e359ba35fefc6a55ca1b415131a84678fe6d9413
[linux-2.6.git] / fs / ext3 / inode.c
1 /*
2  *  linux/fs/ext3/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/ext3_jbd.h>
29 #include <linux/jbd.h>
30 #include <linux/smp_lock.h>
31 #include <linux/highuid.h>
32 #include <linux/pagemap.h>
33 #include <linux/quotaops.h>
34 #include <linux/string.h>
35 #include <linux/buffer_head.h>
36 #include <linux/writeback.h>
37 #include <linux/mpage.h>
38 #include <linux/uio.h>
39 #include "xattr.h"
40 #include "acl.h"
41
42 /*
43  * Test whether an inode is a fast symlink.
44  */
45 static inline int ext3_inode_is_fast_symlink(struct inode *inode)
46 {
47         int ea_blocks = EXT3_I(inode)->i_file_acl ?
48                 (inode->i_sb->s_blocksize >> 9) : 0;
49
50         return (S_ISLNK(inode->i_mode) &&
51                 inode->i_blocks - ea_blocks == 0);
52 }
53
54 /* The ext3 forget function must perform a revoke if we are freeing data
55  * which has been journaled.  Metadata (eg. indirect blocks) must be
56  * revoked in all cases. 
57  *
58  * "bh" may be NULL: a metadata block may have been freed from memory
59  * but there may still be a record of it in the journal, and that record
60  * still needs to be revoked.
61  */
62
63 int ext3_forget(handle_t *handle, int is_metadata,
64                        struct inode *inode, struct buffer_head *bh,
65                        int blocknr)
66 {
67         int err;
68
69         BUFFER_TRACE(bh, "enter");
70
71         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
72                   "data mode %lx\n",
73                   bh, is_metadata, inode->i_mode,
74                   test_opt(inode->i_sb, DATA_FLAGS));
75
76         /* Never use the revoke function if we are doing full data
77          * journaling: there is no need to, and a V1 superblock won't
78          * support it.  Otherwise, only skip the revoke on un-journaled
79          * data blocks. */
80
81         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
82             (!is_metadata && !ext3_should_journal_data(inode))) {
83                 if (bh) {
84                         BUFFER_TRACE(bh, "call journal_forget");
85                         ext3_journal_forget(handle, bh);
86                 }
87                 return 0;
88         }
89
90         /*
91          * data!=journal && (is_metadata || should_journal_data(inode))
92          */
93         BUFFER_TRACE(bh, "call ext3_journal_revoke");
94         err = ext3_journal_revoke(handle, blocknr, bh);
95         if (err)
96                 ext3_abort(inode->i_sb, __FUNCTION__,
97                            "error %d when attempting revoke", err);
98         BUFFER_TRACE(bh, "exit");
99         return err;
100 }
101
102 /*
103  * Work out how many blocks we need to progress with the next chunk of a
104  * truncate transaction.
105  */
106
107 static unsigned long blocks_for_truncate(struct inode *inode) 
108 {
109         unsigned long needed;
110
111         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
112
113         /* Give ourselves just enough room to cope with inodes in which
114          * i_blocks is corrupt: we've seen disk corruptions in the past
115          * which resulted in random data in an inode which looked enough
116          * like a regular file for ext3 to try to delete it.  Things
117          * will go a bit crazy if that happens, but at least we should
118          * try not to panic the whole kernel. */
119         if (needed < 2)
120                 needed = 2;
121
122         /* But we need to bound the transaction so we don't overflow the
123          * journal. */
124         if (needed > EXT3_MAX_TRANS_DATA) 
125                 needed = EXT3_MAX_TRANS_DATA;
126
127         return EXT3_DATA_TRANS_BLOCKS + needed;
128 }
129
130 /* 
131  * Truncate transactions can be complex and absolutely huge.  So we need to
132  * be able to restart the transaction at a conventient checkpoint to make
133  * sure we don't overflow the journal.
134  *
135  * start_transaction gets us a new handle for a truncate transaction,
136  * and extend_transaction tries to extend the existing one a bit.  If
137  * extend fails, we need to propagate the failure up and restart the
138  * transaction in the top-level truncate loop. --sct 
139  */
140
141 static handle_t *start_transaction(struct inode *inode) 
142 {
143         handle_t *result;
144
145         result = ext3_journal_start(inode, blocks_for_truncate(inode));
146         if (!IS_ERR(result))
147                 return result;
148
149         ext3_std_error(inode->i_sb, PTR_ERR(result));
150         return result;
151 }
152
153 /*
154  * Try to extend this transaction for the purposes of truncation.
155  *
156  * Returns 0 if we managed to create more room.  If we can't create more
157  * room, and the transaction must be restarted we return 1.
158  */
159 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
160 {
161         if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
162                 return 0;
163         if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
164                 return 0;
165         return 1;
166 }
167
168 /*
169  * Restart the transaction associated with *handle.  This does a commit,
170  * so before we call here everything must be consistently dirtied against
171  * this transaction.
172  */
173 static int ext3_journal_test_restart(handle_t *handle, struct inode *inode)
174 {
175         jbd_debug(2, "restarting handle %p\n", handle);
176         return ext3_journal_restart(handle, blocks_for_truncate(inode));
177 }
178
179 /*
180  * Called at each iput()
181  *
182  * The inode may be "bad" if ext3_read_inode() saw an error from
183  * ext3_get_inode(), so we need to check that to avoid freeing random disk
184  * blocks.
185  */
186 void ext3_put_inode(struct inode *inode)
187 {
188         if (!is_bad_inode(inode))
189                 ext3_discard_prealloc(inode);
190 }
191
192 /*
193  * Called at the last iput() if i_nlink is zero.
194  */
195 void ext3_delete_inode (struct inode * inode)
196 {
197         handle_t *handle;
198
199         if (is_bad_inode(inode))
200                 goto no_delete;
201
202         handle = start_transaction(inode);
203         if (IS_ERR(handle)) {
204                 /* If we're going to skip the normal cleanup, we still
205                  * need to make sure that the in-core orphan linked list
206                  * is properly cleaned up. */
207                 ext3_orphan_del(NULL, inode);
208                 goto no_delete;
209         }
210
211         if (IS_SYNC(inode))
212                 handle->h_sync = 1;
213         inode->i_size = 0;
214         if (inode->i_blocks)
215                 ext3_truncate(inode);
216         /*
217          * Kill off the orphan record which ext3_truncate created.
218          * AKPM: I think this can be inside the above `if'.
219          * Note that ext3_orphan_del() has to be able to cope with the
220          * deletion of a non-existent orphan - this is because we don't
221          * know if ext3_truncate() actually created an orphan record.
222          * (Well, we could do this if we need to, but heck - it works)
223          */
224         ext3_orphan_del(handle, inode);
225         EXT3_I(inode)->i_dtime  = get_seconds();
226
227         /* 
228          * One subtle ordering requirement: if anything has gone wrong
229          * (transaction abort, IO errors, whatever), then we can still
230          * do these next steps (the fs will already have been marked as
231          * having errors), but we can't free the inode if the mark_dirty
232          * fails.  
233          */
234         if (ext3_mark_inode_dirty(handle, inode))
235                 /* If that failed, just do the required in-core inode clear. */
236                 clear_inode(inode);
237         else
238                 ext3_free_inode(handle, inode);
239         ext3_journal_stop(handle);
240         return;
241 no_delete:
242         clear_inode(inode);     /* We must guarantee clearing of inode... */
243 }
244
245 void ext3_discard_prealloc (struct inode * inode)
246 {
247 #ifdef EXT3_PREALLOCATE
248         struct ext3_inode_info *ei = EXT3_I(inode);
249         /* Writer: ->i_prealloc* */
250         if (ei->i_prealloc_count) {
251                 unsigned short total = ei->i_prealloc_count;
252                 unsigned long block = ei->i_prealloc_block;
253                 ei->i_prealloc_count = 0;
254                 ei->i_prealloc_block = 0;
255                 /* Writer: end */
256                 ext3_free_blocks (inode, block, total);
257         }
258 #endif
259 }
260
261 static int ext3_alloc_block (handle_t *handle,
262                         struct inode * inode, unsigned long goal, int *err)
263 {
264         unsigned long result;
265
266 #ifdef EXT3_PREALLOCATE
267 #ifdef EXT3FS_DEBUG
268         static unsigned long alloc_hits, alloc_attempts;
269 #endif
270         struct ext3_inode_info *ei = EXT3_I(inode);
271         /* Writer: ->i_prealloc* */
272         if (ei->i_prealloc_count &&
273             (goal == ei->i_prealloc_block ||
274              goal + 1 == ei->i_prealloc_block))
275         {
276                 result = ei->i_prealloc_block++;
277                 ei->i_prealloc_count--;
278                 /* Writer: end */
279                 ext3_debug ("preallocation hit (%lu/%lu).\n",
280                             ++alloc_hits, ++alloc_attempts);
281         } else {
282                 ext3_discard_prealloc (inode);
283                 ext3_debug ("preallocation miss (%lu/%lu).\n",
284                             alloc_hits, ++alloc_attempts);
285                 if (S_ISREG(inode->i_mode))
286                         result = ext3_new_block (inode, goal, 
287                                  &ei->i_prealloc_count,
288                                  &ei->i_prealloc_block, err);
289                 else
290                         result = ext3_new_block (inode, goal, 0, 0, err);
291                 /*
292                  * AKPM: this is somewhat sticky.  I'm not surprised it was
293                  * disabled in 2.2's ext3.  Need to integrate b_committed_data
294                  * guarding with preallocation, if indeed preallocation is
295                  * effective.
296                  */
297         }
298 #else
299         result = ext3_new_block (handle, inode, goal, 0, 0, err);
300 #endif
301         return result;
302 }
303
304
305 typedef struct {
306         u32     *p;
307         u32     key;
308         struct buffer_head *bh;
309 } Indirect;
310
311 static inline void add_chain(Indirect *p, struct buffer_head *bh, u32 *v)
312 {
313         p->key = *(p->p = v);
314         p->bh = bh;
315 }
316
317 static inline int verify_chain(Indirect *from, Indirect *to)
318 {
319         while (from <= to && from->key == *from->p)
320                 from++;
321         return (from > to);
322 }
323
324 /**
325  *      ext3_block_to_path - parse the block number into array of offsets
326  *      @inode: inode in question (we are only interested in its superblock)
327  *      @i_block: block number to be parsed
328  *      @offsets: array to store the offsets in
329  *      @boundary: set this non-zero if the referred-to block is likely to be
330  *             followed (on disk) by an indirect block.
331  *
332  *      To store the locations of file's data ext3 uses a data structure common
333  *      for UNIX filesystems - tree of pointers anchored in the inode, with
334  *      data blocks at leaves and indirect blocks in intermediate nodes.
335  *      This function translates the block number into path in that tree -
336  *      return value is the path length and @offsets[n] is the offset of
337  *      pointer to (n+1)th node in the nth one. If @block is out of range
338  *      (negative or too large) warning is printed and zero returned.
339  *
340  *      Note: function doesn't find node addresses, so no IO is needed. All
341  *      we need to know is the capacity of indirect blocks (taken from the
342  *      inode->i_sb).
343  */
344
345 /*
346  * Portability note: the last comparison (check that we fit into triple
347  * indirect block) is spelled differently, because otherwise on an
348  * architecture with 32-bit longs and 8Kb pages we might get into trouble
349  * if our filesystem had 8Kb blocks. We might use long long, but that would
350  * kill us on x86. Oh, well, at least the sign propagation does not matter -
351  * i_block would have to be negative in the very beginning, so we would not
352  * get there at all.
353  */
354
355 static int ext3_block_to_path(struct inode *inode,
356                         long i_block, int offsets[4], int *boundary)
357 {
358         int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
359         int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
360         const long direct_blocks = EXT3_NDIR_BLOCKS,
361                 indirect_blocks = ptrs,
362                 double_blocks = (1 << (ptrs_bits * 2));
363         int n = 0;
364         int final = 0;
365
366         if (i_block < 0) {
367                 ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
368         } else if (i_block < direct_blocks) {
369                 offsets[n++] = i_block;
370                 final = direct_blocks;
371         } else if ( (i_block -= direct_blocks) < indirect_blocks) {
372                 offsets[n++] = EXT3_IND_BLOCK;
373                 offsets[n++] = i_block;
374                 final = ptrs;
375         } else if ((i_block -= indirect_blocks) < double_blocks) {
376                 offsets[n++] = EXT3_DIND_BLOCK;
377                 offsets[n++] = i_block >> ptrs_bits;
378                 offsets[n++] = i_block & (ptrs - 1);
379                 final = ptrs;
380         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
381                 offsets[n++] = EXT3_TIND_BLOCK;
382                 offsets[n++] = i_block >> (ptrs_bits * 2);
383                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
384                 offsets[n++] = i_block & (ptrs - 1);
385                 final = ptrs;
386         } else {
387                 ext3_warning (inode->i_sb, "ext3_block_to_path", "block > big");
388         }
389         if (boundary)
390                 *boundary = (i_block & (ptrs - 1)) == (final - 1);
391         return n;
392 }
393
394 /**
395  *      ext3_get_branch - read the chain of indirect blocks leading to data
396  *      @inode: inode in question
397  *      @depth: depth of the chain (1 - direct pointer, etc.)
