write_byteI(state, TDA1004X_AUTO, 0x87);    // 100 ppm crystal, select HP stream
659         tda1004x_write_byteI(state, TDA1004X_CONFC1, 0x88);      // enable pulse killer
660
661         switch (state->config->agc_config) {
662         case TDA10046_AGC_DEFAULT:
663                 tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x00); // AGC setup
664                 tda1004x_write_byteI(state, TDA10046H_CONF_POLARITY, 0x60); // set AGC polarities
665                 break;
666         case TDA10046_AGC_IFO_AUTO_NEG:
667                 tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x0a); // AGC setup
668                 tda1004x_write_byteI(state, TDA10046H_CONF_POLARITY, 0x60); // set AGC polarities
669                 break;
670         case TDA10046_AGC_IFO_AUTO_POS:
671                 tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x0a); // AGC setup
672                 tda1004x_write_byteI(state, TDA10046H_CONF_POLARITY, 0x00); // set AGC polarities
673                 break;
674         case TDA10046_AGC_TDA827X:
675                 tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x02);   // AGC setup
676                 tda1004x_write_byteI(state, TDA10046H_AGC_THR, 0x70);    // AGC Threshold
677                 tda1004x_write_byteI(state, TDA10046H_AGC_RENORM, 0x08); // Gain Renormalize
678                 tda1004x_write_byteI(state, TDA10046H_CONF_POLARITY, 0x6a); // set AGC polarities
679                 break;
680         case TDA10046_AGC_TDA827X_GPL:
681                 tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x02);   // AGC setup
682                 tda1004x_write_byteI(state, TDA10046H_AGC_THR, 0x70);    // AGC Threshold
683                 tda1004x_write_byteI(state, TDA10046H_AGC_RENORM, 0x08); // Gain Renormalize
684                 tda1004x_write_byteI(state, TDA10046H_CONF_POLARITY, 0x60); // set AGC polarities
685                 break;
686         }
687         tda1004x_write_byteI(state, TDA1004X_CONFADC2, 0x38);
688         tda1004x_write_byteI(state, TDA10046H_CONF_TRISTATE1, 0x61); // Turn both AGC outputs on
689         tda1004x_write_byteI(state, TDA10046H_AGC_TUN_MIN, 0);    // }
690         tda1004x_write_byteI(state, TDA10046H_AGC_TUN_MAX, 0xff); // } AGC min/max values
691         tda1004x_write_byteI(state, TDA10046H_AGC_IF_MIN, 0);     // }
692         tda1004x_write_byteI(state, TDA10046H_AGC_IF_MAX, 0xff);  // }
693         tda1004x_write_byteI(state, TDA10046H_AGC_GAINS, 0x12); // IF gain 2, TUN gain 1
694         tda1004x_write_byteI(state, TDA10046H_CVBER_CTRL, 0x1a); // 10^6 VBER measurement bits
695         tda1004x_write_byteI(state, TDA1004X_CONF_TS1, 7); // MPEG2 interface config
696         tda1004x_write_byteI(state, TDA1004X_CONF_TS2, 0xc0); // MPEG2 interface config
697         // tda1004x_write_mask(state, 0x50, 0x80, 0x80);         // handle out of guard echoes
698         tda1004x_write_mask(state, 0x3a, 0x80, state->config->invert_oclk << 7);
699
700         state->initialised = 1;
701         return 0;
702 }
703
704 static int tda1004x_set_fe(struct dvb_frontend* fe,
705                            struct dvb_frontend_parameters *fe_params)
706 {
707         struct tda1004x_state* state = fe->demodulator_priv;
708         int tmp;
709         int inversion;
710
711         dprintk("%s\n", __FUNCTION__);
712
713         if (state->demod_type == TDA1004X_DEMOD_TDA10046) {
714                 // setup auto offset
715                 tda1004x_write_mask(state, TDA1004X_AUTO, 0x10, 0x10);
716                 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x80, 0);
717                 tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0xC0, 0);
718
719                 // disable agc_conf[2]
720                 tda1004x_write_mask(state, TDA10046H_AGC_CONF, 4, 0);
721         }
722
723         // set frequency
724         tda1004x_enable_tuner_i2c(state);
725         if (state->config->pll_set(fe, fe_params)) {
726                 printk(KERN_ERR "tda1004x: pll set failed\n");
727                 return  -EIO;
728         }
729         tda1004x_disable_tuner_i2c(state);
730
731         // Hardcoded to use auto as much as possible on the TDA10045 as it
732         // is very unreliable if AUTO mode is _not_ used.
