609fd19b18449d69fdcfe403e2035a9f54e780e4
[linux-2.6.git] / drivers / scsi / aacraid / commsup.c
1 /*
2  *      Adaptec AAC series RAID controller driver
3  *      (c) Copyright 2001 Red Hat Inc. <alan@redhat.com>
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com)
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2, or (at your option)
13  * any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; see the file COPYING.  If not, write to
22  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23  *
24  * Module Name:
25  *  commsup.c
26  *
27  * Abstract: Contain all routines that are required for FSA host/adapter
28  *    communication.
29  *
30  */
31
32 #include <linux/kernel.h>
33 #include <linux/init.h>
34 #include <linux/types.h>
35 #include <linux/sched.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/slab.h>
39 #include <linux/completion.h>
40 #include <linux/blkdev.h>
41 #include <linux/delay.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_device.h>
44 #include <asm/semaphore.h>
45
46 #include "aacraid.h"
47
48 /**
49  *      fib_map_alloc           -       allocate the fib objects
50  *      @dev: Adapter to allocate for
51  *
52  *      Allocate and map the shared PCI space for the FIB blocks used to
53  *      talk to the Adaptec firmware.
54  */
55  
56 static int fib_map_alloc(struct aac_dev *dev)
57 {
58         dprintk((KERN_INFO
59           "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
60           dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue,
61           AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
62         if((dev->hw_fib_va = pci_alloc_consistent(dev->pdev, dev->max_fib_size
63           * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
64           &dev->hw_fib_pa))==NULL)
65                 return -ENOMEM;
66         return 0;
67 }
68
69 /**
70  *      aac_fib_map_free                -       free the fib objects
71  *      @dev: Adapter to free
72  *
73  *      Free the PCI mappings and the memory allocated for FIB blocks
74  *      on this adapter.
75  */
76
77 void aac_fib_map_free(struct aac_dev *dev)
78 {
79         pci_free_consistent(dev->pdev, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB), dev->hw_fib_va, dev->hw_fib_pa);
80 }
81
82 /**
83  *      aac_fib_setup   -       setup the fibs
84  *      @dev: Adapter to set up
85  *
86  *      Allocate the PCI space for the fibs, map it and then intialise the
87  *      fib area, the unmapped fib data and also the free list
88  */
89
90 int aac_fib_setup(struct aac_dev * dev)
91 {
92         struct fib *fibptr;
93         struct hw_fib *hw_fib_va;
94         dma_addr_t hw_fib_pa;
95         int i;
96
97         while (((i = fib_map_alloc(dev)) == -ENOMEM)
98          && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
99                 dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1);
100                 dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB;
101         }
102         if (i<0)
103                 return -ENOMEM;
104                 
105         hw_fib_va = dev->hw_fib_va;
106         hw_fib_pa = dev->hw_fib_pa;
107         memset(hw_fib_va, 0, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
108         /*
109          *      Initialise the fibs
110          */
111         for (i = 0, fibptr = &dev->fibs[i]; i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); i++, fibptr++) 
112         {
113                 fibptr->dev = dev;
114                 fibptr->hw_fib = hw_fib_va;
115                 fibptr->data = (void *) fibptr->hw_fib->data;
116                 fibptr->next = fibptr+1;        /* Forward chain the fibs */
117                 init_MUTEX_LOCKED(&fibptr->event_wait);
118                 spin_lock_init(&fibptr->event_lock);
119                 hw_fib_va->header.XferState = cpu_to_le32(0xffffffff);
120                 hw_fib_va->header.SenderSize = cpu_to_le16(dev->max_fib_size);
121                 fibptr->hw_fib_pa = hw_fib_pa;
122                 hw_fib_va = (struct hw_fib *)((unsigned char *)hw_fib_va + dev->max_fib_size);
123                 hw_fib_pa = hw_fib_pa + dev->max_fib_size;
124         }
125         /*
126          *      Add the fib chain to the free list
127          */
128         dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
129         /*
130          *      Enable this to debug out of queue space
131          */
132         dev->free_fib = &dev->fibs[0];
133         return 0;
134 }
135
136 /**
137  *      aac_fib_alloc   -       allocate a fib
138  *      @dev: Adapter to allocate the fib for
139  *
140  *      Allocate a fib from the adapter fib pool. If the pool is empty we
141  *      return NULL.