398  *      @offsets: offsets of pointers in inode/indirect blocks
399  *      @chain: place to store the result
400  *      @err: here we store the error value
401  *
402  *      Function fills the array of triples <key, p, bh> and returns %NULL
403  *      if everything went OK or the pointer to the last filled triple
404  *      (incomplete one) otherwise. Upon the return chain[i].key contains
405  *      the number of (i+1)-th block in the chain (as it is stored in memory,
406  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
407  *      number (it points into struct inode for i==0 and into the bh->b_data
408  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
409  *      block for i>0 and NULL for i==0. In other words, it holds the block
410  *      numbers of the chain, addresses they were taken from (and where we can
411  *      verify that chain did not change) and buffer_heads hosting these
412  *      numbers.
413  *
414  *      Function stops when it stumbles upon zero pointer (absent block)
415  *              (pointer to last triple returned, *@err == 0)
416  *      or when it gets an IO error reading an indirect block
417  *              (ditto, *@err == -EIO)
418  *      or when it notices that chain had been changed while it was reading
419  *              (ditto, *@err == -EAGAIN)
420  *      or when it reads all @depth-1 indirect blocks successfully and finds
421  *      the whole chain, all way to the data (returns %NULL, *err == 0).
422  */
423 static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
424                                  Indirect chain[4], int *err)
425 {
426         struct super_block *sb = inode->i_sb;
427         Indirect *p = chain;
428         struct buffer_head *bh;
429
430         *err = 0;
431         /* i_data is not going away, no lock needed */
432         add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
433         if (!p->key)
434                 goto no_block;
435         while (--depth) {
436                 bh = sb_bread(sb, le32_to_cpu(p->key));
437                 if (!bh)
438                         goto failure;
439                 /* Reader: pointers */
440                 if (!verify_chain(chain, p))
441                         goto changed;
442                 add_chain(++p, bh, (u32*)bh->b_data + *++offsets);
443                 /* Reader: end */
444                 if (!p->key)
445                         goto no_block;
446         }
447         return NULL;
448
449 changed:
450         brelse(bh);
451         *err = -EAGAIN;
452         goto no_block;
453 failure:
454         *err = -EIO;
455 no_block:
456         return p;
457 }
458
459 /**
460  *      ext3_find_near - find a place for allocation with sufficient locality
461  *      @inode: owner
462  *      @ind: descriptor of indirect block.
463  *
464  *      This function returns the prefered place for block allocation.
465  *      It is used when heuristic for sequential allocation fails.
466  *      Rules are:
467  *        + if there is a block to the left of our position - allocate near it.
468  *        + if pointer will live in indirect block - allocate near that block.
469  *        + if pointer will live in inode - allocate in the same
470  *          cylinder group. 
471  *
472  * In the latter case we colour the starting block by the callers PID to
473  * prevent it from clashing with concurrent allocations for a different inode
474  * in the same block group.   The PID is used here so that functionally related
475  * files will be close-by on-disk.
476  *
477  *      Caller must make sure that @ind is valid and will stay that way.
478  */
479
480 static unsigned long ext3_find_near(struct inode *inode, Indirect *ind)
481 {
482         struct ext3_inode_info *ei = EXT3_I(inode);
483         u32 *start = ind->bh ? (u32*) ind->bh->b_data : ei->i_data;
484         u32 *p;
485         unsigned long bg_start;
486         unsigned long colour;
487
488         /* Try to find previous block */
489         for (p = ind->p - 1; p >= start; p--)
490                 if (*p)
491                         return le32_to_cpu(*p);
492
493         /* No such thing, so let's try location of indirect block */
494         if (ind->bh)
495                 return ind->bh->b_blocknr;
496
497         /*
498          * It is going to be refered from inode itself? OK, just put it into
499          * the same cylinder group then.
500          */
501         bg_start = (ei->i_block_group * EXT3_BLOCKS_PER_GROUP(inode->i_sb)) +
502                 le32_to_cpu(EXT3_SB(inode->i_sb)->s_es->s_first_data_block);
503         colour = (current->pid % 16) *
504                         (EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
505         return bg_start + colour;
506 }
507
508 /**
509  *      ext3_find_goal - find a prefered place for allocation.
510  *      @inode: owner
511  *      @block:  block we want
512  *      @chain:  chain of indirect blocks
513  *      @partial: pointer to the last triple within a chain
514  *      @goal:  place to store the result.
515  *
516  *      Normally this function find the prefered place for block allocation,
517  *      stores it in *@goal and returns zero. If the branch had been changed
518  *      under us we return -EAGAIN.
519  */
520
521 static int ext3_find_goal(struct inode *inode, long block, Indirect chain[4],
522                           Indirect *partial, unsigned long *goal)
523 {
524         struct ext3_inode_info *ei = EXT3_I(inode);
525         /* Writer: ->i_next_alloc* */
526         if (block == ei->i_next_alloc_block + 1) {
527                 ei->i_next_alloc_block++;
528                 ei->i_next_alloc_goal++;
529         }
530         /* Writer: end */
531         /* Reader: pointers, ->i_next_alloc* */
532         if (verify_chain(chain, partial)) {
533                 /*
534                  * try the heuristic for sequential allocation,
535                  * failing that at least try to get decent locality.
536                  */
537                 if (block == ei->i_next_alloc_block)
538                         *goal = ei->i_next_alloc_goal;
539                 if (!*goal)
540                         *goal = ext3_find_near(inode, partial);
541                 return 0;
542         }
543         /* Reader: end */
544         return -EAGAIN;
545 }
546
547 /**
548  *      ext3_alloc_branch - allocate and set up a chain of blocks.
549  *      @inode: owner
550  *      @num: depth of the chain (number of blocks to allocate)
551  *      @offsets: offsets (in the blocks) to store the pointers to next.
552  *      @branch: place to store the chain in.
553  *
554  *      This function allocates @num blocks, zeroes out all but the last one,
555  *      links them into chain and (if we are synchronous) writes them to disk.
556  *      In other words, it prepares a branch that can be spliced onto the
557  *      inode. It stores the information about that chain in the branch[], in
558  *      the same format as ext3_get_branch() would do. We are calling it after
559  *      we had read the existing part of chain and partial points to the last
560  *      triple of that (one with zero ->key). Upon the exit we have the same
561  *      picture as after the successful ext3_get_block(), excpet that in one
562  *      place chain is disconnected - *branch->p is still zero (we did not
563  *      set the last link), but branch->key contains the number that should
564  *      be placed into *branch->p to fill that gap.
565  *
566  *      If allocation fails we free all blocks we've allocated (and forget
567  *      their buffer_heads) and return the error value the from failed
568  *      ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
569  *      as described above and return 0.
570  */
571
572 static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
573                              int num,
574                              unsigned long goal,
575                              int *offsets,
576                              Indirect *branch)
577 {
578         int blocksize = inode->i_sb->s_blocksize;
579         int n = 0, keys = 0;
580         int err = 0;
581         int i;
582         int parent = ext3_alloc_block(handle, inode, goal, &err);
583
584         branch[0].key = cpu_to_le32(parent);
585         if (parent) {
586                 for (n = 1; n < num; n++) {
587                         struct buffer_head *bh;
588                         /* Allocate the next block */
589                         int nr = ext3_alloc_block(handle, inode, parent, &err);
590                         if (!nr)
591                                 break;
592                         branch[n].key = cpu_to_le32(nr);
593                         keys = n+1;
594
595                         /*
596                          * Get buffer_head for parent block, zero it out
597                          * and set the pointer to new one, then send
598                          * parent to disk.  
599                          */
600                         bh = sb_getblk(inode->i_sb, parent);
601                         branch[n].bh = bh;
602                         lock_buffer(bh);
603                         BUFFER_TRACE(bh, "call get_create_access");
604                         err = ext3_journal_get_create_access(handle, bh);
605                         if (err) {
606                                 unlock_buffer(bh);
607                                 brelse(bh);
608                                 break;
609                         }
610
611                         memset(bh->b_data, 0, blocksize);
612                         branch[n].p = (u32*) bh->b_data + offsets[n];
613                         *branch[n].p = branch[n].key;
614                         BUFFER_TRACE(bh, "marking uptodate");
615                         set_buffer_uptodate(bh);
616                         unlock_buffer(bh);
617
618                         BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
619                         err = ext3_journal_dirty_metadata(handle, bh);
620                         if (err)
621                                 break;
622
623                         parent = nr;
624                 }
625         }
626         if (n == num)
627                 return 0;
628
629         /* Allocation failed, free what we already allocated */
630         for (i = 1; i < keys; i++) {
631                 BUFFER_TRACE(branch[i].bh, "call journal_forget");
632                 ext3_journal_forget(handle, branch[i].bh);
633         }
634         for (i = 0; i < keys; i++)
635                 ext3_free_blocks(handle, inode, le32_to_cpu(branch[i].key), 1);
636         return err;
637 }
638
639 /**
640  *      ext3_splice_branch - splice the allocated branch onto inode.
641  *      @inode: owner
642  *      @block: (logical) number of block we are adding
643  *      @chain: chain of indirect blocks (with a missing link - see
644  *              ext3_alloc_branch)
645  *      @where: location of missing link
646  *      @num:   number of blocks we are adding
647  *
648  *      This function verifies that chain (up to the missing link) had not
649  *      changed, fills the missing link and does all housekeeping needed in
650  *      inode (->i_blocks, etc.). In case of success we end up with the full
651  *      chain to new block and return 0. Otherwise (== chain had been changed)
652  *      we free the new blocks (forgetting their buffer_heads, indeed) and
653  *      return -EAGAIN.
654  */
655
656 static int ext3_splice_branch(handle_t *handle, struct inode *inode, long block,
657                               Indirect chain[4], Indirect *where, int num)
658 {
659         int i;
660         int err = 0;
661         struct ext3_inode_info *ei = EXT3_I(inode);
662
663         /*
664          * If we're splicing into a [td]indirect block (as opposed to the
665          * inode) then we need to get write access to the [td]indirect block
666          * before the splice.
667          */
668         if (where->bh) {
669                 BUFFER_TRACE(where->bh, "get_write_access");
670                 err = ext3_journal_get_write_access(handle, where->bh);
671                 if (err)
672                         goto err_out;
673         }
674         /* Verify that place we are splicing to is still there and vacant */
675
676         /* Writer: pointers, ->i_next_alloc* */
677         if (!verify_chain(chain, where-1) || *where->p)
678                 /* Writer: end */
679                 goto changed;
680
681         /* That's it */
682
683         *where->p = where->key;
684         ei->i_next_alloc_block = block;
685         ei->i_next_alloc_goal = le32_to_cpu(where[num-1].key);
686         /* Writer: end */
687
688         /* We are done with atomic stuff, now do the rest of housekeeping */
689
690         inode->i_ctime = CURRENT_TIME;
691         ext3_mark_inode_dirty(handle, inode);
692
693         /* had we spliced it onto indirect block? */
694         if (where->bh) {
695                 /*
696                  * akpm: If we spliced it onto an indirect block, we haven't
697                  * altered the inode.  Note however that if it is being spliced
698                  * onto an indirect block at the very end of the file (the
699                  * file is growing) then we *will* alter the inode to reflect
700                  * the new i_size.  But that is not done here - it is done in
701                  * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
702                  */
703                 jbd_debug(5, "splicing indirect only\n");
704                 BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
705                 err = ext3_journal_dirty_metadata(handle, where->bh);
706                 if (err) 
707                         goto err_out;
708         } else {
709                 /*
710                  * OK, we spliced it into the inode itself on a direct block.
711                  * Inode was dirtied above.
712                  */
713                 jbd_debug(5, "splicing direct\n");
714         }
715         return err;
716
717 changed:
718         /*
719          * AKPM: if where[i].bh isn't part of the current updating
720          * transaction then we explode nastily.  Test this code path.
721          */
722         jbd_debug(1, "the chain changed: try again\n");
723         err = -EAGAIN;
724
725 err_out:
726         for (i = 1; i < num; i++) {
727                 BUFFER_TRACE(where[i].bh, "call journal_forget");
728                 ext3_journal_forget(handle, where[i].bh);
729         }
730         /* For the normal collision cleanup case, we free up the blocks.
731          * On genuine filesystem errors we don't even think about doing
732          * that. */
733         if (err == -EAGAIN)
734                 for (i = 0; i < num; i++)
735                         ext3_free_blocks(handle, inode, 
736                                          le32_to_cpu(where[i].key), 1);
737         return err;
738 }
739
740 /*
741  * Allocation strategy is simple: if we have to allocate something, we will
742  * have to go the whole way to leaf. So let's do it before attaching anything
743  * to tree, set linkage between the newborn blocks, write them if sync is
744  * required, recheck the path, free and repeat if check fails, otherwise
745  * set the last missing link (that will protect us from any truncate-generated
746  * removals - all blocks on the path are immune now) and possibly force the
747  * write on the parent block.
748  * That has a nice additional property: no special recovery from the failed
749  * allocations is needed - we simply release blocks and do not touch anything
750  * reachable from inode.
751  *
752  * akpm: `handle' can be NULL if create == 0.
753  *
754  * The BKL may not be held on entry here.  Be sure to take it early.