733         if (state->demod_type == TDA1004X_DEMOD_TDA10045) {
734                 fe_params->u.ofdm.code_rate_HP = FEC_AUTO;
735                 fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_AUTO;
736                 fe_params->u.ofdm.transmission_mode = TRANSMISSION_MODE_AUTO;
737         }
738
739         // Set standard params.. or put them to auto
740         if ((fe_params->u.ofdm.code_rate_HP == FEC_AUTO) ||
741                 (fe_params->u.ofdm.code_rate_LP == FEC_AUTO) ||
742                 (fe_params->u.ofdm.constellation == QAM_AUTO) ||
743                 (fe_params->u.ofdm.hierarchy_information == HIERARCHY_AUTO)) {
744                 tda1004x_write_mask(state, TDA1004X_AUTO, 1, 1);        // enable auto
745                 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x03, 0); // turn off constellation bits
746                 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 0); // turn off hierarchy bits
747                 tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0x3f, 0); // turn off FEC bits
748         } else {
749                 tda1004x_write_mask(state, TDA1004X_AUTO, 1, 0);        // disable auto
750
751                 // set HP FEC
752                 tmp = tda1004x_encode_fec(fe_params->u.ofdm.code_rate_HP);
753                 if (tmp < 0)
754                         return tmp;
755                 tda1004x_write_mask(state, TDA1004X_IN_CONF2, 7, tmp);
756
757                 // set LP FEC
758                 tmp = tda1004x_encode_fec(fe_params->u.ofdm.code_rate_LP);
759                 if (tmp < 0)
760                         return tmp;
761                 tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0x38, tmp << 3);
762
763                 // set constellation
764                 switch (fe_params->u.ofdm.constellation) {
765                 case QPSK:
766                         tda1004x_write_mask(state, TDA1004X_IN_CONF1, 3, 0);
767                         break;
768
769                 case QAM_16:
770                         tda1004x_write_mask(state, TDA1004X_IN_CONF1, 3, 1);
771                         break;
772
773                 case QAM_64:
774                         tda1004x_write_mask(state, TDA1004X_IN_CONF1, 3, 2);
775                         break;
776
777                 default:
778                         return -EINVAL;
779                 }
780
781                 // set hierarchy
782                 switch (fe_params->u.ofdm.hierarchy_information) {
783                 case HIERARCHY_NONE:
784                         tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 0 << 5);
785                         break;
786
787                 case HIERARCHY_1:
788                         tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 1 << 5);
789                         break;
790
791                 case HIERARCHY_2:
792                         tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 2 << 5);
793                         break;
794
795                 case HIERARCHY_4:
796                         tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 3 << 5);
797                         break;
798
799                 default:
800                         return -EINVAL;
801                 }
802         }
803
804         // set bandwidth
805         switch (state->demod_type) {
806         case TDA1004X_DEMOD_TDA10045:
807                 tda10045h_set_bandwidth(state, fe_params->u.ofdm.bandwidth);
808                 break;
809
810         case TDA1004X_DEMOD_TDA10046:
811                 tda10046h_set_bandwidth(state, fe_params->u.ofdm.bandwidth);
812                 break;
813         }
814
815         // set inversion
816         inversion = fe_params->inversion;
817         if (state->config->invert)
818                 inversion = inversion ? INVERSION_OFF : INVERSION_ON;
819         switch (inversion) {
820         case INVERSION_OFF:
821                 tda1004x_write_mask(state, TDA1004X_CONFC1, 0x20, 0);
822                 break;
823
824         case INVERSION_ON:
825                 tda1004x_write_mask(state, TDA1004X_CONFC1, 0x20, 0x20);
826                 break;
827
828         default:
829                 return -EINVAL;
830         }
831
832         // set guard interval
833         switch (fe_params->u.ofdm.guard_interval) {
834         case GUARD_INTERVAL_1_32:
835                 tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0);
836                 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 0 << 2);
837                 break;
838
839         case GUARD_INTERVAL_1_16:
840                 tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0);
841                 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 1 << 2);
842                 break;
843
844         case GUARD_INTERVAL_1_8:
845                 tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0);
846                 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 2 << 2);
847                 break;
848
849         case GUARD_INTERVAL_1_4:
850                 tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0);
851                 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 3 << 2);
852                 break;
853
854         case GUARD_INTERVAL_AUTO:
855                 tda1004x_write_mask(state, TDA1004X_AUTO, 2, 2);
856                 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 0 << 2);
857                 break;
858
859         default:
860                 return -EINVAL;
861         }
862
863         // set transmission mode
864         switch (fe_params->u.ofdm.transmission_mode) {
865         case TRANSMISSION_MODE_2K:
866                 tda1004x_write_mask(state, TDA1004X_AUTO, 4, 0);
867                 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x10, 0 << 4);
868                 break;
869
870         case TRANSMISSION_MODE_8K:
871                 tda1004x_write_mask(state, TDA1004X_AUTO, 4, 0);
872                 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x10, 1 << 4);
873                 break;
874
875         case TRANSMISSION_MODE_AUTO:
876                 tda1004x_write_mask(state, TDA1004X_AUTO, 4, 4);
877                 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x10, 0);
878                 break;
879
880         default:
881                 return -EINVAL;
882         }
883
884         // start the lock
885         switch (state->demod_type) {
886         case TDA1004X_DEMOD_TDA10045:
887                 tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 8);
888                 tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 0);
889                 break;
890
891         case TDA1004X_DEMOD_TDA10046:
892                 tda1004x_write_mask(state, TDA1004X_AUTO, 0x40, 0x40);
893                 msleep(1);
894                 tda1004x_write_mask(state, TDA10046H_AGC_CONF, 4, 1);
895                 break;
896         }
897
898         msleep(10);
899
900         return 0;
901 }
902
903 static int tda1004x_get_fe(struct dvb_frontend* fe, struct dvb_frontend_parameters *fe_params)
904 {
905         struct tda1004x_state* state = fe->demodulator_priv;
906
907         dprintk("%s\n", __FUNCTION__);
908
909         // inversion status
910         fe_params->inversion = INVERSION_OFF;
911         if (tda1004x_read_byte(state, TDA1004X_CONFC1) & 0x20)
912                 fe_params->inversion = INVERSION_ON;
913         if (state->config->invert)
914                 fe_params->inversion = fe_params->inversion ? INVERSION_OFF : INVERSION_ON;
915
916         // bandwidth
917         switch (state->demod_type) {
918         case TDA1004X_DEMOD_TDA10045:
919                 switch (tda1004x_read_byte(state, TDA10045H_WREF_LSB)) {
920                 case 0x14:
921                         fe_params->u.ofdm.bandwidth = BANDWIDTH_8_MHZ;
922                         break;
923                 case 0xdb:
924                         fe_params->u.ofdm.bandwidth = BANDWIDTH_7_MHZ;
925                         break;
926                 case 0x4f:
927                         fe_params->u.ofdm.bandwidth = BANDWIDTH_6_MHZ;
928                         break;
929                 }
930                 break;
931         case TDA1004X_DEMOD_TDA10046:
932                 switch (tda1004x_read_byte(state, TDA10046H_TIME_WREF1)) {
933                 case 0x5c:
934                 case 0x54:
935                         fe_params->u.ofdm.bandwidth = BANDWIDTH_8_MHZ;
936                         break;
937                 case 0x6a:
938                 case 0x60:
939                         fe_params->u.ofdm.bandwidth = BANDWIDTH_7_MHZ;
940                         break;