142  */
143  
144 struct fib *aac_fib_alloc(struct aac_dev *dev)
145 {
146         struct fib * fibptr;
147         unsigned long flags;
148         spin_lock_irqsave(&dev->fib_lock, flags);
149         fibptr = dev->free_fib; 
150         if(!fibptr){
151                 spin_unlock_irqrestore(&dev->fib_lock, flags);
152                 return fibptr;
153         }
154         dev->free_fib = fibptr->next;
155         spin_unlock_irqrestore(&dev->fib_lock, flags);
156         /*
157          *      Set the proper node type code and node byte size
158          */
159         fibptr->type = FSAFS_NTC_FIB_CONTEXT;
160         fibptr->size = sizeof(struct fib);
161         /*
162          *      Null out fields that depend on being zero at the start of
163          *      each I/O
164          */
165         fibptr->hw_fib->header.XferState = 0;
166         fibptr->callback = NULL;
167         fibptr->callback_data = NULL;
168
169         return fibptr;
170 }
171
172 /**
173  *      aac_fib_free    -       free a fib
174  *      @fibptr: fib to free up
175  *
176  *      Frees up a fib and places it on the appropriate queue
177  *      (either free or timed out)
178  */
179  
180 void aac_fib_free(struct fib *fibptr)
181 {
182         unsigned long flags;
183
184         spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
185         if (fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT) {
186                 aac_config.fib_timeouts++;
187                 fibptr->next = fibptr->dev->timeout_fib;
188                 fibptr->dev->timeout_fib = fibptr;
189         } else {
190                 if (fibptr->hw_fib->header.XferState != 0) {
191                         printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
192                                  (void*)fibptr, 
193                                  le32_to_cpu(fibptr->hw_fib->header.XferState));
194                 }
195                 fibptr->next = fibptr->dev->free_fib;
196                 fibptr->dev->free_fib = fibptr;
197         }       
198         spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
199 }
200
201 /**
202  *      aac_fib_init    -       initialise a fib
203  *      @fibptr: The fib to initialize
204  *      
205  *      Set up the generic fib fields ready for use
206  */
207  
208 void aac_fib_init(struct fib *fibptr)
209 {
210         struct hw_fib *hw_fib = fibptr->hw_fib;
211
212         hw_fib->header.StructType = FIB_MAGIC;
213         hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
214         hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
215         hw_fib->header.SenderFibAddress = 0; /* Filled in later if needed */
216         hw_fib->header.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
217         hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
218 }
219
220 /**
221  *      fib_deallocate          -       deallocate a fib
222  *      @fibptr: fib to deallocate
223  *
224  *      Will deallocate and return to the free pool the FIB pointed to by the
225  *      caller.
226  */
227  
228 static void fib_dealloc(struct fib * fibptr)
229 {
230         struct hw_fib *hw_fib = fibptr->hw_fib;
231         if(hw_fib->header.StructType != FIB_MAGIC) 
232                 BUG();
233         hw_fib->header.XferState = 0;        
234 }
235
236 /*
237  *      Commuication primitives define and support the queuing method we use to
238  *      support host to adapter commuication. All queue accesses happen through
239  *      these routines and are the only routines which have a knowledge of the
240  *       how these queues are implemented.
241  */
242  
243 /**
244  *      aac_get_entry           -       get a queue entry
245  *      @dev: Adapter
246  *      @qid: Queue Number
247  *      @entry: Entry return
248  *      @index: Index return
249  *      @nonotify: notification control
250  *
251  *      With a priority the routine returns a queue entry if the queue has free entries. If the queue
252  *      is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
253  *      returned.
254  */
255  
256 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
257 {
258         struct aac_queue * q;
259         unsigned long idx;
260
261         /*
262          *      All of the queues wrap when they reach the end, so we check
263          *      to see if they have reached the end and if they have we just
264          *      set the index back to zero. This is a wrap. You could or off
265          *      the high bits in all updates but this is a bit faster I think.
266          */
267
268         q = &dev->queues->queue[qid];
269
270         idx = *index = le32_to_cpu(*(q->headers.producer));
271         /* Interrupt Moderation, only interrupt for first two entries */
272         if (idx != le32_to_cpu(*(q->headers.consumer))) {
273                 if (--idx == 0) {
274                         if (qid == AdapNormCmdQueue)
275                                 idx = ADAP_NORM_CMD_ENTRIES;
276                         else
277                                 idx = ADAP_NORM_RESP_ENTRIES;
278                 }
279                 if (idx != le32_to_cpu(*(q->headers.consumer)))
280                         *nonotify = 1; 
281         }
282
283         if (qid == AdapNormCmdQueue) {
284                 if (*index >= ADAP_NORM_CMD_ENTRIES) 
285                         *index = 0; /* Wrap to front of the Producer Queue. */
286         } else {
287                 if (*index >= ADAP_NORM_RESP_ENTRIES) 
288                         *index = 0; /* Wrap to front of the Producer Queue. */
289         }
290
291         if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { /* Queue is full */
292                 printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
293                                 qid, q->numpending);
294                 return 0;
295         } else {
296                 *entry = q->base + *index;
297                 return 1;
298         }
299 }   
300
301 /**
302  *      aac_queue_get           -       get the next free QE
303  *      @dev: Adapter
304  *      @index: Returned index
305  *      @priority: Priority of fib
306  *      @fib: Fib to associate with the queue entry
307  *      @wait: Wait if queue full
308  *      @fibptr: Driver fib object to go with fib
309  *      @nonotify: Don't notify the adapter
310  *
311  *      Gets the next free QE off the requested priorty adapter command
312  *      queue and associates the Fib with the QE. The QE represented by
313  *      index is ready to insert on the queue when this routine returns
314  *      success.
315  */
316
317 static int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
318 {
319         struct aac_entry * entry = NULL;
320         int map = 0;
321             
322         if (qid == AdapNormCmdQueue) {
323                 /*  if no entries wait for some if caller wants to */
324                 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) 
325                 {
326                         printk(KERN_ERR "GetEntries failed\n");
327                 }
328                 /*
329                  *      Setup queue entry with a command, status and fib mapped
330                  */
331                 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
332                 map = 1;
333         } else {
334                 while(!aac_get_entry(dev, qid, &entry, index, nonotify)) 
335                 {
336                         /* if no entries wait for some if caller wants to */
337                 }
338                 /*
339                  *      Setup queue entry with command, status and fib mapped
340                  */
341                 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
342                 entry->addr = hw_fib->header.SenderFibAddress;
343                         /* Restore adapters pointer to the FIB */
344                 hw_fib->header.ReceiverFibAddress = hw_fib->header.SenderFibAddress;    /* Let the adapter now where to find its data */
345                 map = 0;
346         }
347         /*
348          *      If MapFib is true than we need to map the Fib and put pointers
349          *      in the queue entry.