755  */
756
757 static int
758 ext3_get_block_handle(handle_t *handle, struct inode *inode, sector_t iblock,
759                 struct buffer_head *bh_result, int create, int extend_disksize)
760 {
761         int err = -EIO;
762         int offsets[4];
763         Indirect chain[4];
764         Indirect *partial;
765         unsigned long goal;
766         int left;
767         int boundary = 0;
768         int depth = ext3_block_to_path(inode, iblock, offsets, &boundary);
769         struct ext3_inode_info *ei = EXT3_I(inode);
770
771         J_ASSERT(handle != NULL || create == 0);
772
773         if (depth == 0)
774                 goto out;
775
776 reread:
777         partial = ext3_get_branch(inode, depth, offsets, chain, &err);
778
779         /* Simplest case - block found, no allocation needed */
780         if (!partial) {
781                 clear_buffer_new(bh_result);
782 got_it:
783                 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
784                 if (boundary)
785                         set_buffer_boundary(bh_result);
786                 /* Clean up and exit */
787                 partial = chain+depth-1; /* the whole chain */
788                 goto cleanup;
789         }
790
791         /* Next simple case - plain lookup or failed read of indirect block */
792         if (!create || err == -EIO) {
793 cleanup:
794                 while (partial > chain) {
795                         BUFFER_TRACE(partial->bh, "call brelse");
796                         brelse(partial->bh);
797                         partial--;
798                 }
799                 BUFFER_TRACE(bh_result, "returned");
800 out:
801                 return err;
802         }
803
804         /*
805          * Indirect block might be removed by truncate while we were
806          * reading it. Handling of that case (forget what we've got and
807          * reread) is taken out of the main path.
808          */
809         if (err == -EAGAIN)
810                 goto changed;
811
812         goal = 0;
813         down(&ei->truncate_sem);
814         if (ext3_find_goal(inode, iblock, chain, partial, &goal) < 0) {
815                 up(&ei->truncate_sem);
816                 goto changed;
817         }
818
819         left = (chain + depth) - partial;
820
821         /*
822          * Block out ext3_truncate while we alter the tree
823          */
824         err = ext3_alloc_branch(handle, inode, left, goal,
825                                         offsets+(partial-chain), partial);
826
827         /* The ext3_splice_branch call will free and forget any buffers
828          * on the new chain if there is a failure, but that risks using
829          * up transaction credits, especially for bitmaps where the
830          * credits cannot be returned.  Can we handle this somehow?  We
831          * may need to return -EAGAIN upwards in the worst case.  --sct */
832         if (!err)
833                 err = ext3_splice_branch(handle, inode, iblock, chain,
834                                          partial, left);
835         /* i_disksize growing is protected by truncate_sem
836          * don't forget to protect it if you're about to implement
837          * concurrent ext3_get_block() -bzzz */
838         if (!err && extend_disksize && inode->i_size > ei->i_disksize)
839                 ei->i_disksize = inode->i_size;
840         up(&ei->truncate_sem);
841         if (err == -EAGAIN)
842                 goto changed;
843         if (err)
844                 goto cleanup;
845
846         set_buffer_new(bh_result);
847         goto got_it;
848
849 changed:
850         while (partial > chain) {
851                 jbd_debug(1, "buffer chain changed, retrying\n");
852                 BUFFER_TRACE(partial->bh, "brelsing");
853                 brelse(partial->bh);
854                 partial--;
855         }
856         goto reread;
857 }
858
859 static int ext3_get_block(struct inode *inode, sector_t iblock,
860                         struct buffer_head *bh_result, int create)
861 {
862         handle_t *handle = 0;
863         int ret;
864
865         if (create) {
866                 handle = ext3_journal_current_handle();
867                 J_ASSERT(handle != 0);
868         }
869         ret = ext3_get_block_handle(handle, inode, iblock,
870                                 bh_result, create, 1);
871         return ret;
872 }
873
874 #define DIO_CREDITS (EXT3_RESERVE_TRANS_BLOCKS + 32)
875
876 static int
877 ext3_direct_io_get_blocks(struct inode *inode, sector_t iblock,
878                 unsigned long max_blocks, struct buffer_head *bh_result,
879                 int create)
880 {
881         handle_t *handle = journal_current_handle();
882         int ret = 0;
883
884         if (handle && handle->h_buffer_credits <= EXT3_RESERVE_TRANS_BLOCKS) {
885                 /*
886                  * Getting low on buffer credits...
887                  */
888                 if (!ext3_journal_extend(handle, DIO_CREDITS)) {
889                         /*
890                          * Couldn't extend the transaction.  Start a new one
891                          */
892                         ret = ext3_journal_restart(handle, DIO_CREDITS);
893                 }
894         }
895         if (ret == 0)
896                 ret = ext3_get_block_handle(handle, inode, iblock,
897                                         bh_result, create, 0);
898         if (ret == 0)
899                 bh_result->b_size = (1 << inode->i_blkbits);
900         return ret;
901 }
902
903
904 /*
905  * `handle' can be NULL if create is zero
906  */
907 struct buffer_head *ext3_getblk(handle_t *handle, struct inode * inode,
908                                 long block, int create, int * errp)
909 {
910         struct buffer_head dummy;
911         int fatal = 0, err;
912
913         J_ASSERT(handle != NULL || create == 0);
914
915         dummy.b_state = 0;
916         dummy.b_blocknr = -1000;
917         buffer_trace_init(&dummy.b_history);
918         *errp = ext3_get_block_handle(handle, inode, block, &dummy, create, 1);
919         if (!*errp && buffer_mapped(&dummy)) {
920                 struct buffer_head *bh;
921                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
922                 if (buffer_new(&dummy)) {
923                         J_ASSERT(create != 0);
924                         J_ASSERT(handle != 0);
925
926                         /* Now that we do not always journal data, we
927                            should keep in mind whether this should
928                            always journal the new buffer as metadata.
929                            For now, regular file writes use
930                            ext3_get_block instead, so it's not a
931                            problem. */
932                         lock_buffer(bh);
933                         BUFFER_TRACE(bh, "call get_create_access");
934                         fatal = ext3_journal_get_create_access(handle, bh);
935                         if (!fatal && !buffer_uptodate(bh)) {
936                                 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
937                                 set_buffer_uptodate(bh);
938                         }
939                         unlock_buffer(bh);
940                         BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
941                         err = ext3_journal_dirty_metadata(handle, bh);
942                         if (!fatal)
943                                 fatal = err;
944                 } else {
945                         BUFFER_TRACE(bh, "not a new buffer");
946                 }
947                 if (fatal) {
948                         *errp = fatal;
949                         brelse(bh);
950                         bh = NULL;
951                 }
952                 return bh;
953         }
954         return NULL;
955 }
956
957 struct buffer_head *ext3_bread(handle_t *handle, struct inode * inode,
958                                int block, int create, int *err)
959 {
960         struct buffer_head * bh;
961         int prev_blocks;
962
963         prev_blocks = inode->i_blocks;
964
965         bh = ext3_getblk (handle, inode, block, create, err);
966         if (!bh)
967                 return bh;
968 #ifdef EXT3_PREALLOCATE
969         /*
970          * If the inode has grown, and this is a directory, then use a few
971          * more of the preallocated blocks to keep directory fragmentation
972          * down.  The preallocated blocks are guaranteed to be contiguous.
973          */
974         if (create &&
975             S_ISDIR(inode->i_mode) &&
976             inode->i_blocks > prev_blocks &&
977             EXT3_HAS_COMPAT_FEATURE(inode->i_sb,
978                                     EXT3_FEATURE_COMPAT_DIR_PREALLOC)) {
979                 int i;
980                 struct buffer_head *tmp_bh;
981
982                 for (i = 1;
983                      EXT3_I(inode)->i_prealloc_count &&
984                      i < EXT3_SB(inode->i_sb)->s_es->s_prealloc_dir_blocks;
985                      i++) {
986                         /*
987                          * ext3_getblk will zero out the contents of the
988                          * directory for us
989                          */
990                         tmp_bh = ext3_getblk(handle, inode,
991                                                 block+i, create, err);
992                         if (!tmp_bh) {
993                                 brelse (bh);
994                                 return 0;
995                         }
996                         brelse (tmp_bh);
997                 }
998         }
999 #endif
1000         if (buffer_uptodate(bh))
1001                 return bh;
1002         ll_rw_block (READ, 1, &bh);
1003         wait_on_buffer (bh);
1004         if (buffer_uptodate(bh))
1005                 return bh;
1006         brelse (bh);
1007         *err = -EIO;
1008         return NULL;
1009 }
1010
1011 static int walk_page_buffers(   handle_t *handle,
1012                                 struct buffer_head *head,
1013                                 unsigned from,
1014                                 unsigned to,
1015                                 int *partial,
1016                                 int (*fn)(      handle_t *handle,
1017                                                 struct buffer_head *bh))
1018 {
1019         struct buffer_head *bh;
1020         unsigned block_start, block_end;
1021         unsigned blocksize = head->b_size;
1022         int err, ret = 0;
1023         struct buffer_head *next;
1024
1025         for (   bh = head, block_start = 0;
1026                 ret == 0 && (bh != head || !block_start);
1027                 block_start = block_end, bh = next)
1028         {
1029                 next = bh->b_this_page;
1030                 block_end = block_start + blocksize;
1031                 if (block_end <= from || block_start >= to) {
1032                         if (partial && !buffer_uptodate(bh))
1033                                 *partial = 1;
1034                         continue;
1035                 }
1036                 err = (*fn)(handle, bh);
1037                 if (!ret)
1038                         ret = err;
1039         }
1040         return ret;
1041 }
1042
1043 /*
1044  * To preserve ordering, it is essential that the hole instantiation and
1045  * the data write be encapsulated in a single transaction.  We cannot
1046  * close off a transaction and start a new one between the ext3_get_block()
1047  * and the commit_write().  So doing the journal_start at the start of
1048  * prepare_write() is the right place.
1049  *
1050  * Also, this function can nest inside ext3_writepage() ->
1051  * block_write_full_page(). In that case, we *know* that ext3_writepage()
1052  * has generated enough buffer credits to do the whole page.  So we won't
1053  * block on the journal in that case, which is good, because the caller may
1054  * be PF_MEMALLOC.
1055  *
1056  * By accident, ext3 can be reentered when a transaction is open via
1057  * quota file writes.  If we were to commit the transaction while thus
1058  * reentered, there can be a deadlock - we would be holding a quota
1059  * lock, and the commit would never complete if another thread had a
1060  * transaction open and was blocking on the quota lock - a ranking
1061  * violation.
1062  *
1063  * So what we do is to rely on the fact that journal_stop/journal_start
1064  * will _not_ run commit under these circumstances because handle->h_ref
1065  * is elevated.  We'll still have enough credits for the tiny quotafile
1066  * write.  
1067  */
1068
1069 static int do_journal_get_write_access(handle_t *handle, 
1070                                        struct buffer_head *bh)
1071 {
1072         if (!buffer_mapped(bh) || buffer_freed(bh))
1073                 return 0;
1074         return ext3_journal_get_write_access(handle, bh);
1075 }
1076
1077 static int ext3_prepare_write(struct file *file, struct page *page,
1078                               unsigned from, unsigned to)
1079 {
1080         struct inode *inode = page->mapping->host;
1081         int ret, needed_blocks = ext3_writepage_trans_blocks(inode);
1082         handle_t *handle;
1083         int retries = 0;
1084
1085 retry:
1086         handle = ext3_journal_start(inode, needed_blocks);
1087         if (IS_ERR(handle)) {
1088                 ret = PTR_ERR(handle);
1089                 goto out;
1090         }
1091         ret = block_prepare_write(page, from, to, ext3_get_block);
1092         if (ret)
1093                 goto prepare_write_failed;
1094
1095         if (ext3_should_journal_data(inode)) {
1096                 ret = walk_page_buffers(handle, page_buffers(page),
1097                                 from, to, NULL, do_journal_get_write_access);
1098         }
1099 prepare_write_failed:
1100         if (ret)
1101                 ext3_journal_stop(handle);
1102         if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1103                 goto retry;
1104 out:
1105         return ret;
1106 }
1107
1108 static int
1109 ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1110 {
1111         int err = journal_dirty_data(handle, bh);
1112         if (err)
1113                 ext3_journal_abort_handle(__FUNCTION__, __FUNCTION__,
1114                                                 bh, handle,err);
1115         return err;
1116 }
1117
1118 /* For commit_write() in data=journal mode */
1119 static int commit_write_fn(handle_t *handle, struct buffer_head *bh)
1120 {
1121         if (!buffer_mapped(bh) || buffer_freed(bh))
1122                 return 0;
1123         set_buffer_uptodate(bh);
1124         return ext3_journal_dirty_metadata(handle, bh);
1125 }
1126
1127 /*
1128  * We need to pick up the new inode size which generic_commit_write gave us
1129  * `file' can be NULL - eg, when called from page_symlink().
1130  *
1131  * ext3 never places buffers on inode->i_mapping->private_list.  metadata
1132  * buffers are managed internally.
1133  */
1134
1135 static int ext3_ordered_commit_write(struct file *file, struct page *page,
1136                              unsigned from, unsigned to)
1137 {
1138         handle_t *handle = ext3_journal_current_handle();
1139         struct inode *inode = page->mapping->host;
1140         int ret = 0, ret2;
1141
1142         ret = walk_page_buffers(handle, page_buffers(page),
1143                 from, to, NULL, ext3_journal_dirty_data);
1144
1145         if (ret == 0) {
1146                 /*
1147                  * generic_commit_write() will run mark_inode_dirty() if i_size
1148                  * changes.  So let's piggyback the i_disksize mark_inode_dirty
1149                  * into that.