941                 case 0x7b:
942                 case 0x70:
943                         fe_params->u.ofdm.bandwidth = BANDWIDTH_6_MHZ;
944                         break;
945                 }
946                 break;
947         }
948
949         // FEC
950         fe_params->u.ofdm.code_rate_HP =
951             tda1004x_decode_fec(tda1004x_read_byte(state, TDA1004X_OUT_CONF2) & 7);
952         fe_params->u.ofdm.code_rate_LP =
953             tda1004x_decode_fec((tda1004x_read_byte(state, TDA1004X_OUT_CONF2) >> 3) & 7);
954
955         // constellation
956         switch (tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 3) {
957         case 0:
958                 fe_params->u.ofdm.constellation = QPSK;
959                 break;
960         case 1:
961                 fe_params->u.ofdm.constellation = QAM_16;
962                 break;
963         case 2:
964                 fe_params->u.ofdm.constellation = QAM_64;
965                 break;
966         }
967
968         // transmission mode
969         fe_params->u.ofdm.transmission_mode = TRANSMISSION_MODE_2K;
970         if (tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 0x10)
971                 fe_params->u.ofdm.transmission_mode = TRANSMISSION_MODE_8K;
972
973         // guard interval
974         switch ((tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 0x0c) >> 2) {
975         case 0:
976                 fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_1_32;
977                 break;
978         case 1:
979                 fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_1_16;
980                 break;
981         case 2:
982                 fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_1_8;
983                 break;
984         case 3:
985                 fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_1_4;
986                 break;
987         }
988
989         // hierarchy
990         switch ((tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 0x60) >> 5) {
991         case 0:
992                 fe_params->u.ofdm.hierarchy_information = HIERARCHY_NONE;
993                 break;
994         case 1:
995                 fe_params->u.ofdm.hierarchy_information = HIERARCHY_1;
996                 break;
997         case 2:
998                 fe_params->u.ofdm.hierarchy_information = HIERARCHY_2;
999                 break;
1000         case 3:
1001                 fe_params->u.ofdm.hierarchy_information = HIERARCHY_4;
1002                 break;
1003         }
1004
1005         return 0;
1006 }
1007
1008 static int tda1004x_read_status(struct dvb_frontend* fe, fe_status_t * fe_status)
1009 {
1010         struct tda1004x_state* state = fe->demodulator_priv;
1011         int status;
1012         int cber;
1013         int vber;
1014
1015         dprintk("%s\n", __FUNCTION__);
1016
1017         // read status
1018         status = tda1004x_read_byte(state, TDA1004X_STATUS_CD);
1019         if (status == -1)
1020                 return -EIO;
1021
1022         // decode
1023         *fe_status = 0;
1024         if (status & 4)
1025                 *fe_status |= FE_HAS_SIGNAL;
1026         if (status & 2)
1027                 *fe_status |= FE_HAS_CARRIER;
1028         if (status & 8)
1029                 *fe_status |= FE_HAS_VITERBI | FE_HAS_SYNC | FE_HAS_LOCK;
1030
1031         // if we don't already have VITERBI (i.e. not LOCKED), see if the viterbi
1032         // is getting anything valid
1033         if (!(*fe_status & FE_HAS_VITERBI)) {
1034                 // read the CBER
1035                 cber = tda1004x_read_byte(state, TDA1004X_CBER_LSB);
1036                 if (cber == -1)
1037                         return -EIO;
1038                 status = tda1004x_read_byte(state, TDA1004X_CBER_MSB);
1039                 if (status == -1)
1040                         return -EIO;
1041                 cber |= (status << 8);
1042                 // The address 0x20 should be read to cope with a TDA10046 bug
1043                 tda1004x_read_byte(state, TDA1004X_CBER_RESET);
1044
1045                 if (cber != 65535)
1046                         *fe_status |= FE_HAS_VITERBI;
1047         }
1048
1049         // if we DO have some valid VITERBI output, but don't already have SYNC
1050         // bytes (i.e. not LOCKED), see if the RS decoder is getting anything valid.