350          */
351         if (map)
352                 entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
353         return 0;
354 }
355
356 /*
357  *      Define the highest level of host to adapter communication routines. 
358  *      These routines will support host to adapter FS commuication. These 
359  *      routines have no knowledge of the commuication method used. This level
360  *      sends and receives FIBs. This level has no knowledge of how these FIBs
361  *      get passed back and forth.
362  */
363
364 /**
365  *      aac_fib_send    -       send a fib to the adapter
366  *      @command: Command to send
367  *      @fibptr: The fib
368  *      @size: Size of fib data area
369  *      @priority: Priority of Fib
370  *      @wait: Async/sync select
371  *      @reply: True if a reply is wanted
372  *      @callback: Called with reply
373  *      @callback_data: Passed to callback
374  *
375  *      Sends the requested FIB to the adapter and optionally will wait for a
376  *      response FIB. If the caller does not wish to wait for a response than
377  *      an event to wait on must be supplied. This event will be set when a
378  *      response FIB is received from the adapter.
379  */
380  
381 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
382                 int priority, int wait, int reply, fib_callback callback,
383                 void *callback_data)
384 {
385         struct aac_dev * dev = fibptr->dev;
386         struct hw_fib * hw_fib = fibptr->hw_fib;
387         struct aac_queue * q;
388         unsigned long flags = 0;
389         unsigned long qflags;
390
391         if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
392                 return -EBUSY;
393         /*
394          *      There are 5 cases with the wait and reponse requested flags. 
395          *      The only invalid cases are if the caller requests to wait and
396          *      does not request a response and if the caller does not want a
397          *      response and the Fib is not allocated from pool. If a response
398          *      is not requesed the Fib will just be deallocaed by the DPC
399          *      routine when the response comes back from the adapter. No
400          *      further processing will be done besides deleting the Fib. We 
401          *      will have a debug mode where the adapter can notify the host
402          *      it had a problem and the host can log that fact.
403          */
404         if (wait && !reply) {
405                 return -EINVAL;
406         } else if (!wait && reply) {
407                 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
408                 FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
409         } else if (!wait && !reply) {
410                 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
411                 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
412         } else if (wait && reply) {
413                 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
414                 FIB_COUNTER_INCREMENT(aac_config.NormalSent);
415         } 
416         /*
417          *      Map the fib into 32bits by using the fib number
418          */
419
420         hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
421         hw_fib->header.SenderData = (u32)(fibptr - dev->fibs);
422         /*
423          *      Set FIB state to indicate where it came from and if we want a
424          *      response from the adapter. Also load the command from the
425          *      caller.
426          *
427          *      Map the hw fib pointer as a 32bit value
428          */
429         hw_fib->header.Command = cpu_to_le16(command);
430         hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
431         fibptr->hw_fib->header.Flags = 0;       /* 0 the flags field - internal only*/
432         /*
433          *      Set the size of the Fib we want to send to the adapter
434          */
435         hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
436         if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
437                 return -EMSGSIZE;
438         }                
439         /*
440          *      Get a queue entry connect the FIB to it and send an notify
441          *      the adapter a command is ready.
442          */
443         hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
444
445         /*
446          *      Fill in the Callback and CallbackContext if we are not
447          *      going to wait.
448          */
449         if (!wait) {
450                 fibptr->callback = callback;
451                 fibptr->callback_data = callback_data;
452         }
453
454         fibptr->done = 0;
455         fibptr->flags = 0;
456
457         FIB_COUNTER_INCREMENT(aac_config.FibsSent);
458
459         dprintk((KERN_DEBUG "Fib contents:.\n"));
460         dprintk((KERN_DEBUG "  Command =               %d.\n", le32_to_cpu(hw_fib->header.Command)));
461         dprintk((KERN_DEBUG "  SubCommand =            %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
462         dprintk((KERN_DEBUG "  XferState  =            %x.\n", le32_to_cpu(hw_fib->header.XferState)));
463         dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib));
464         dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
465         dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr));
466
467         q = &dev->queues->queue[AdapNormCmdQueue];
468
469         if(wait)
470                 spin_lock_irqsave(&fibptr->event_lock, flags);
471         spin_lock_irqsave(q->lock, qflags);
472         if (dev->new_comm_interface) {
473                 unsigned long count = 10000000L; /* 50 seconds */
474                 list_add_tail(&fibptr->queue, &q->pendingq);
475                 q->numpending++;
476                 spin_unlock_irqrestore(q->lock, qflags);
477                 while (aac_adapter_send(fibptr) != 0) {
478                         if (--count == 0) {
479                                 if (wait)
480                                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
481                                 spin_lock_irqsave(q->lock, qflags);
482                                 q->numpending--;
483                                 list_del(&fibptr->queue);
484                                 spin_unlock_irqrestore(q->lock, qflags);
485                                 return -ETIMEDOUT;
486                         }
487                         udelay(5);
488                 }
489         } else {
490                 u32 index;
491                 unsigned long nointr = 0;
492                 aac_queue_get( dev, &index, AdapNormCmdQueue, hw_fib, 1, fibptr, &nointr);
493
494                 list_add_tail(&fibptr->queue, &q->pendingq);
495                 q->numpending++;
496                 *(q->headers.producer) = cpu_to_le32(index + 1);
497                 spin_unlock_irqrestore(q->lock, qflags);
498                 dprintk((KERN_DEBUG "aac_fib_send: inserting a queue entry at index %d.\n",index));
499                 if (!(nointr & aac_config.irq_mod))
500                         aac_adapter_notify(dev, AdapNormCmdQueue);
501         }
502
503         /*
504          *      If the caller wanted us to wait for response wait now. 