1150                  */
1151                 loff_t new_i_size;
1152
1153                 new_i_size = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
1154                 if (new_i_size > EXT3_I(inode)->i_disksize)
1155                         EXT3_I(inode)->i_disksize = new_i_size;
1156                 ret = generic_commit_write(file, page, from, to);
1157         }
1158         ret2 = ext3_journal_stop(handle);
1159         if (!ret)
1160                 ret = ret2;
1161         return ret;
1162 }
1163
1164 static int ext3_writeback_commit_write(struct file *file, struct page *page,
1165                              unsigned from, unsigned to)
1166 {
1167         handle_t *handle = ext3_journal_current_handle();
1168         struct inode *inode = page->mapping->host;
1169         int ret = 0, ret2;
1170         loff_t new_i_size;
1171
1172         new_i_size = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
1173         if (new_i_size > EXT3_I(inode)->i_disksize)
1174                 EXT3_I(inode)->i_disksize = new_i_size;
1175         ret = generic_commit_write(file, page, from, to);
1176         ret2 = ext3_journal_stop(handle);
1177         if (!ret)
1178                 ret = ret2;
1179         return ret;
1180 }
1181
1182 static int ext3_journalled_commit_write(struct file *file,
1183                         struct page *page, unsigned from, unsigned to)
1184 {
1185         handle_t *handle = ext3_journal_current_handle();
1186         struct inode *inode = page->mapping->host;
1187         int ret = 0, ret2;
1188         int partial = 0;
1189         loff_t pos;
1190
1191         /*
1192          * Here we duplicate the generic_commit_write() functionality
1193          */
1194         pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
1195
1196         ret = walk_page_buffers(handle, page_buffers(page), from,
1197                                 to, &partial, commit_write_fn);
1198         if (!partial)
1199                 SetPageUptodate(page);
1200         if (pos > inode->i_size)
1201                 i_size_write(inode, pos);
1202         EXT3_I(inode)->i_state |= EXT3_STATE_JDATA;
1203         if (inode->i_size > EXT3_I(inode)->i_disksize) {
1204                 EXT3_I(inode)->i_disksize = inode->i_size;
1205                 ret2 = ext3_mark_inode_dirty(handle, inode);
1206                 if (!ret) 
1207                         ret = ret2;
1208         }
1209         ret2 = ext3_journal_stop(handle);
1210         if (!ret)
1211                 ret = ret2;
1212         return ret;
1213 }
1214
1215 /* 
1216  * bmap() is special.  It gets used by applications such as lilo and by
1217  * the swapper to find the on-disk block of a specific piece of data.
1218  *
1219  * Naturally, this is dangerous if the block concerned is still in the
1220  * journal.  If somebody makes a swapfile on an ext3 data-journaling
1221  * filesystem and enables swap, then they may get a nasty shock when the
1222  * data getting swapped to that swapfile suddenly gets overwritten by
1223  * the original zero's written out previously to the journal and
1224  * awaiting writeback in the kernel's buffer cache. 
1225  *
1226  * So, if we see any bmap calls here on a modified, data-journaled file,
1227  * take extra steps to flush any blocks which might be in the cache. 
1228  */
1229 static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
1230 {
1231         struct inode *inode = mapping->host;
1232         journal_t *journal;
1233         int err;
1234
1235         if (EXT3_I(inode)->i_state & EXT3_STATE_JDATA) {
1236                 /* 
1237                  * This is a REALLY heavyweight approach, but the use of
1238                  * bmap on dirty files is expected to be extremely rare:
1239                  * only if we run lilo or swapon on a freshly made file
1240                  * do we expect this to happen. 
1241                  *
1242                  * (bmap requires CAP_SYS_RAWIO so this does not
1243                  * represent an unprivileged user DOS attack --- we'd be
1244                  * in trouble if mortal users could trigger this path at
1245                  * will.) 
1246                  *
1247                  * NB. EXT3_STATE_JDATA is not set on files other than
1248                  * regular files.  If somebody wants to bmap a directory
1249                  * or symlink and gets confused because the buffer
1250                  * hasn't yet been flushed to disk, they deserve
1251                  * everything they get.
1252                  */
1253
1254                 EXT3_I(inode)->i_state &= ~EXT3_STATE_JDATA;
1255                 journal = EXT3_JOURNAL(inode);
1256                 journal_lock_updates(journal);
1257                 err = journal_flush(journal);
1258                 journal_unlock_updates(journal);
1259
1260                 if (err)
1261                         return 0;
1262         }
1263
1264         return generic_block_bmap(mapping,block,ext3_get_block);
1265 }
1266
1267 static int bget_one(handle_t *handle, struct buffer_head *bh)
1268 {
1269         get_bh(bh);
1270         return 0;
1271 }
1272
1273 static int bput_one(handle_t *handle, struct buffer_head *bh)
1274 {
1275         put_bh(bh);
1276         return 0;
1277 }
1278
1279 static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1280 {
1281         if (buffer_mapped(bh))
1282                 return ext3_journal_dirty_data(handle, bh);
1283         return 0;
1284 }
1285
1286 /*
1287  * Note that we always start a transaction even if we're not journalling
1288  * data.  This is to preserve ordering: any hole instantiation within
1289  * __block_write_full_page -> ext3_get_block() should be journalled
1290  * along with the data so we don't crash and then get metadata which
1291  * refers to old data.
1292  *
1293  * In all journalling modes block_write_full_page() will start the I/O.
1294  *
1295  * Problem:
1296  *
1297  *      ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1298  *              ext3_writepage()
1299  *
1300  * Similar for:
1301  *
1302  *      ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1303  *
1304  * Same applies to ext3_get_block().  We will deadlock on various things like
1305  * lock_journal and i_truncate_sem.
1306  *
1307  * Setting PF_MEMALLOC here doesn't work - too many internal memory
1308  * allocations fail.
1309  *
1310  * 16May01: If we're reentered then journal_current_handle() will be
1311  *          non-zero. We simply *return*.
1312  *
1313  * 1 July 2001: @@@ FIXME:
1314  *   In journalled data mode, a data buffer may be metadata against the
1315  *   current transaction.  But the same file is part of a shared mapping
1316  *   and someone does a writepage() on it.
1317  *
1318  *   We will move the buffer onto the async_data list, but *after* it has
1319  *   been dirtied. So there's a small window where we have dirty data on
1320  *   BJ_Metadata.
1321  *
1322  *   Note that this only applies to the last partial page in the file.  The
1323  *   bit which block_write_full_page() uses prepare/commit for.  (That's
1324  *   broken code anyway: it's wrong for msync()).
1325  *
1326  *   It's a rare case: affects the final partial page, for journalled data
1327  *   where the file is subject to bith write() and writepage() in the same
1328  *   transction.  To fix it we'll need a custom block_write_full_page().
1329  *   We'll probably need that anyway for journalling writepage() output.
1330  *
1331  * We don't honour synchronous mounts for writepage().  That would be
1332  * disastrous.  Any write() or metadata operation will sync the fs for
1333  * us.
1334  *
1335  * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1336  * we don't need to open a transaction here.
1337  */
1338 static int ext3_ordered_writepage(struct page *page,
1339                         struct writeback_control *wbc)
1340 {
1341         struct inode *inode = page->mapping->host;
1342         struct buffer_head *page_bufs;
1343         handle_t *handle = NULL;
1344         int ret = 0;
1345         int err;
1346
1347         J_ASSERT(PageLocked(page));
1348
1349         /*
1350          * We give up here if we're reentered, because it might be for a
1351          * different filesystem.
1352          */
1353         if (ext3_journal_current_handle())
1354                 goto out_fail;
1355
1356         handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1357
1358         if (IS_ERR(handle)) {
1359                 ret = PTR_ERR(handle);
1360                 goto out_fail;
1361         }
1362
1363         if (!page_has_buffers(page)) {
1364                 create_empty_buffers(page, inode->i_sb->s_blocksize,
1365                                 (1 << BH_Dirty)|(1 << BH_Uptodate));
1366         }
1367         page_bufs = page_buffers(page);
1368         walk_page_buffers(handle, page_bufs, 0,
1369                         PAGE_CACHE_SIZE, NULL, bget_one);
1370
1371         ret = block_write_full_page(page, ext3_get_block, wbc);
1372
1373         /*
1374          * The page can become unlocked at any point now, and
1375          * truncate can then come in and change things.  So we
1376          * can't touch *page from now on.  But *page_bufs is
1377          * safe due to elevated refcount.
1378          */
1379
1380         /*
1381          * And attach them to the current transaction.  But only if 
1382          * block_write_full_page() succeeded.  Otherwise they are unmapped,
1383          * and generally junk.
1384          */
1385         if (ret == 0) {
1386                 err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1387                                         NULL, journal_dirty_data_fn);
1388                 if (!ret)
1389                         ret = err;
1390         }
1391         walk_page_buffers(handle, page_bufs, 0,
1392                         PAGE_CACHE_SIZE, NULL, bput_one);
1393         err = ext3_journal_stop(handle);
1394         if (!ret)
1395                 ret = err;
1396         return ret;
1397
1398 out_fail:
1399         redirty_page_for_writepage(wbc, page);
1400         unlock_page(page);
1401         return ret;
1402 }
1403
1404 static int ext3_writeback_writepage(struct page *page,
1405                                 struct writeback_control *wbc)
1406 {
1407         struct inode *inode = page->mapping->host;
1408         handle_t *handle = NULL;
1409         int ret = 0;
1410         int err;
1411
1412         if (ext3_journal_current_handle())
1413                 goto out_fail;
1414
1415         handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1416         if (IS_ERR(handle)) {
1417                 ret = PTR_ERR(handle);
1418                 goto out_fail;
1419         }
1420
1421         ret = block_write_full_page(page, ext3_get_block, wbc);
1422         err = ext3_journal_stop(handle);
1423         if (!ret)
1424                 ret = err;
1425         return ret;
1426
1427 out_fail:
1428         redirty_page_for_writepage(wbc, page);
1429         unlock_page(page);
1430         return ret;
1431 }
1432
1433 static int ext3_journalled_writepage(struct page *page,
1434                                 struct writeback_control *wbc)
1435 {
1436         struct inode *inode = page->mapping->host;
1437         handle_t *handle = NULL;
1438         int ret = 0;
1439         int err;
1440
1441         if (ext3_journal_current_handle())
1442                 goto no_write;
1443
1444         handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1445         if (IS_ERR(handle)) {
1446                 ret = PTR_ERR(handle);
1447                 goto no_write;
1448         }
1449
1450         if (!page_has_buffers(page) || PageChecked(page)) {
1451                 /*
1452                  * It's mmapped pagecache.  Add buffers and journal it.  There
1453                  * doesn't seem much point in redirtying the page here.
1454                  */
1455                 ClearPageChecked(page);
1456                 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
1457                                         ext3_get_block);
1458                 if (ret != 0)
1459                         goto out_unlock;
1460                 ret = walk_page_buffers(handle, page_buffers(page), 0,
1461                         PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1462
1463                 err = walk_page_buffers(handle, page_buffers(page), 0,
1464                                 PAGE_CACHE_SIZE, NULL, commit_write_fn);
1465                 if (ret == 0)
1466                         ret = err;
1467                 EXT3_I(inode)->i_state |= EXT3_STATE_JDATA;
1468                 unlock_page(page);
1469         } else {
1470                 /*
1471                  * It may be a page full of checkpoint-mode buffers.  We don't
1472                  * really know unless we go poke around in the buffer_heads.
1473                  * But block_write_full_page will do the right thing.
1474                  */
1475                 ret = block_write_full_page(page, ext3_get_block, wbc);
1476         }
1477         err = ext3_journal_stop(handle);
1478         if (!ret)
1479                 ret = err;
1480 out:
1481         return ret;
1482
1483 no_write:
1484         redirty_page_for_writepage(wbc, page);
1485 out_unlock:
1486         unlock_page(page);
1487         goto out;
1488 }
1489
1490 static int ext3_readpage(struct file *file, struct page *page)
1491 {
1492         return mpage_readpage(page, ext3_get_block);
1493 }
1494
1495 static int
1496 ext3_readpages(struct file *file, struct address_space *mapping,
1497                 struct list_head *pages, unsigned nr_pages)
1498 {
1499         return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
1500 }
1501
1502 static int ext3_invalidatepage(struct page *page, unsigned long offset)
1503 {
1504         journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1505
1506         /*
1507          * If it's a full truncate we just forget about the pending dirtying
1508          */
1509         if (offset == 0)
1510                 ClearPageChecked(page);
1511
1512         return journal_invalidatepage(journal, page, offset);
1513 }
1514
1515 static int ext3_releasepage(struct page *page, int wait)
1516 {
1517         journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1518
1519         WARN_ON(PageChecked(page));
1520         return journal_try_to_free_buffers(journal, page, wait);
1521 }
1522
1523 /*
1524  * If the O_DIRECT write will extend the file then add this inode to the
1525  * orphan list.  So recovery will truncate it back to the original size
1526  * if the machine crashes during the write.