1051         if ((*fe_status & FE_HAS_VITERBI) && (!(*fe_status & FE_HAS_SYNC))) {
1052                 // read the VBER
1053                 vber = tda1004x_read_byte(state, TDA1004X_VBER_LSB);
1054                 if (vber == -1)
1055                         return -EIO;
1056                 status = tda1004x_read_byte(state, TDA1004X_VBER_MID);
1057                 if (status == -1)
1058                         return -EIO;
1059                 vber |= (status << 8);
1060                 status = tda1004x_read_byte(state, TDA1004X_VBER_MSB);
1061                 if (status == -1)
1062                         return -EIO;
1063                 vber |= (status & 0x0f) << 16;
1064                 // The CVBER_LUT should be read to cope with TDA10046 hardware bug
1065                 tda1004x_read_byte(state, TDA1004X_CVBER_LUT);
1066
1067                 // if RS has passed some valid TS packets, then we must be
1068                 // getting some SYNC bytes
1069                 if (vber < 16632)
1070                         *fe_status |= FE_HAS_SYNC;
1071         }
1072
1073         // success
1074         dprintk("%s: fe_status=0x%x\n", __FUNCTION__, *fe_status);
1075         return 0;
1076 }
1077
1078 static int tda1004x_read_signal_strength(struct dvb_frontend* fe, u16 * signal)
1079 {
1080         struct tda1004x_state* state = fe->demodulator_priv;
1081         int tmp;
1082         int reg = 0;
1083
1084         dprintk("%s\n", __FUNCTION__);
1085
1086         // determine the register to use
1087         switch (state->demod_type) {
1088         case TDA1004X_DEMOD_TDA10045:
1089                 reg = TDA10045H_S_AGC;
1090                 break;
1091
1092         case TDA1004X_DEMOD_TDA10046:
1093                 reg = TDA10046H_AGC_IF_LEVEL;
1094                 break;
1095         }
1096
1097         // read it
1098         tmp = tda1004x_read_byte(state, reg);
1099         if (tmp < 0)
1100                 return -EIO;
1101
1102         *signal = (tmp << 8) | tmp;
1103         dprintk("%s: signal=0x%x\n", __FUNCTION__, *signal);
1104         return 0;
1105 }
1106
1107 static int tda1004x_read_snr(struct dvb_frontend* fe, u16 * snr)
1108 {
1109         struct tda1004x_state* state = fe->demodulator_priv;
1110         int tmp;
1111
1112         dprintk("%s\n", __FUNCTION__);
1113
1114         // read it
1115         tmp = tda1004x_read_byte(state, TDA1004X_SNR);
1116         if (tmp < 0)
1117                 return -EIO;
1118         tmp = 255 - tmp;
1119
1120         *snr = ((tmp << 8) | tmp);
1121         dprintk("%s: snr=0x%x\n", __FUNCTION__, *snr);
1122         return 0;
1123 }
1124
1125 static int tda1004x_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks)
1126 {
1127         struct tda1004x_state* state = fe->demodulator_priv;
1128         int tmp;
1129         int tmp2;
1130         int counter;
1131
1132         dprintk("%s\n", __FUNCTION__);
1133
1134         // read the UCBLOCKS and reset
1135         counter = 0;
1136         tmp = tda1004x_read_byte(state, TDA1004X_UNCOR);
1137         if (tmp < 0)
1138                 return -EIO;
1139         tmp &= 0x7f;
1140         while (counter++ < 5) {
1141                 tda1004x_write_mask(state, TDA1004X_UNCOR, 0x80, 0);
1142                 tda1004x_write_mask(state, TDA1004X_UNCOR, 0x80, 0);
1143                 tda1004x_write_mask(state, TDA1004X_UNCOR, 0x80, 0);
1144
1145                 tmp2 = tda1004x_read_byte(state, TDA1004X_UNCOR);
1146                 if (tmp2 < 0)
1147                         return -EIO;
1148                 tmp2 &= 0x7f;
1149                 if ((tmp2 < tmp) || (tmp2 == 0))
1150                         break;
1151         }
1152
1153         if (tmp != 0x7f)
1154                 *ucblocks = tmp;
1155         else
1156                 *ucblocks = 0xffffffff;
1157