505          */
506     
507         if (wait) {
508                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
509                 /* Only set for first known interruptable command */
510                 if (wait < 0) {
511                         /*
512                          * *VERY* Dangerous to time out a command, the
513                          * assumption is made that we have no hope of
514                          * functioning because an interrupt routing or other
515                          * hardware failure has occurred.
516                          */
517                         unsigned long count = 36000000L; /* 3 minutes */
518                         while (down_trylock(&fibptr->event_wait)) {
519                                 if (--count == 0) {
520                                         spin_lock_irqsave(q->lock, qflags);
521                                         q->numpending--;
522                                         list_del(&fibptr->queue);
523                                         spin_unlock_irqrestore(q->lock, qflags);
524                                         if (wait == -1) {
525                                                 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
526                                                   "Usually a result of a PCI interrupt routing problem;\n"
527                                                   "update mother board BIOS or consider utilizing one of\n"
528                                                   "the SAFE mode kernel options (acpi, apic etc)\n");
529                                         }
530                                         return -ETIMEDOUT;
531                                 }
532                                 udelay(5);
533                         }
534                 } else
535                         down(&fibptr->event_wait);
536                 if(fibptr->done == 0)
537                         BUG();
538                         
539                 if((fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)){
540                         return -ETIMEDOUT;
541                 } else {
542                         return 0;
543                 }
544         }
545         /*
546          *      If the user does not want a response than return success otherwise
547          *      return pending
548          */
549         if (reply)
550                 return -EINPROGRESS;
551         else
552                 return 0;
553 }
554
555 /** 
556  *      aac_consumer_get        -       get the top of the queue
557  *      @dev: Adapter
558  *      @q: Queue
559  *      @entry: Return entry
560  *
561  *      Will return a pointer to the entry on the top of the queue requested that
562  *      we are a consumer of, and return the address of the queue entry. It does
563  *      not change the state of the queue. 
564  */
565
566 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
567 {
568         u32 index;
569         int status;
570         if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
571                 status = 0;
572         } else {
573                 /*
574                  *      The consumer index must be wrapped if we have reached
575                  *      the end of the queue, else we just use the entry
576                  *      pointed to by the header index
577                  */
578                 if (le32_to_cpu(*q->headers.consumer) >= q->entries) 
579                         index = 0;              
580                 else
581                         index = le32_to_cpu(*q->headers.consumer);
582                 *entry = q->base + index;
583                 status = 1;
584         }
585         return(status);
586 }
587
588 /**
589  *      aac_consumer_free       -       free consumer entry
590  *      @dev: Adapter
591  *      @q: Queue
592  *      @qid: Queue ident
593  *
594  *      Frees up the current top of the queue we are a consumer of. If the
595  *      queue was full notify the producer that the queue is no longer full.
596  */
597
598 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
599 {
600         int wasfull = 0;
601         u32 notify;
602
603         if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
604                 wasfull = 1;
605         
606         if (le32_to_cpu(*q->headers.consumer) >= q->entries)
607                 *q->headers.consumer = cpu_to_le32(1);
608         else
609                 *q->headers.consumer = cpu_to_le32(le32_to_cpu(*q->headers.consumer)+1);
610         
611         if (wasfull) {
612                 switch (qid) {
613
614                 case HostNormCmdQueue:
615                         notify = HostNormCmdNotFull;
616                         break;
617                 case HostNormRespQueue:
618                         notify = HostNormRespNotFull;
619                         break;
620                 default:
621                         BUG();
622                         return;
623                 }
624                 aac_adapter_notify(dev, notify);
625         }
626 }        
627
628 /**
629  *      aac_fib_adapter_complete        -       complete adapter issued fib
630  *      @fibptr: fib to complete
631  *      @size: size of fib
632  *
633  *      Will do all necessary work to complete a FIB that was sent from
634  *      the adapter.
635  */
636
637 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
638 {
639         struct hw_fib * hw_fib = fibptr->hw_fib;
640         struct aac_dev * dev = fibptr->dev;
641         struct aac_queue * q;
642         unsigned long nointr = 0;
643         unsigned long qflags;
644
645         if (hw_fib->header.XferState == 0) {
646                 if (dev->new_comm_interface)
647                         kfree (hw_fib);
648                 return 0;
649         }
650         /*
651          *      If we plan to do anything check the structure type first.
652          */ 
653         if ( hw_fib->header.StructType != FIB_MAGIC ) {
654                 if (dev->new_comm_interface)
655                         kfree (hw_fib);
656                 return -EINVAL;
657         }
658         /*
659          *      This block handles the case where the adapter had sent us a
660          *      command and we have finished processing the command. We
661          *      call completeFib when we are done processing the command 
662          *      and want to send a response back to the adapter. This will 
663          *      send the completed cdb to the adapter.