1527  *
1528  * If the O_DIRECT write is intantiating holes inside i_size and the machine
1529  * crashes then stale disk data _may_ be exposed inside the file.
1530  */
1531 static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
1532                         const struct iovec *iov, loff_t offset,
1533                         unsigned long nr_segs)
1534 {
1535         struct file *file = iocb->ki_filp;
1536         struct inode *inode = file->f_mapping->host;
1537         struct ext3_inode_info *ei = EXT3_I(inode);
1538         handle_t *handle = NULL;
1539         ssize_t ret;
1540         int orphan = 0;
1541         size_t count = iov_length(iov, nr_segs);
1542
1543         if (rw == WRITE) {
1544                 loff_t final_size = offset + count;
1545
1546                 handle = ext3_journal_start(inode, DIO_CREDITS);
1547                 if (IS_ERR(handle)) {
1548                         ret = PTR_ERR(handle);
1549                         goto out;
1550                 }
1551                 if (final_size > inode->i_size) {
1552                         ret = ext3_orphan_add(handle, inode);
1553                         if (ret)
1554                                 goto out_stop;
1555                         orphan = 1;
1556                         ei->i_disksize = inode->i_size;
1557                 }
1558         }
1559
1560         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov, 
1561                                  offset, nr_segs,
1562                                  ext3_direct_io_get_blocks, NULL);
1563
1564 out_stop:
1565         if (handle) {
1566                 int err;
1567
1568                 if (orphan) 
1569                         ext3_orphan_del(handle, inode);
1570                 if (orphan && ret > 0) {
1571                         loff_t end = offset + ret;
1572                         if (end > inode->i_size) {
1573                                 ei->i_disksize = end;
1574                                 i_size_write(inode, end);
1575                                 err = ext3_mark_inode_dirty(handle, inode);
1576                                 if (!ret) 
1577                                         ret = err;
1578                         }
1579                 }
1580                 err = ext3_journal_stop(handle);
1581                 if (ret == 0)
1582                         ret = err;
1583         }
1584 out:
1585         return ret;
1586 }
1587
1588 /*
1589  * Pages can be marked dirty completely asynchronously from ext3's journalling
1590  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
1591  * much here because ->set_page_dirty is called under VFS locks.  The page is
1592  * not necessarily locked.
1593  *
1594  * We cannot just dirty the page and leave attached buffers clean, because the
1595  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
1596  * or jbddirty because all the journalling code will explode.
1597  *
1598  * So what we do is to mark the page "pending dirty" and next time writepage
1599  * is called, propagate that into the buffers appropriately.
1600  */
1601 static int ext3_journalled_set_page_dirty(struct page *page)
1602 {
1603         SetPageChecked(page);
1604         return __set_page_dirty_nobuffers(page);
1605 }
1606
1607 static struct address_space_operations ext3_ordered_aops = {
1608         .readpage       = ext3_readpage,
1609         .readpages      = ext3_readpages,
1610         .writepage      = ext3_ordered_writepage,
1611         .sync_page      = block_sync_page,
1612         .prepare_write  = ext3_prepare_write,
1613         .commit_write   = ext3_ordered_commit_write,
1614         .bmap           = ext3_bmap,
1615         .invalidatepage = ext3_invalidatepage,
1616         .releasepage    = ext3_releasepage,
1617         .direct_IO      = ext3_direct_IO,
1618 };
1619
1620 static struct address_space_operations ext3_writeback_aops = {
1621         .readpage       = ext3_readpage,
1622         .readpages      = ext3_readpages,
1623         .writepage      = ext3_writeback_writepage,
1624         .sync_page      = block_sync_page,
1625         .prepare_write  = ext3_prepare_write,
1626         .commit_write   = ext3_writeback_commit_write,
1627         .bmap           = ext3_bmap,
1628         .invalidatepage = ext3_invalidatepage,
1629         .releasepage    = ext3_releasepage,
1630         .direct_IO      = ext3_direct_IO,
1631 };
1632
1633 static struct address_space_operations ext3_journalled_aops = {
1634         .readpage       = ext3_readpage,
1635         .readpages      = ext3_readpages,
1636         .writepage      = ext3_journalled_writepage,
1637         .sync_page      = block_sync_page,
1638         .prepare_write  = ext3_prepare_write,
1639         .commit_write   = ext3_journalled_commit_write,
1640         .set_page_dirty = ext3_journalled_set_page_dirty,
1641         .bmap           = ext3_bmap,
1642         .invalidatepage = ext3_invalidatepage,
1643         .releasepage    = ext3_releasepage,
1644 };
1645
1646 void ext3_set_aops(struct inode *inode)
1647 {
1648         if (ext3_should_order_data(inode))
1649                 inode->i_mapping->a_ops = &ext3_ordered_aops;
1650         else if (ext3_should_writeback_data(inode))
1651                 inode->i_mapping->a_ops = &ext3_writeback_aops;
1652         else
1653                 inode->i_mapping->a_ops = &ext3_journalled_aops;
1654 }
1655
1656 /*
1657  * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
1658  * up to the end of the block which corresponds to `from'.
1659  * This required during truncate. We need to physically zero the tail end
1660  * of that block so it doesn't yield old data if the file is later grown.
1661  */
1662 static int ext3_block_truncate_page(handle_t *handle, struct page *page,
1663                 struct address_space *mapping, loff_t from)
1664 {
1665         unsigned long index = from >> PAGE_CACHE_SHIFT;
1666         unsigned offset = from & (PAGE_CACHE_SIZE-1);
1667         unsigned blocksize, iblock, length, pos;
1668         struct inode *inode = mapping->host;
1669         struct buffer_head *bh;
1670         int err;
1671         void *kaddr;
1672
1673         blocksize = inode->i_sb->s_blocksize;
1674         length = blocksize - (offset & (blocksize - 1));
1675         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1676
1677         if (!page_has_buffers(page))
1678                 create_empty_buffers(page, blocksize, 0);
1679
1680         /* Find the buffer that contains "offset" */
1681         bh = page_buffers(page);
1682         pos = blocksize;
1683         while (offset >= pos) {
1684                 bh = bh->b_this_page;
1685                 iblock++;
1686                 pos += blocksize;
1687         }
1688
1689         err = 0;
1690         if (buffer_freed(bh)) {
1691                 BUFFER_TRACE(bh, "freed: skip");
1692                 goto unlock;
1693         }
1694
1695         if (!buffer_mapped(bh)) {
1696                 BUFFER_TRACE(bh, "unmapped");
1697                 ext3_get_block(inode, iblock, bh, 0);
1698                 /* unmapped? It's a hole - nothing to do */
1699                 if (!buffer_mapped(bh)) {
1700                         BUFFER_TRACE(bh, "still unmapped");
1701                         goto unlock;
1702                 }
1703         }
1704
1705         /* Ok, it's mapped. Make sure it's up-to-date */
1706         if (PageUptodate(page))
1707                 set_buffer_uptodate(bh);
1708
1709         if (!buffer_uptodate(bh)) {
1710                 err = -EIO;
1711                 ll_rw_block(READ, 1, &bh);
1712                 wait_on_buffer(bh);
1713                 /* Uhhuh. Read error. Complain and punt. */
1714                 if (!buffer_uptodate(bh))
1715                         goto unlock;
1716         }
1717
1718         if (ext3_should_journal_data(inode)) {
1719                 BUFFER_TRACE(bh, "get write access");
1720                 err = ext3_journal_get_write_access(handle, bh);
1721                 if (err)
1722                         goto unlock;
1723         }
1724
1725         kaddr = kmap_atomic(page, KM_USER0);
1726         memset(kaddr + offset, 0, length);
1727         flush_dcache_page(page);
1728         kunmap_atomic(kaddr, KM_USER0);
1729
1730         BUFFER_TRACE(bh, "zeroed end of block");
1731
1732         err = 0;
1733         if (ext3_should_journal_data(inode)) {
1734                 err = ext3_journal_dirty_metadata(handle, bh);
1735         } else {
1736                 if (ext3_should_order_data(inode))
1737                         err = ext3_journal_dirty_data(handle, bh);
1738                 mark_buffer_dirty(bh);
1739         }
1740
1741 unlock:
1742         unlock_page(page);
1743         page_cache_release(page);
1744         return err;
1745 }
1746
1747 /*
1748  * Probably it should be a library function... search for first non-zero word
1749  * or memcmp with zero_page, whatever is better for particular architecture.
1750  * Linus?
1751  */
1752 static inline int all_zeroes(u32 *p, u32 *q)
1753 {
1754         while (p < q)
1755                 if (*p++)
1756                         return 0;
1757         return 1;
1758 }
1759
1760 /**
1761  *      ext3_find_shared - find the indirect blocks for partial truncation.
1762  *      @inode:   inode in question
1763  *      @depth:   depth of the affected branch
1764  *      @offsets: offsets of pointers in that branch (see ext3_block_to_path)
1765  *      @chain:   place to store the pointers to partial indirect blocks
1766  *      @top:     place to the (detached) top of branch
1767  *
1768  *      This is a helper function used by ext3_truncate().
1769  *
1770  *      When we do truncate() we may have to clean the ends of several
1771  *      indirect blocks but leave the blocks themselves alive. Block is
1772  *      partially truncated if some data below the new i_size is refered
1773  *      from it (and it is on the path to the first completely truncated
1774  *      data block, indeed).  We have to free the top of that path along
1775  *      with everything to the right of the path. Since no allocation
1776  *      past the truncation point is possible until ext3_truncate()
1777  *      finishes, we may safely do the latter, but top of branch may
1778  *      require special attention - pageout below the truncation point
1779  *      might try to populate it.
1780  *
1781  *      We atomically detach the top of branch from the tree, store the
1782  *      block number of its root in *@top, pointers to buffer_heads of
1783  *      partially truncated blocks - in @chain[].bh and pointers to
1784  *      their last elements that should not be removed - in
1785  *      @chain[].p. Return value is the pointer to last filled element
1786  *      of @chain.
1787  *
1788  *      The work left to caller to do the actual freeing of subtrees:
1789  *              a) free the subtree starting from *@top
1790  *              b) free the subtrees whose roots are stored in
1791  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
1792  *              c) free the subtrees growing from the inode past the @chain[0].
1793  *                      (no partially truncated stuff there).  */
1794
1795 static Indirect *ext3_find_shared(struct inode *inode,
1796                                 int depth,
1797                                 int offsets[4],
1798                                 Indirect chain[4],
1799                                 u32 *top)
1800 {
1801         Indirect *partial, *p;
1802         int k, err;
1803
1804         *top = 0;
1805         /* Make k index the deepest non-null offest + 1 */
1806         for (k = depth; k > 1 && !offsets[k-1]; k--)
1807                 ;
1808         partial = ext3_get_branch(inode, k, offsets, chain, &err);
1809         /* Writer: pointers */
1810         if (!partial)
1811                 partial = chain + k-1;
1812         /*
1813          * If the branch acquired continuation since we've looked at it -
1814          * fine, it should all survive and (new) top doesn't belong to us.
1815          */
1816         if (!partial->key && *partial->p)
1817                 /* Writer: end */
1818                 goto no_top;
1819         for (p=partial; p>chain && all_zeroes((u32*)p->bh->b_data,p->p); p--)
1820                 ;
1821         /*
1822          * OK, we've found the last block that must survive. The rest of our
1823          * branch should be detached before unlocking. However, if that rest
1824          * of branch is all ours and does not grow immediately from the inode
1825          * it's easier to cheat and just decrement partial->p.
1826          */
1827         if (p == chain + k - 1 && p > chain) {
1828                 p->p--;
1829         } else {
1830                 *top = *p->p;
1831                 /* Nope, don't do this in ext3.  Must leave the tree intact */
1832 #if 0
1833                 *p->p = 0;
1834 #endif
1835         }
1836         /* Writer: end */
1837
1838         while(partial > p)
1839         {
1840                 brelse(partial->bh);
1841                 partial--;
1842         }
1843 no_top:
1844         return partial;
1845 }
1846
1847 /*
1848  * Zero a number of block pointers in either an inode or an indirect block.
1849  * If we restart the transaction we must again get write access to the
1850  * indirect block for further modification.
1851  *
1852  * We release `count' blocks on disk, but (last - first) may be greater
1853  * than `count' because there can be holes in there.
1854  */
1855 static void
1856 ext3_clear_blocks(handle_t *handle, struct inode *inode, struct buffer_head *bh,
1857                 unsigned long block_to_free, unsigned long count,
1858                 u32 *first, u32 *last)
1859 {
1860         u32 *p;
1861         if (try_to_extend_transaction(handle, inode)) {
1862                 if (bh) {
1863                         BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
1864                         ext3_journal_dirty_metadata(handle, bh);
1865                 }
1866                 ext3_mark_inode_dirty(handle, inode);
1867                 ext3_journal_test_restart(handle, inode);
1868                 if (bh) {
1869                         BUFFER_TRACE(bh, "retaking write access");
1870                         ext3_journal_get_write_access(handle, bh);
1871                 }
1872         }
1873
1874         /*
1875          * Any buffers which are on the journal will be in memory. We find
1876          * them on the hash table so journal_revoke() will run journal_forget()
1877          * on them.  We've already detached each block from the file, so
1878          * bforget() in journal_forget() should be safe.