1158         dprintk("%s: ucblocks=0x%x\n", __FUNCTION__, *ucblocks);
1159         return 0;
1160 }
1161
1162 static int tda1004x_read_ber(struct dvb_frontend* fe, u32* ber)
1163 {
1164         struct tda1004x_state* state = fe->demodulator_priv;
1165         int tmp;
1166
1167         dprintk("%s\n", __FUNCTION__);
1168
1169         // read it in
1170         tmp = tda1004x_read_byte(state, TDA1004X_CBER_LSB);
1171         if (tmp < 0)
1172                 return -EIO;
1173         *ber = tmp << 1;
1174         tmp = tda1004x_read_byte(state, TDA1004X_CBER_MSB);
1175         if (tmp < 0)
1176                 return -EIO;
1177         *ber |= (tmp << 9);
1178         // The address 0x20 should be read to cope with a TDA10046 bug
1179         tda1004x_read_byte(state, TDA1004X_CBER_RESET);
1180
1181         dprintk("%s: ber=0x%x\n", __FUNCTION__, *ber);
1182         return 0;
1183 }
1184
1185 static int tda1004x_sleep(struct dvb_frontend* fe)
1186 {
1187         struct tda1004x_state* state = fe->demodulator_priv;
1188
1189         switch (state->demod_type) {
1190         case TDA1004X_DEMOD_TDA10045:
1191                 tda1004x_write_mask(state, TDA1004X_CONFADC1, 0x10, 0x10);
1192                 break;
1193
1194         case TDA1004X_DEMOD_TDA10046:
1195                 if (state->config->pll_sleep != NULL) {
1196                         tda1004x_enable_tuner_i2c(state);
1197                         state->config->pll_sleep(fe);
1198                         if (state->config->if_freq != TDA10046_FREQ_052) {
1199                                 /* special hack for Philips EUROPA Based boards:
1200                                  * keep the I2c bridge open for tuner access in analog mode
1201                                  */
1202                                 tda1004x_disable_tuner_i2c(state);
1203                         }
1204                 }
1205                 /* set outputs to tristate */
1206                 tda1004x_write_byteI(state, TDA10046H_CONF_TRISTATE1, 0xff);
1207                 tda1004x_write_mask(state, TDA1004X_CONFC4, 1, 1);
1208                 break;
1209         }
1210         state->initialised = 0;
1211
1212         return 0;
1213 }
1214
1215 static int tda1004x_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings* fesettings)
1216 {
1217         fesettings->min_delay_ms = 800;
1218         /* Drift compensation makes no sense for DVB-T */
1219         fesettings->step_size = 0;
1220         fesettings->max_drift = 0;
1221         return 0;
1222 }
1223
1224 static void tda1004x_release(struct dvb_frontend* fe)
1225 {
1226         struct tda1004x_state *state = fe->demodulator_priv;
1227         kfree(state);
1228 }
1229
1230 static struct dvb_frontend_ops tda10045_ops = {
1231         .info = {
1232                 .name = "Philips TDA10045H DVB-T",
1233                 .type = FE_OFDM,
1234                 .frequency_min = 51000000,
1235                 .frequency_max = 858000000,
1236                 .frequency_stepsize = 166667,
1237                 .caps =
1238                     FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
1239                     FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
1240                     FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
1241                     FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO
1242         },
1243
1244         .release = tda1004x_release,
1245
1246         .init = tda10045_init,
1247         .sleep = tda1004x_sleep,
1248
1249         .set_frontend = tda1004x_set_fe,
1250         .get_frontend = tda1004x_get_fe,
1251         .get_tune_settings = tda1004x_get_tune_settings,
1252
1253         .read_status = tda1004x_read_status,
1254         .read_ber = tda1004x_read_ber,
1255         .read_signal_strength = tda1004x_read_signal_strength,
1256         .read_snr = tda1004x_read_snr,