664          */
665         if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
666                 if (dev->new_comm_interface) {
667                         kfree (hw_fib);
668                 } else {
669                         u32 index;
670                         hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
671                         if (size) {
672                                 size += sizeof(struct aac_fibhdr);
673                                 if (size > le16_to_cpu(hw_fib->header.SenderSize)) 
674                                         return -EMSGSIZE;
675                                 hw_fib->header.Size = cpu_to_le16(size);
676                         }
677                         q = &dev->queues->queue[AdapNormRespQueue];
678                         spin_lock_irqsave(q->lock, qflags);
679                         aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
680                         *(q->headers.producer) = cpu_to_le32(index + 1);
681                         spin_unlock_irqrestore(q->lock, qflags);
682                         if (!(nointr & (int)aac_config.irq_mod))
683                                 aac_adapter_notify(dev, AdapNormRespQueue);
684                 }
685         }
686         else 
687         {
688                 printk(KERN_WARNING "aac_fib_adapter_complete: Unknown xferstate detected.\n");
689                 BUG();
690         }   
691         return 0;
692 }
693
694 /**
695  *      aac_fib_complete        -       fib completion handler
696  *      @fib: FIB to complete
697  *
698  *      Will do all necessary work to complete a FIB.
699  */
700  
701 int aac_fib_complete(struct fib *fibptr)
702 {
703         struct hw_fib * hw_fib = fibptr->hw_fib;
704
705         /*
706          *      Check for a fib which has already been completed
707          */
708
709         if (hw_fib->header.XferState == 0)
710                 return 0;
711         /*
712          *      If we plan to do anything check the structure type first.
713          */ 
714
715         if (hw_fib->header.StructType != FIB_MAGIC)
716                 return -EINVAL;
717         /*
718          *      This block completes a cdb which orginated on the host and we 
719          *      just need to deallocate the cdb or reinit it. At this point the
720          *      command is complete that we had sent to the adapter and this
721          *      cdb could be reused.
722          */
723         if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
724                 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
725         {
726                 fib_dealloc(fibptr);
727         }
728         else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
729         {
730                 /*
731                  *      This handles the case when the host has aborted the I/O
732                  *      to the adapter because the adapter is not responding
733                  */
734                 fib_dealloc(fibptr);
735         } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
736                 fib_dealloc(fibptr);
737         } else {
738                 BUG();
739         }   
740         return 0;
741 }
742
743 /**
744  *      aac_printf      -       handle printf from firmware
745  *      @dev: Adapter
746  *      @val: Message info
747  *
748  *      Print a message passed to us by the controller firmware on the
749  *      Adaptec board
750  */
751
752 void aac_printf(struct aac_dev *dev, u32 val)
753 {
754         char *cp = dev->printfbuf;
755         if (dev->printf_enabled)
756         {
757                 int length = val & 0xffff;
758                 int level = (val >> 16) & 0xffff;
759                 
760                 /*
761                  *      The size of the printfbuf is set in port.c
762                  *      There is no variable or define for it
763                  */
764                 if (length > 255)
765                         length = 255;
766                 if (cp[length] != 0)
767                         cp[length] = 0;
768                 if (level == LOG_AAC_HIGH_ERROR)
769                         printk(KERN_WARNING "aacraid:%s", cp);
770                 else
771                         printk(KERN_INFO "aacraid:%s", cp);
772         }
773         memset(cp, 0,  256);
774 }
775
776
777 /**
778  *      aac_handle_aif          -       Handle a message from the firmware
779  *      @dev: Which adapter this fib is from
780  *      @fibptr: Pointer to fibptr from adapter
781  *
782  *      This routine handles a driver notify fib from the adapter and
783  *      dispatches it to the appropriate routine for handling.
784  */
785
786 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
787 {
788         struct hw_fib * hw_fib = fibptr->hw_fib;
789         struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
790         int busy;
791         u32 container;
792         struct scsi_device *device;
793         enum {
794                 NOTHING,
795                 DELETE,
796                 ADD,
797                 CHANGE
798         } device_config_needed;
799
800         /* Sniff for container changes */
801
802         if (!dev)
803                 return;
804         container = (u32)-1;
805
806         /*
807          *      We have set this up to try and minimize the number of
808          * re-configures that take place. As a result of this when
809          * certain AIF's come in we will set a flag waiting for another
810          * type of AIF before setting the re-config flag.
811          */
812         switch (le32_to_cpu(aifcmd->command)) {
813         case AifCmdDriverNotify:
814                 switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) {
815                 /*
816                  *      Morph or Expand complete
817                  */
818                 case AifDenMorphComplete:
819                 case AifDenVolumeExtendComplete:
820                         container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
821                         if (container >= dev->maximum_num_containers)
822                                 break;
823
824                         /*
825                          *      Find the scsi_device associated with the SCSI
826                          * address. Make sure we have the right array, and if
827                          * so set the flag to initiate a new re-config once we
828                          * see an AifEnConfigChange AIF come through.