1879          *
1880          * AKPM: turn on bforget in journal_forget()!!!
1881          */
1882         for (p = first; p < last; p++) {
1883                 u32 nr = le32_to_cpu(*p);
1884                 if (nr) {
1885                         struct buffer_head *bh;
1886
1887                         *p = 0;
1888                         bh = sb_find_get_block(inode->i_sb, nr);
1889                         ext3_forget(handle, 0, inode, bh, nr);
1890                 }
1891         }
1892
1893         ext3_free_blocks(handle, inode, block_to_free, count);
1894 }
1895
1896 /**
1897  * ext3_free_data - free a list of data blocks
1898  * @handle:     handle for this transaction
1899  * @inode:      inode we are dealing with
1900  * @this_bh:    indirect buffer_head which contains *@first and *@last
1901  * @first:      array of block numbers
1902  * @last:       points immediately past the end of array
1903  *
1904  * We are freeing all blocks refered from that array (numbers are stored as
1905  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
1906  *
1907  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
1908  * blocks are contiguous then releasing them at one time will only affect one
1909  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
1910  * actually use a lot of journal space.
1911  *
1912  * @this_bh will be %NULL if @first and @last point into the inode's direct
1913  * block pointers.
1914  */
1915 static void ext3_free_data(handle_t *handle, struct inode *inode,
1916                            struct buffer_head *this_bh, u32 *first, u32 *last)
1917 {
1918         unsigned long block_to_free = 0;    /* Starting block # of a run */
1919         unsigned long count = 0;            /* Number of blocks in the run */ 
1920         u32 *block_to_free_p = NULL;        /* Pointer into inode/ind
1921                                                corresponding to
1922                                                block_to_free */
1923         unsigned long nr;                   /* Current block # */
1924         u32 *p;                             /* Pointer into inode/ind
1925                                                for current block */
1926         int err;
1927
1928         if (this_bh) {                          /* For indirect block */
1929                 BUFFER_TRACE(this_bh, "get_write_access");
1930                 err = ext3_journal_get_write_access(handle, this_bh);
1931                 /* Important: if we can't update the indirect pointers
1932                  * to the blocks, we can't free them. */
1933                 if (err)
1934                         return;
1935         }
1936
1937         for (p = first; p < last; p++) {
1938                 nr = le32_to_cpu(*p);
1939                 if (nr) {
1940                         /* accumulate blocks to free if they're contiguous */
1941                         if (count == 0) {
1942                                 block_to_free = nr;
1943                                 block_to_free_p = p;
1944                                 count = 1;
1945                         } else if (nr == block_to_free + count) {
1946                                 count++;
1947                         } else {
1948                                 ext3_clear_blocks(handle, inode, this_bh, 
1949                                                   block_to_free,
1950                                                   count, block_to_free_p, p);
1951                                 block_to_free = nr;
1952                                 block_to_free_p = p;
1953                                 count = 1;
1954                         }
1955                 }
1956         }
1957
1958         if (count > 0)
1959                 ext3_clear_blocks(handle, inode, this_bh, block_to_free,
1960                                   count, block_to_free_p, p);
1961
1962         if (this_bh) {
1963                 BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
1964                 ext3_journal_dirty_metadata(handle, this_bh);
1965         }
1966 }
1967
1968 /**
1969  *      ext3_free_branches - free an array of branches
1970  *      @handle: JBD handle for this transaction
1971  *      @inode: inode we are dealing with
1972  *      @parent_bh: the buffer_head which contains *@first and *@last
1973  *      @first: array of block numbers
1974  *      @last:  pointer immediately past the end of array
1975  *      @depth: depth of the branches to free
1976  *
1977  *      We are freeing all blocks refered from these branches (numbers are
1978  *      stored as little-endian 32-bit) and updating @inode->i_blocks
1979  *      appropriately.
1980  */
1981 static void ext3_free_branches(handle_t *handle, struct inode *inode,
1982                                struct buffer_head *parent_bh,
1983                                u32 *first, u32 *last, int depth)
1984 {
1985         unsigned long nr;
1986         u32 *p;
1987
1988         if (is_handle_aborted(handle))
1989                 return;
1990
1991         if (depth--) {
1992                 struct buffer_head *bh;
1993                 int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
1994                 p = last;
1995                 while (--p >= first) {
1996                         nr = le32_to_cpu(*p);
1997                         if (!nr)
1998                                 continue;               /* A hole */
1999
2000                         /* Go read the buffer for the next level down */
2001                         bh = sb_bread(inode->i_sb, nr);
2002
2003                         /*
2004                          * A read failure? Report error and clear slot
2005                          * (should be rare).
2006                          */
2007                         if (!bh) {
2008                                 ext3_error(inode->i_sb, "ext3_free_branches",
2009                                            "Read failure, inode=%ld, block=%ld",
2010                                            inode->i_ino, nr);
2011                                 continue;
2012                         }
2013
2014                         /* This zaps the entire block.  Bottom up. */
2015                         BUFFER_TRACE(bh, "free child branches");
2016                         ext3_free_branches(handle, inode, bh, (u32*)bh->b_data,
2017                                            (u32*)bh->b_data + addr_per_block,
2018                                            depth);
2019
2020                         /*
2021                          * We've probably journalled the indirect block several
2022                          * times during the truncate.  But it's no longer
2023                          * needed and we now drop it from the transaction via
2024                          * journal_revoke().
2025                          *
2026                          * That's easy if it's exclusively part of this
2027                          * transaction.  But if it's part of the committing
2028                          * transaction then journal_forget() will simply
2029                          * brelse() it.  That means that if the underlying
2030                          * block is reallocated in ext3_get_block(),
2031                          * unmap_underlying_metadata() will find this block
2032                          * and will try to get rid of it.  damn, damn.
2033                          *
2034                          * If this block has already been committed to the
2035                          * journal, a revoke record will be written.  And
2036                          * revoke records must be emitted *before* clearing
2037                          * this block's bit in the bitmaps.
2038                          */
2039                         ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
2040
2041                         /*
2042                          * Everything below this this pointer has been
2043                          * released.  Now let this top-of-subtree go.
2044                          *
2045                          * We want the freeing of this indirect block to be
2046                          * atomic in the journal with the updating of the
2047                          * bitmap block which owns it.  So make some room in
2048                          * the journal.
2049                          *
2050                          * We zero the parent pointer *after* freeing its
2051                          * pointee in the bitmaps, so if extend_transaction()
2052                          * for some reason fails to put the bitmap changes and
2053                          * the release into the same transaction, recovery
2054                          * will merely complain about releasing a free block,
2055                          * rather than leaking blocks.
2056                          */
2057                         if (is_handle_aborted(handle))
2058                                 return;
2059                         if (try_to_extend_transaction(handle, inode)) {
2060                                 ext3_mark_inode_dirty(handle, inode);
2061                                 ext3_journal_test_restart(handle, inode);
2062                         }
2063
2064                         ext3_free_blocks(handle, inode, nr, 1);
2065
2066                         if (parent_bh) {
2067                                 /*
2068                                  * The block which we have just freed is
2069                                  * pointed to by an indirect block: journal it
2070                                  */
2071                                 BUFFER_TRACE(parent_bh, "get_write_access");
2072                                 if (!ext3_journal_get_write_access(handle,
2073                                                                    parent_bh)){
2074                                         *p = 0;
2075                                         BUFFER_TRACE(parent_bh,
2076                                         "call ext3_journal_dirty_metadata");
2077                                         ext3_journal_dirty_metadata(handle, 
2078                                                                     parent_bh);
2079                                 }
2080                         }
2081                 }
2082         } else {
2083                 /* We have reached the bottom of the tree. */
2084                 BUFFER_TRACE(parent_bh, "free data blocks");
2085                 ext3_free_data(handle, inode, parent_bh, first, last);
2086         }
2087 }
2088
2089 /*
2090  * ext3_truncate()
2091  *
2092  * We block out ext3_get_block() block instantiations across the entire
2093  * transaction, and VFS/VM ensures that ext3_truncate() cannot run
2094  * simultaneously on behalf of the same inode.
2095  *
2096  * As we work through the truncate and commmit bits of it to the journal there
2097  * is one core, guiding principle: the file's tree must always be consistent on
2098  * disk.  We must be able to restart the truncate after a crash.
2099  *
2100  * The file's tree may be transiently inconsistent in memory (although it
2101  * probably isn't), but whenever we close off and commit a journal transaction,
2102  * the contents of (the filesystem + the journal) must be consistent and
2103  * restartable.  It's pretty simple, really: bottom up, right to left (although
2104  * left-to-right works OK too).
2105  *
2106  * Note that at recovery time, journal replay occurs *before* the restart of
2107  * truncate against the orphan inode list.
2108  *
2109  * The committed inode has the new, desired i_size (which is the same as
2110  * i_disksize in this case).  After a crash, ext3_orphan_cleanup() will see
2111  * that this inode's truncate did not complete and it will again call
2112  * ext3_truncate() to have another go.  So there will be instantiated blocks
2113  * to the right of the truncation point in a crashed ext3 filesystem.  But
2114  * that's fine - as long as they are linked from the inode, the post-crash
2115  * ext3_truncate() run will find them and release them.
2116  */
2117
2118 void ext3_truncate(struct inode * inode)
2119 {
2120         handle_t *handle;
2121         struct ext3_inode_info *ei = EXT3_I(inode);
2122         u32 *i_data = ei->i_data;
2123         int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2124         struct address_space *mapping = inode->i_mapping;
2125         int offsets[4];
2126         Indirect chain[4];
2127         Indirect *partial;
2128         int nr = 0;
2129         int n;
2130         long last_block;
2131         unsigned blocksize = inode->i_sb->s_blocksize;
2132         struct page *page;
2133
2134         if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
2135             S_ISLNK(inode->i_mode)))
2136                 return;
2137         if (ext3_inode_is_fast_symlink(inode))
2138                 return;
2139         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2140                 return;
2141
2142         ext3_discard_prealloc(inode);
2143
2144         /*
2145          * We have to lock the EOF page here, because lock_page() nests
2146          * outside journal_start().
2147          */
2148         if ((inode->i_size & (blocksize - 1)) == 0) {
2149                 /* Block boundary? Nothing to do */
2150                 page = NULL;
2151         } else {
2152                 page = grab_cache_page(mapping,
2153                                 inode->i_size >> PAGE_CACHE_SHIFT);
2154                 if (!page)
2155                         return;
2156         }
2157
2158         handle = start_transaction(inode);
2159         if (IS_ERR(handle)) {
2160                 if (page) {
2161                         clear_highpage(page);
2162                         flush_dcache_page(page);
2163                         unlock_page(page);
2164                         page_cache_release(page);
2165                 }
2166                 return;         /* AKPM: return what? */
2167         }
2168
2169         last_block = (inode->i_size + blocksize-1)
2170                                         >> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
2171
2172         if (page)
2173                 ext3_block_truncate_page(handle, page, mapping, inode->i_size);
2174
2175         n = ext3_block_to_path(inode, last_block, offsets, NULL);
2176         if (n == 0)
2177                 goto out_stop;  /* error */
2178
2179         /*
2180          * OK.  This truncate is going to happen.  We add the inode to the
2181          * orphan list, so that if this truncate spans multiple transactions,
2182          * and we crash, we will resume the truncate when the filesystem
2183          * recovers.  It also marks the inode dirty, to catch the new size.
2184          *
2185          * Implication: the file must always be in a sane, consistent
2186          * truncatable state while each transaction commits.
2187          */
2188         if (ext3_orphan_add(handle, inode))
2189                 goto out_stop;
2190
2191         /*
2192          * The orphan list entry will now protect us from any crash which
2193          * occurs before the truncate completes, so it is now safe to propagate
2194          * the new, shorter inode size (held for now in i_size) into the
2195          * on-disk inode. We do this via i_disksize, which is the value which
2196          * ext3 *really* writes onto the disk inode.
2197          */
2198         ei->i_disksize = inode->i_size;
2199
2200         /*
2201          * From here we block out all ext3_get_block() callers who want to
2202          * modify the block allocation tree.
2203          */
2204         down(&ei->truncate_sem);
2205
2206         if (n == 1) {           /* direct blocks */
2207                 ext3_free_data(handle, inode, NULL, i_data+offsets[0],
2208                                i_data + EXT3_NDIR_BLOCKS);
2209                 goto do_indirects;
2210         }
2211
2212         partial = ext3_find_shared(inode, n, offsets, chain, &nr);
2213         /* Kill the top of shared branch (not detached) */
2214         if (nr) {
2215                 if (partial == chain) {
2216                         /* Shared branch grows from the inode */
2217                         ext3_free_branches(handle, inode, NULL,
2218                                            &nr, &nr+1, (chain+n-1) - partial);
2219                         *partial->p = 0;
2220                         /*
2221                          * We mark the inode dirty prior to restart,
2222                          * and prior to stop.  No need for it here.