1257         .read_ucblocks = tda1004x_read_ucblocks,
1258 };
1259
1260 struct dvb_frontend* tda10045_attach(const struct tda1004x_config* config,
1261                                      struct i2c_adapter* i2c)
1262 {
1263         struct tda1004x_state *state;
1264
1265         /* allocate memory for the internal state */
1266         state = kmalloc(sizeof(struct tda1004x_state), GFP_KERNEL);
1267         if (!state)
1268                 return NULL;
1269
1270         /* setup the state */
1271         state->config = config;
1272         state->i2c = i2c;
1273         memcpy(&state->ops, &tda10045_ops, sizeof(struct dvb_frontend_ops));
1274         state->initialised = 0;
1275         state->demod_type = TDA1004X_DEMOD_TDA10045;
1276
1277         /* check if the demod is there */
1278         if (tda1004x_read_byte(state, TDA1004X_CHIPID) != 0x25) {
1279                 kfree(state);
1280                 return NULL;
1281         }
1282
1283         /* create dvb_frontend */
1284         state->frontend.ops = &state->ops;
1285         state->frontend.demodulator_priv = state;
1286         return &state->frontend;
1287 }
1288
1289 static struct dvb_frontend_ops tda10046_ops = {
1290         .info = {
1291                 .name = "Philips TDA10046H DVB-T",
1292                 .type = FE_OFDM,
1293                 .frequency_min = 51000000,
1294                 .frequency_max = 858000000,
1295                 .frequency_stepsize = 166667,
1296                 .caps =
1297                     FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
1298                     FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
1299                     FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
1300                     FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO
1301         },
1302
1303         .release = tda1004x_release,
1304
1305         .init = tda10046_init,
1306         .sleep = tda1004x_sleep,
1307
1308         .set_frontend = tda1004x_set_fe,
1309         .get_frontend = tda1004x_get_fe,
1310         .get_tune_settings = tda1004x_get_tune_settings,
1311
1312         .read_status = tda1004x_read_status,
1313         .read_ber = tda1004x_read_ber,
1314         .read_signal_strength = tda1004x_read_signal_strength,
1315         .read_snr = tda1004x_read_snr,
1316         .read_ucblocks = tda1004x_read_ucblocks,
1317 };
1318
1319 struct dvb_frontend* tda10046_attach(const struct tda1004x_config* config,
1320                                      struct i2c_adapter* i2c)
1321 {
1322         struct tda1004x_state *state;
1323
1324         /* allocate memory for the internal state */
1325         state = kmalloc(sizeof(struct tda1004x_state), GFP_KERNEL);
1326         if (!state)
1327                 return NULL;
1328
1329         /* setup the state */
1330         state->config = config;
1331         state->i2c = i2c;
1332         memcpy(&state->ops, &tda10046_ops, sizeof(struct dvb_frontend_ops));
1333         state->initialised = 0;
1334         state->demod_type = TDA1004X_DEMOD_TDA10046;
1335
1336         /* check if the demod is there */
1337         if (tda1004x_read_byte(state, TDA1004X_CHIPID) != 0x46) {
1338                 kfree(state);
1339                 return NULL;
1340         }
1341
1342         /* create dvb_frontend */
1343         state->frontend.ops = &state->ops;
1344         state->frontend.demodulator_priv = state;
1345         return &state->frontend;
1346 }
1347
1348 module_param(debug, int, 0644);
1349 MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");
1350
1351 MODULE_DESCRIPTION("Philips TDA10045H & TDA10046H DVB-T Demodulator");
1352 MODULE_AUTHOR("Andrew de Quincey & Robert Schlabbach");
1353 MODULE_LICENSE("GPL");
1354
1355 EXPORT_SYMBOL(tda10045_attach);
1356 EXPORT_SYMBOL(tda10046_attach);
1357 EXPORT_SYMBOL(tda1004x_write_byte);