829                          */
830
831                         if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
832                                 device = scsi_device_lookup(dev->scsi_host_ptr, 
833                                         CONTAINER_TO_CHANNEL(container), 
834                                         CONTAINER_TO_ID(container), 
835                                         CONTAINER_TO_LUN(container));
836                                 if (device) {
837                                         dev->fsa_dev[container].config_needed = CHANGE;
838                                         dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
839                                         scsi_device_put(device);
840                                 }
841                         }
842                 }
843
844                 /*
845                  *      If we are waiting on something and this happens to be
846                  * that thing then set the re-configure flag.
847                  */
848                 if (container != (u32)-1) {
849                         if (container >= dev->maximum_num_containers)
850                                 break;
851                         if (dev->fsa_dev[container].config_waiting_on ==
852                             le32_to_cpu(*(u32 *)aifcmd->data))
853                                 dev->fsa_dev[container].config_waiting_on = 0;
854                 } else for (container = 0;
855                     container < dev->maximum_num_containers; ++container) {
856                         if (dev->fsa_dev[container].config_waiting_on ==
857                             le32_to_cpu(*(u32 *)aifcmd->data))
858                                 dev->fsa_dev[container].config_waiting_on = 0;
859                 }
860                 break;
861
862         case AifCmdEventNotify:
863                 switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) {
864                 /*
865                  *      Add an Array.
866                  */
867                 case AifEnAddContainer:
868                         container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
869                         if (container >= dev->maximum_num_containers)
870                                 break;
871                         dev->fsa_dev[container].config_needed = ADD;
872                         dev->fsa_dev[container].config_waiting_on =
873                                 AifEnConfigChange;
874                         break;
875
876                 /*
877                  *      Delete an Array.
878                  */
879                 case AifEnDeleteContainer:
880                         container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
881                         if (container >= dev->maximum_num_containers)
882                                 break;
883                         dev->fsa_dev[container].config_needed = DELETE;
884                         dev->fsa_dev[container].config_waiting_on =
885                                 AifEnConfigChange;
886                         break;
887
888                 /*
889                  *      Container change detected. If we currently are not
890                  * waiting on something else, setup to wait on a Config Change.
891                  */
892                 case AifEnContainerChange:
893                         container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
894                         if (container >= dev->maximum_num_containers)
895                                 break;
896                         if (dev->fsa_dev[container].config_waiting_on)
897                                 break;
898                         dev->fsa_dev[container].config_needed = CHANGE;
899                         dev->fsa_dev[container].config_waiting_on =
900                                 AifEnConfigChange;
901                         break;
902
903                 case AifEnConfigChange:
904                         break;
905
906                 }
907
908                 /*
909                  *      If we are waiting on something and this happens to be
910                  * that thing then set the re-configure flag.
911                  */
912                 if (container != (u32)-1) {
913                         if (container >= dev->maximum_num_containers)
914                                 break;
915                         if (dev->fsa_dev[container].config_waiting_on ==
916                             le32_to_cpu(*(u32 *)aifcmd->data))
917                                 dev->fsa_dev[container].config_waiting_on = 0;
918                 } else for (container = 0;
919                     container < dev->maximum_num_containers; ++container) {
920                         if (dev->fsa_dev[container].config_waiting_on ==
921                             le32_to_cpu(*(u32 *)aifcmd->data))
922                                 dev->fsa_dev[container].config_waiting_on = 0;
923                 }
924                 break;
925
926         case AifCmdJobProgress:
927                 /*
928                  *      These are job progress AIF's. When a Clear is being
929                  * done on a container it is initially created then hidden from
930                  * the OS. When the clear completes we don't get a config
931                  * change so we monitor the job status complete on a clear then
932                  * wait for a container change.
933                  */
934
935                 if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero))
936                  && ((((u32 *)aifcmd->data)[6] == ((u32 *)aifcmd->data)[5])
937                   || (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess)))) {
938                         for (container = 0;
939                             container < dev->maximum_num_containers;
940                             ++container) {
941                                 /*
942                                  * Stomp on all config sequencing for all
943                                  * containers?
944                                  */
945                                 dev->fsa_dev[container].config_waiting_on =
946                                         AifEnContainerChange;
947                                 dev->fsa_dev[container].config_needed = ADD;
948                         }
949                 }
950                 if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero))
951                  && (((u32 *)aifcmd->data)[6] == 0)
952                  && (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning))) {
953                         for (container = 0;
954                             container < dev->maximum_num_containers;
955                             ++container) {
956                                 /*
957                                  * Stomp on all config sequencing for all
958                                  * containers?
959                                  */
960                                 dev->fsa_dev[container].config_waiting_on =
961                                         AifEnContainerChange;
962                                 dev->fsa_dev[container].config_needed = DELETE;
963                         }
964                 }
965                 break;
966         }
967
968         device_config_needed = NOTHING;
969         for (container = 0; container < dev->maximum_num_containers;
970             ++container) {
971                 if ((dev->fsa_dev[container].config_waiting_on == 0)
972                  && (dev->fsa_dev[container].config_needed != NOTHING)) {
973                         device_config_needed =
974                                 dev->fsa_dev[container].config_needed;
975                         dev->fsa_dev[container].config_needed = NOTHING;
976                         break;
977                 }
978         }
979         if (device_config_needed == NOTHING)
980                 return;
981
982         /*
983          *      If we decided that a re-configuration needs to be done,
984          * schedule it here on the way out the door, please close the door
985          * behind you.