2223                          */
2224                 } else {
2225                         /* Shared branch grows from an indirect block */
2226                         BUFFER_TRACE(partial->bh, "get_write_access");
2227                         ext3_free_branches(handle, inode, partial->bh,
2228                                         partial->p,
2229                                         partial->p+1, (chain+n-1) - partial);
2230                 }
2231         }
2232         /* Clear the ends of indirect blocks on the shared branch */
2233         while (partial > chain) {
2234                 ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
2235                                    (u32*)partial->bh->b_data + addr_per_block,
2236                                    (chain+n-1) - partial);
2237                 BUFFER_TRACE(partial->bh, "call brelse");
2238                 brelse (partial->bh);
2239                 partial--;
2240         }
2241 do_indirects:
2242         /* Kill the remaining (whole) subtrees */
2243         switch (offsets[0]) {
2244                 default:
2245                         nr = i_data[EXT3_IND_BLOCK];
2246                         if (nr) {
2247                                 ext3_free_branches(handle, inode, NULL,
2248                                                    &nr, &nr+1, 1);
2249                                 i_data[EXT3_IND_BLOCK] = 0;
2250                         }
2251                 case EXT3_IND_BLOCK:
2252                         nr = i_data[EXT3_DIND_BLOCK];
2253                         if (nr) {
2254                                 ext3_free_branches(handle, inode, NULL,
2255                                                    &nr, &nr+1, 2);
2256                                 i_data[EXT3_DIND_BLOCK] = 0;
2257                         }
2258                 case EXT3_DIND_BLOCK:
2259                         nr = i_data[EXT3_TIND_BLOCK];
2260                         if (nr) {
2261                                 ext3_free_branches(handle, inode, NULL,
2262                                                    &nr, &nr+1, 3);
2263                                 i_data[EXT3_TIND_BLOCK] = 0;
2264                         }
2265                 case EXT3_TIND_BLOCK:
2266                         ;
2267         }
2268         up(&ei->truncate_sem);
2269         inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2270         ext3_mark_inode_dirty(handle, inode);
2271
2272         /* In a multi-transaction truncate, we only make the final
2273          * transaction synchronous */
2274         if (IS_SYNC(inode))
2275                 handle->h_sync = 1;
2276 out_stop:
2277         /*
2278          * If this was a simple ftruncate(), and the file will remain alive
2279          * then we need to clear up the orphan record which we created above.
2280          * However, if this was a real unlink then we were called by
2281          * ext3_delete_inode(), and we allow that function to clean up the
2282          * orphan info for us.
2283          */
2284         if (inode->i_nlink)
2285                 ext3_orphan_del(handle, inode);
2286
2287         ext3_journal_stop(handle);
2288 }
2289
2290 static unsigned long ext3_get_inode_block(struct super_block *sb,
2291                 unsigned long ino, struct ext3_iloc *iloc)
2292 {
2293         unsigned long desc, group_desc, block_group;
2294         unsigned long offset, block;
2295         struct buffer_head *bh;
2296         struct ext3_group_desc * gdp;
2297
2298         if ((ino != EXT3_ROOT_INO &&
2299                 ino != EXT3_JOURNAL_INO &&
2300                 ino < EXT3_FIRST_INO(sb)) ||
2301                 ino > le32_to_cpu(
2302                         EXT3_SB(sb)->s_es->s_inodes_count)) {
2303                 ext3_error (sb, "ext3_get_inode_block",
2304                             "bad inode number: %lu", ino);
2305                 return 0;
2306         }
2307         block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
2308         if (block_group >= EXT3_SB(sb)->s_groups_count) {
2309                 ext3_error (sb, "ext3_get_inode_block",
2310                             "group >= groups count");
2311                 return 0;
2312         }
2313         group_desc = block_group >> EXT3_DESC_PER_BLOCK_BITS(sb);
2314         desc = block_group & (EXT3_DESC_PER_BLOCK(sb) - 1);
2315         bh = EXT3_SB(sb)->s_group_desc[group_desc];
2316         if (!bh) {
2317                 ext3_error (sb, "ext3_get_inode_block",
2318                             "Descriptor not loaded");
2319                 return 0;
2320         }
2321
2322         gdp = (struct ext3_group_desc *) bh->b_data;
2323         /*
2324          * Figure out the offset within the block group inode table
2325          */
2326         offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
2327                 EXT3_INODE_SIZE(sb);
2328         block = le32_to_cpu(gdp[desc].bg_inode_table) +
2329                 (offset >> EXT3_BLOCK_SIZE_BITS(sb));
2330
2331         iloc->block_group = block_group;
2332         iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
2333         return block;
2334 }
2335
2336 /* 
2337  * ext3_get_inode_loc returns with an extra refcount against the inode's
2338  * underlying buffer_head on success.  If `in_mem' is false then we're purely
2339  * trying to determine the inode's location on-disk and no read need be
2340  * performed.
2341  */
2342 static int ext3_get_inode_loc(struct inode *inode,
2343                                 struct ext3_iloc *iloc, int in_mem)
2344 {
2345         unsigned long block;
2346         struct buffer_head *bh;
2347
2348         block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2349         if (!block)
2350                 return -EIO;
2351
2352         bh = sb_getblk(inode->i_sb, block);
2353         if (!bh) {
2354                 ext3_error (inode->i_sb, "ext3_get_inode_loc",
2355                                 "unable to read inode block - "
2356                                 "inode=%lu, block=%lu", inode->i_ino, block);
2357                 return -EIO;
2358         }
2359         if (!buffer_uptodate(bh)) {
2360                 lock_buffer(bh);
2361                 if (buffer_uptodate(bh)) {
2362                         /* someone brought it uptodate while we waited */
2363                         unlock_buffer(bh);
2364                         goto has_buffer;
2365                 }
2366
2367                 /* we can't skip I/O if inode is on a disk only */
2368                 if (in_mem) {
2369                         struct buffer_head *bitmap_bh;
2370                         struct ext3_group_desc *desc;
2371                         int inodes_per_buffer;
2372                         int inode_offset, i;
2373                         int block_group;
2374                         int start;
2375
2376                         /*
2377                          * If this is the only valid inode in the block we
2378                          * need not read the block.
2379                          */
2380                         block_group = (inode->i_ino - 1) /
2381                                         EXT3_INODES_PER_GROUP(inode->i_sb);
2382                         inodes_per_buffer = bh->b_size /
2383                                 EXT3_INODE_SIZE(inode->i_sb);
2384                         inode_offset = ((inode->i_ino - 1) %
2385                                         EXT3_INODES_PER_GROUP(inode->i_sb));
2386                         start = inode_offset & ~(inodes_per_buffer - 1);
2387
2388                         /* Is the inode bitmap in cache? */
2389                         desc = ext3_get_group_desc(inode->i_sb,
2390                                                 block_group, NULL);
2391                         if (!desc)
2392                                 goto make_io;
2393
2394                         bitmap_bh = sb_getblk(inode->i_sb,
2395                                         le32_to_cpu(desc->bg_inode_bitmap));
2396                         if (!bitmap_bh)
2397                                 goto make_io;
2398
2399                         /*
2400                          * If the inode bitmap isn't in cache then the
2401                          * optimisation may end up performing two reads instead
2402                          * of one, so skip it.
2403                          */
2404                         if (!buffer_uptodate(bitmap_bh)) {
2405                                 brelse(bitmap_bh);
2406                                 goto make_io;
2407                         }
2408                         for (i = start; i < start + inodes_per_buffer; i++) {
2409                                 if (i == inode_offset)
2410                                         continue;
2411                                 if (ext3_test_bit(i, bitmap_bh->b_data))
2412                                         break;
2413                         }
2414                         brelse(bitmap_bh);
2415                         if (i == start + inodes_per_buffer) {
2416                                 /* all other inodes are free, so skip I/O */
2417                                 memset(bh->b_data, 0, bh->b_size);
2418                                 set_buffer_uptodate(bh);
2419                                 unlock_buffer(bh);
2420                                 goto has_buffer;
2421                         }
2422                 }
2423
2424 make_io:
2425                 /*
2426                  * There are another valid inodes in the buffer so we must
2427                  * read the block from disk
2428                  */
2429                 get_bh(bh);
2430                 bh->b_end_io = end_buffer_read_sync;
2431                 submit_bh(READ, bh);
2432                 wait_on_buffer(bh);
2433                 if (!buffer_uptodate(bh)) {
2434                         ext3_error(inode->i_sb, "ext3_get_inode_loc",
2435                                         "unable to read inode block - "
2436                                         "inode=%lu, block=%lu",
2437                                         inode->i_ino, block);
2438                         brelse(bh);
2439                         return -EIO;
2440                 }
2441         }
2442 has_buffer:
2443         iloc->bh = bh;
2444         return 0;
2445 }
2446
2447 void ext3_set_inode_flags(struct inode *inode)
2448 {
2449         unsigned int flags = EXT3_I(inode)->i_flags;
2450
2451         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2452         if (flags & EXT3_SYNC_FL)
2453                 inode->i_flags |= S_SYNC;
2454         if (flags & EXT3_APPEND_FL)
2455                 inode->i_flags |= S_APPEND;
2456         if (flags & EXT3_IMMUTABLE_FL)
2457                 inode->i_flags |= S_IMMUTABLE;
2458         if (flags & EXT3_NOATIME_FL)
2459                 inode->i_flags |= S_NOATIME;
2460         if (flags & EXT3_DIRSYNC_FL)
2461                 inode->i_flags |= S_DIRSYNC;
2462 }
2463
2464 void ext3_read_inode(struct inode * inode)
2465 {
2466         struct ext3_iloc iloc;
2467         struct ext3_inode *raw_inode;
2468         struct ext3_inode_info *ei = EXT3_I(inode);
2469         struct buffer_head *bh;
2470         int block;
2471
2472 #ifdef CONFIG_EXT3_FS_POSIX_ACL
2473         ei->i_acl = EXT3_ACL_NOT_CACHED;
2474         ei->i_default_acl = EXT3_ACL_NOT_CACHED;
2475 #endif
2476         if (ext3_get_inode_loc(inode, &iloc, 0))
2477                 goto bad_inode;
2478         bh = iloc.bh;
2479         raw_inode = ext3_raw_inode(&iloc);
2480         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2481         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2482         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2483         if(!(test_opt (inode->i_sb, NO_UID32))) {
2484                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2485                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2486         }
2487         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
2488         inode->i_size = le32_to_cpu(raw_inode->i_size);
2489         inode->i_atime.tv_sec = le32_to_cpu(raw_inode->i_atime);
2490         inode->i_ctime.tv_sec = le32_to_cpu(raw_inode->i_ctime);
2491         inode->i_mtime.tv_sec = le32_to_cpu(raw_inode->i_mtime);
2492         inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
2493
2494         ei->i_state = 0;
2495         ei->i_next_alloc_block = 0;
2496         ei->i_next_alloc_goal = 0;
2497         ei->i_dir_start_lookup = 0;
2498         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2499         /* We now have enough fields to check if the inode was active or not.
2500          * This is needed because nfsd might try to access dead inodes
2501          * the test is that same one that e2fsck uses
2502          * NeilBrown 1999oct15
2503          */
2504         if (inode->i_nlink == 0) {
2505                 if (inode->i_mode == 0 ||
2506                     !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
2507                         /* this inode is deleted */
2508                         brelse (bh);
2509                         goto bad_inode;
2510                 }
2511                 /* The only unlinked inodes we let through here have
2512                  * valid i_mode and are being read by the orphan
2513                  * recovery code: that's fine, we're about to complete
2514                  * the process of deleting those. */
2515         }
2516         inode->i_blksize = PAGE_SIZE;   /* This is the optimal IO size
2517                                          * (for stat), not the fs block
2518                                          * size */  
2519         inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
2520         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2521 #ifdef EXT3_FRAGMENTS
2522         ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
2523         ei->i_frag_no = raw_inode->i_frag;
2524         ei->i_frag_size = raw_inode->i_fsize;
2525 #endif
2526         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
2527         if (!S_ISREG(inode->i_mode)) {
2528                 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
2529         } else {
2530                 inode->i_size |=
2531                         ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
2532         }
2533         ei->i_disksize = inode->i_size;
2534         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2535 #ifdef EXT3_PREALLOCATE
2536         ei->i_prealloc_count = 0;
2537 #endif
2538         ei->i_block_group = iloc.block_group;
2539
2540         /*
2541          * NOTE! The in-memory inode i_data array is in little-endian order
2542          * even on big-endian machines: we do NOT byteswap the block numbers!
2543          */
2544         for (block = 0; block < EXT3_N_BLOCKS; block++)
2545                 ei->i_data[block] = raw_inode->i_block[block];
2546         INIT_LIST_HEAD(&ei->i_orphan);
2547
2548         if (S_ISREG(inode->i_mode)) {
2549                 inode->i_op = &ext3_file_inode_operations;
2550                 inode->i_fop = &ext3_file_operations;
2551                 ext3_set_aops(inode);
2552         } else if (S_ISDIR(inode->i_mode)) {
2553                 inode->i_op = &ext3_dir_inode_operations;
2554                 inode->i_fop = &ext3_dir_operations;
2555         } else if (S_ISLNK(inode->i_mode)) {
2556                 if (ext3_inode_is_fast_symlink(inode))
2557                         inode->i_op = &ext3_fast_symlink_inode_operations;
2558                 else {
2559                         inode->i_op = &ext3_symlink_inode_operations;
2560                         ext3_set_aops(inode);
2561                 }
2562         } else {
2563                 inode->i_op = &ext3_special_inode_operations;
2564                 if (raw_inode->i_block[0])
2565                         init_special_inode(inode, inode->i_mode,
2566                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
2567                 else 
2568                         init_special_inode(inode, inode->i_mode,
2569                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
2570         }
2571         brelse (iloc.bh);
2572         ext3_set_inode_flags(inode);
2573         return;
2574
2575 bad_inode:
2576         make_bad_inode(inode);
2577         return;
2578 }
2579
2580 /*
2581  * Post the struct inode info into an on-disk inode location in the
2582  * buffer-cache.  This gobbles the caller's reference to the
2583  * buffer_head in the inode location struct.