986          */
987
988         busy = 0;
989
990
991         /*
992          *      Find the scsi_device associated with the SCSI address,
993          * and mark it as changed, invalidating the cache. This deals
994          * with changes to existing device IDs.
995          */
996
997         if (!dev || !dev->scsi_host_ptr)
998                 return;
999         /*
1000          * force reload of disk info via aac_probe_container
1001          */
1002         if ((device_config_needed == CHANGE)
1003          && (dev->fsa_dev[container].valid == 1))
1004                 dev->fsa_dev[container].valid = 2;
1005         if ((device_config_needed == CHANGE) ||
1006                         (device_config_needed == ADD))
1007                 aac_probe_container(dev, container);
1008         device = scsi_device_lookup(dev->scsi_host_ptr, 
1009                 CONTAINER_TO_CHANNEL(container), 
1010                 CONTAINER_TO_ID(container), 
1011                 CONTAINER_TO_LUN(container));
1012         if (device) {
1013                 switch (device_config_needed) {
1014                 case DELETE:
1015                         scsi_remove_device(device);
1016                         break;
1017                 case CHANGE:
1018                         if (!dev->fsa_dev[container].valid) {
1019                                 scsi_remove_device(device);
1020                                 break;
1021                         }
1022                         scsi_rescan_device(&device->sdev_gendev);
1023
1024                 default:
1025                         break;
1026                 }
1027                 scsi_device_put(device);
1028         }
1029         if (device_config_needed == ADD) {
1030                 scsi_add_device(dev->scsi_host_ptr,
1031                   CONTAINER_TO_CHANNEL(container),
1032                   CONTAINER_TO_ID(container),
1033                   CONTAINER_TO_LUN(container));
1034         }
1035
1036 }
1037
1038 /**
1039  *      aac_command_thread      -       command processing thread
1040  *      @dev: Adapter to monitor
1041  *
1042  *      Waits on the commandready event in it's queue. When the event gets set
1043  *      it will pull FIBs off it's queue. It will continue to pull FIBs off
1044  *      until the queue is empty. When the queue is empty it will wait for
1045  *      more FIBs.
1046  */
1047  
1048 int aac_command_thread(struct aac_dev * dev)
1049 {
1050         struct hw_fib *hw_fib, *hw_newfib;
1051         struct fib *fib, *newfib;
1052         struct aac_fib_context *fibctx;
1053         unsigned long flags;
1054         DECLARE_WAITQUEUE(wait, current);
1055
1056         /*
1057          *      We can only have one thread per adapter for AIF's.
1058          */
1059         if (dev->aif_thread)
1060                 return -EINVAL;
1061         /*
1062          *      Set up the name that will appear in 'ps'
1063          *      stored in  task_struct.comm[16].
1064          */
1065         daemonize("aacraid");
1066         allow_signal(SIGKILL);
1067         /*
1068          *      Let the DPC know it has a place to send the AIF's to.
1069          */
1070         dev->aif_thread = 1;
1071         add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1072         set_current_state(TASK_INTERRUPTIBLE);
1073         dprintk ((KERN_INFO "aac_command_thread start\n"));
1074         while(1) 
1075         {
1076                 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1077                 while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
1078                         struct list_head *entry;
1079                         struct aac_aifcmd * aifcmd;
1080
1081                         set_current_state(TASK_RUNNING);
1082         
1083                         entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
1084                         list_del(entry);
1085                 
1086                         spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1087                         fib = list_entry(entry, struct fib, fiblink);
1088                         /*
1089                          *      We will process the FIB here or pass it to a 
1090                          *      worker thread that is TBD. We Really can't 
1091                          *      do anything at this point since we don't have
1092                          *      anything defined for this thread to do.
1093                          */
1094                         hw_fib = fib->hw_fib;
1095                         memset(fib, 0, sizeof(struct fib));
1096                         fib->type = FSAFS_NTC_FIB_CONTEXT;
1097                         fib->size = sizeof( struct fib );
1098                         fib->hw_fib = hw_fib;
1099                         fib->data = hw_fib->data;
1100                         fib->dev = dev;
1101                         /*
1102                          *      We only handle AifRequest fibs from the adapter.
1103                          */
1104                         aifcmd = (struct aac_aifcmd *) hw_fib->data;
1105                         if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
1106                                 /* Handle Driver Notify Events */
1107                                 aac_handle_aif(dev, fib);
1108                                 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1109                                 aac_fib_adapter_complete(fib, (u16)sizeof(u32));
1110                         } else {
1111                                 struct list_head *entry;
1112                                 /* The u32 here is important and intended. We are using
1113                                    32bit wrapping time to fit the adapter field */
1114                                    
1115                                 u32 time_now, time_last;
1116                                 unsigned long flagv;
1117                                 unsigned num;
1118                                 struct hw_fib ** hw_fib_pool, ** hw_fib_p;
1119                                 struct fib ** fib_pool, ** fib_p;
1120                         
1121                                 /* Sniff events */
1122                                 if ((aifcmd->command == 
1123                                      cpu_to_le32(AifCmdEventNotify)) ||
1124                                     (aifcmd->command == 
1125                                      cpu_to_le32(AifCmdJobProgress))) {
1126                                         aac_handle_aif(dev, fib);
1127                                 }
1128                                 
1129                                 time_now = jiffies/HZ;
1130
1131                                 /*
1132                                  * Warning: no sleep allowed while
1133                                  * holding spinlock. We take the estimate
1134                                  * and pre-allocate a set of fibs outside the
1135                                  * lock.
1136                                  */
1137                                 num = le32_to_cpu(dev->init->AdapterFibsSize)
1138                                     / sizeof(struct hw_fib); /* some extra */
1139                                 spin_lock_irqsave(&dev->fib_lock, flagv);
1140                                 entry = dev->fib_list.next;
1141                                 while (entry != &dev->fib_list) {
1142                                         entry = entry->next;
1143                                         ++num;
1144                                 }
1145                                 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1146                                 hw_fib_pool = NULL;
1147                                 fib_pool = NULL;
1148                                 if (num
1149                                  && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL)))
1150                                  && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) {
1151                                         hw_fib_p = hw_fib_pool;
1152                                         fib_p = fib_pool;
1153                                         while (hw_fib_p < &hw_fib_pool[num]) {
1154                                                 if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) {
1155                                                         --hw_fib_p;
1156                                                         break;
1157                                                 }
1158                                                 if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) {
1159                                                         kfree(*(--hw_fib_p));
1160                                                         break;
1161                                                 }
1162                                         }
1163                                         if ((num = hw_fib_p - hw_fib_pool) == 0) {
1164                                                 kfree(fib_pool);
1165                                                 fib_pool = NULL;
1166                                                 kfree(hw_fib_pool);
1167                                                 hw_fib_pool = NULL;
1168                                         }
1169                                 } else {
1170                                         kfree(hw_fib_pool);
1171                                         hw_fib_pool = NULL;
1172                                 }
1173                                 spin_lock_irqsave(&dev->fib_lock, flagv);
1174                                 entry = dev->fib_list.next;
1175                                 /*
1176                                  * For each Context that is on the 
1177                                  * fibctxList, make a copy of the
1178                                  * fib, and then set the event to wake up the
1179                                  * thread that is waiting for it.
1180                                  */
1181                                 hw_fib_p = hw_fib_pool;
1182                                 fib_p = fib_pool;
1183                                 while (entry != &dev->fib_list) {
1184                                         /*
1185                                          * Extract the fibctx
1186                                          */
1187                                         fibctx = list_entry(entry, struct aac_fib_context, next);
1188                                         /*
1189                                          * Check if the queue is getting
1190                                          * backlogged
1191                                          */
1192                                         if (fibctx->count > 20)
1193                                         {
1194                                                 /*
1195                                                  * It's *not* jiffies folks,
1196                                                  * but jiffies / HZ so do not
1197                                                  * panic ...
1198                                                  */
1199                                                 time_last = fibctx->jiffies;
1200                                                 /*
1201                                                  * Has it been > 2 minutes 
1202                                                  * since the last read off
1203                                                  * the queue?
1204                                                  */
1205                                                 if ((time_now - time_last) > 120) {
1206                                                         entry = entry->next;
1207                                                         aac_close_fib_context(dev, fibctx);
1208                                                         continue;
1209                                                 }
1210                                         }
1211                                         /*
1212                                          * Warning: no sleep allowed while
1213                                          * holding spinlock
1214                                          */
1215                                         if (hw_fib_p < &hw_fib_pool[num]) {
1216                                                 hw_newfib = *hw_fib_p;
1217                                                 *(hw_fib_p++) = NULL;
1218                                                 newfib = *fib_p;
1219                                                 *(fib_p++) = NULL;
1220                                                 /*
1221                                                  * Make the copy of the FIB
1222                                                  */
1223                                                 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
1224                                                 memcpy(newfib, fib, sizeof(struct fib));
1225                                                 newfib->hw_fib = hw_newfib;
1226                                                 /*
1227                                                  * Put the FIB onto the
1228                                                  * fibctx's fibs
1229                                                  */
1230                                                 list_add_tail(&newfib->fiblink, &fibctx->fib_list);
1231                                                 fibctx->count++;
1232                                                 /* 
1233                                                  * Set the event to wake up the
1234                                                  * thread that is waiting.
1235                                                  */
1236                                                 up(&fibctx->wait_sem);
1237                                         } else {
1238                                                 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1239                                         }
1240                                         entry = entry->next;
1241                                 }
1242                                 /*
1243                                  *      Set the status of this FIB
1244                                  */
1245                                 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1246                                 aac_fib_adapter_complete(fib, sizeof(u32));
1247                                 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1248                                 /* Free up the remaining resources */
1249                                 hw_fib_p = hw_fib_pool;
1250                                 fib_p = fib_pool;
1251                                 while (hw_fib_p < &hw_fib_pool[num]) {
1252                                         kfree(*hw_fib_p);
1253                                         kfree(*fib_p);
1254                                         ++fib_p;
1255                                         ++hw_fib_p;
1256                                 }
1257                                 kfree(hw_fib_pool);
1258                                 kfree(fib_pool);
1259                         }
1260                         kfree(fib);
1261                         spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1262                 }
1263                 /*
1264                  *      There are no more AIF's
1265                  */
1266                 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1267                 schedule();
1268
1269                 if(signal_pending(current))
1270                         break;
1271                 set_current_state(TASK_INTERRUPTIBLE);
1272         }
1273         if (dev->queues)
1274                 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1275         dev->aif_thread = 0;
1276         complete_and_exit(&dev->aif_completion, 0);
1277         return 0;
1278 }