2584  *
2585  * The caller must have write access to iloc->bh.
2586  */
2587 static int ext3_do_update_inode(handle_t *handle, 
2588                                 struct inode *inode, 
2589                                 struct ext3_iloc *iloc)
2590 {
2591         struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
2592         struct ext3_inode_info *ei = EXT3_I(inode);
2593         struct buffer_head *bh = iloc->bh;
2594         int err = 0, rc, block;
2595
2596         /* For fields not not tracking in the in-memory inode,
2597          * initialise them to zero for new inodes. */
2598         if (ei->i_state & EXT3_STATE_NEW)
2599                 memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
2600
2601         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
2602         if(!(test_opt(inode->i_sb, NO_UID32))) {
2603                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
2604                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
2605 /*
2606  * Fix up interoperability with old kernels. Otherwise, old inodes get
2607  * re-used with the upper 16 bits of the uid/gid intact
2608  */
2609                 if(!ei->i_dtime) {
2610                         raw_inode->i_uid_high =
2611                                 cpu_to_le16(high_16_bits(inode->i_uid));
2612                         raw_inode->i_gid_high =
2613                                 cpu_to_le16(high_16_bits(inode->i_gid));
2614                 } else {
2615                         raw_inode->i_uid_high = 0;
2616                         raw_inode->i_gid_high = 0;
2617                 }
2618         } else {
2619                 raw_inode->i_uid_low =
2620                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
2621                 raw_inode->i_gid_low =
2622                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
2623                 raw_inode->i_uid_high = 0;
2624                 raw_inode->i_gid_high = 0;
2625         }
2626         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
2627         raw_inode->i_size = cpu_to_le32(ei->i_disksize);
2628         raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
2629         raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
2630         raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
2631         raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
2632         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
2633         raw_inode->i_flags = cpu_to_le32(ei->i_flags);
2634 #ifdef EXT3_FRAGMENTS
2635         raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
2636         raw_inode->i_frag = ei->i_frag_no;
2637         raw_inode->i_fsize = ei->i_frag_size;
2638 #endif
2639         raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
2640         if (!S_ISREG(inode->i_mode)) {
2641                 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
2642         } else {
2643                 raw_inode->i_size_high =
2644                         cpu_to_le32(ei->i_disksize >> 32);
2645                 if (ei->i_disksize > 0x7fffffffULL) {
2646                         struct super_block *sb = inode->i_sb;
2647                         if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
2648                                         EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
2649                             EXT3_SB(sb)->s_es->s_rev_level ==
2650                                         cpu_to_le32(EXT3_GOOD_OLD_REV)) {
2651                                /* If this is the first large file
2652                                 * created, add a flag to the superblock.
2653                                 */
2654                                 err = ext3_journal_get_write_access(handle,
2655                                                 EXT3_SB(sb)->s_sbh);
2656                                 if (err)
2657                                         goto out_brelse;
2658                                 ext3_update_dynamic_rev(sb);
2659                                 EXT3_SET_RO_COMPAT_FEATURE(sb,
2660                                         EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
2661                                 sb->s_dirt = 1;
2662                                 handle->h_sync = 1;
2663                                 err = ext3_journal_dirty_metadata(handle,
2664                                                 EXT3_SB(sb)->s_sbh);
2665                         }
2666                 }
2667         }
2668         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
2669         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
2670                 if (old_valid_dev(inode->i_rdev)) {
2671                         raw_inode->i_block[0] =
2672                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
2673                         raw_inode->i_block[1] = 0;
2674                 } else {
2675                         raw_inode->i_block[0] = 0;
2676                         raw_inode->i_block[1] =
2677                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
2678                         raw_inode->i_block[2] = 0;
2679                 }
2680         } else for (block = 0; block < EXT3_N_BLOCKS; block++)
2681                 raw_inode->i_block[block] = ei->i_data[block];
2682
2683         BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
2684         rc = ext3_journal_dirty_metadata(handle, bh);
2685         if (!err)
2686                 err = rc;
2687         ei->i_state &= ~EXT3_STATE_NEW;
2688
2689 out_brelse:
2690         brelse (bh);
2691         ext3_std_error(inode->i_sb, err);
2692         return err;
2693 }
2694
2695 /*
2696  * ext3_write_inode()
2697  *
2698  * We are called from a few places:
2699  *
2700  * - Within generic_file_write() for O_SYNC files.
2701  *   Here, there will be no transaction running. We wait for any running
2702  *   trasnaction to commit.
2703  *
2704  * - Within sys_sync(), kupdate and such.
2705  *   We wait on commit, if tol to.
2706  *
2707  * - Within prune_icache() (PF_MEMALLOC == true)
2708  *   Here we simply return.  We can't afford to block kswapd on the
2709  *   journal commit.
2710  *
2711  * In all cases it is actually safe for us to return without doing anything,
2712  * because the inode has been copied into a raw inode buffer in
2713  * ext3_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
2714  * knfsd.
2715  *
2716  * Note that we are absolutely dependent upon all inode dirtiers doing the
2717  * right thing: they *must* call mark_inode_dirty() after dirtying info in
2718  * which we are interested.
2719  *
2720  * It would be a bug for them to not do this.  The code:
2721  *
2722  *      mark_inode_dirty(inode)
2723  *      stuff();
2724  *      inode->i_size = expr;
2725  *
2726  * is in error because a kswapd-driven write_inode() could occur while
2727  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
2728  * will no longer be on the superblock's dirty inode list.
2729  */
2730 void ext3_write_inode(struct inode *inode, int wait)
2731 {
2732         if (current->flags & PF_MEMALLOC)
2733                 return;
2734
2735         if (ext3_journal_current_handle()) {
2736                 jbd_debug(0, "called recursively, non-PF_MEMALLOC!\n");
2737                 dump_stack();
2738                 return;
2739         }
2740
2741         if (!wait)
2742                 return;
2743
2744         ext3_force_commit(inode->i_sb);
2745 }
2746
2747 /*
2748  * ext3_setattr()
2749  *
2750  * Called from notify_change.
2751  *
2752  * We want to trap VFS attempts to truncate the file as soon as
2753  * possible.  In particular, we want to make sure that when the VFS
2754  * shrinks i_size, we put the inode on the orphan list and modify
2755  * i_disksize immediately, so that during the subsequent flushing of
2756  * dirty pages and freeing of disk blocks, we can guarantee that any
2757  * commit will leave the blocks being flushed in an unused state on
2758  * disk.  (On recovery, the inode will get truncated and the blocks will
2759  * be freed, so we have a strong guarantee that no future commit will
2760  * leave these blocks visible to the user.)  
2761  *
2762  * Called with inode->sem down.
2763  */
2764 int ext3_setattr(struct dentry *dentry, struct iattr *attr)
2765 {
2766         struct inode *inode = dentry->d_inode;
2767         int error, rc = 0;
2768         const unsigned int ia_valid = attr->ia_valid;
2769
2770         error = inode_change_ok(inode, attr);
2771         if (error)
2772                 return error;
2773
2774         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
2775                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
2776                 handle_t *handle;
2777
2778                 /* (user+group)*(old+new) structure, inode write (sb,
2779                  * inode block, ? - but truncate inode update has it) */
2780                 handle = ext3_journal_start(inode, 4*EXT3_QUOTA_INIT_BLOCKS+3);
2781                 if (IS_ERR(handle)) {
2782                         error = PTR_ERR(handle);
2783                         goto err_out;
2784                 }
2785                 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
2786                 if (error) {
2787                         ext3_journal_stop(handle);
2788                         return error;
2789                 }
2790                 /* Update corresponding info in inode so that everything is in
2791                  * one transaction */
2792                 if (attr->ia_valid & ATTR_UID)
2793                         inode->i_uid = attr->ia_uid;
2794                 if (attr->ia_valid & ATTR_GID)
2795                         inode->i_gid = attr->ia_gid;
2796                 error = ext3_mark_inode_dirty(handle, inode);
2797                 ext3_journal_stop(handle);
2798         }
2799
2800         if (S_ISREG(inode->i_mode) &&
2801             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
2802                 handle_t *handle;
2803
2804                 handle = ext3_journal_start(inode, 3);
2805                 if (IS_ERR(handle)) {
2806                         error = PTR_ERR(handle);
2807                         goto err_out;
2808                 }
2809
2810                 error = ext3_orphan_add(handle, inode);
2811                 EXT3_I(inode)->i_disksize = attr->ia_size;
2812                 rc = ext3_mark_inode_dirty(handle, inode);
2813                 if (!error)
2814                         error = rc;
2815                 ext3_journal_stop(handle);
2816         }
2817
2818         rc = inode_setattr(inode, attr);
2819
2820         /* If inode_setattr's call to ext3_truncate failed to get a
2821          * transaction handle at all, we need to clean up the in-core
2822          * orphan list manually. */
2823         if (inode->i_nlink)
2824                 ext3_orphan_del(NULL, inode);
2825
2826         if (!rc && (ia_valid & ATTR_MODE))
2827                 rc = ext3_acl_chmod(inode);
2828
2829 err_out:
2830         ext3_std_error(inode->i_sb, error);
2831         if (!error)
2832                 error = rc;
2833         return error;
2834 }
2835
2836
2837 /*
2838  * akpm: how many blocks doth make a writepage()?
2839  *
2840  * With N blocks per page, it may be:
2841  * N data blocks
2842  * 2 indirect block
2843  * 2 dindirect
2844  * 1 tindirect
2845  * N+5 bitmap blocks (from the above)
2846  * N+5 group descriptor summary blocks
2847  * 1 inode block
2848  * 1 superblock.
2849  * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
2850  *
2851  * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
2852  *
2853  * With ordered or writeback data it's the same, less the N data blocks.
2854  *
2855  * If the inode's direct blocks can hold an integral number of pages then a
2856  * page cannot straddle two indirect blocks, and we can only touch one indirect
2857  * and dindirect block, and the "5" above becomes "3".
2858  *
2859  * This still overestimates under most circumstances.  If we were to pass the
2860  * start and end offsets in here as well we could do block_to_path() on each
2861  * block and work out the exact number of indirects which are touched.  Pah.
2862  */
2863
2864 int ext3_writepage_trans_blocks(struct inode *inode)
2865 {
2866         int bpp = ext3_journal_blocks_per_page(inode);
2867         int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
2868         int ret;
2869
2870         if (ext3_should_journal_data(inode))
2871                 ret = 3 * (bpp + indirects) + 2;
2872         else
2873                 ret = 2 * (bpp + indirects) + 2;
2874
2875 #ifdef CONFIG_QUOTA
2876         /* We know that structure was already allocated during DQUOT_INIT so
2877          * we will be updating only the data blocks + inodes */
2878         ret += 2*EXT3_QUOTA_TRANS_BLOCKS;
2879 #endif
2880
2881         return ret;
2882 }
2883
2884 /*
2885  * The caller must have previously called ext3_reserve_inode_write().
2886  * Give this, we know that the caller already has write access to iloc->bh.
2887  */
2888 int ext3_mark_iloc_dirty(handle_t *handle,
2889                 struct inode *inode, struct ext3_iloc *iloc)
2890 {
2891         int err = 0;
2892
2893         /* the do_update_inode consumes one bh->b_count */
2894         get_bh(iloc->bh);
2895
2896         /* ext3_do_update_inode() does journal_dirty_metadata */
2897         err = ext3_do_update_inode(handle, inode, iloc);
2898         put_bh(iloc->bh);
2899         return err;
2900 }
2901
2902 /* 
2903  * On success, We end up with an outstanding reference count against
2904  * iloc->bh.  This _must_ be cleaned up later. 
2905  */
2906
2907 int
2908 ext3_reserve_inode_write(handle_t *handle, struct inode *inode, 
2909                          struct ext3_iloc *iloc)
2910 {
2911         int err = 0;
2912         if (handle) {
2913                 err = ext3_get_inode_loc(inode, iloc, 1);
2914                 if (!err) {
2915                         BUFFER_TRACE(iloc->bh, "get_write_access");
2916                         err = ext3_journal_get_write_access(handle, iloc->bh);
2917                         if (err) {
2918                                 brelse(iloc->bh);
2919                                 iloc->bh = NULL;
2920                         }
2921                 }
2922         }
2923         ext3_std_error(inode->i_sb, err);
2924         return err;
2925 }
2926
2927 /*
2928  * akpm: What we do here is to mark the in-core inode as clean
2929  * with respect to inode dirtiness (it may still be data-dirty).
2930  * This means that the in-core inode may be reaped by prune_icache
2931  * without having to perform any I/O.  This is a very good thing,
2932  * because *any* task may call prune_icache - even ones which
2933  * have a transaction open against a different journal.
2934  *
2935  * Is this cheating?  Not really.  Sure, we haven't written the
2936  * inode out, but prune_icache isn't a user-visible syncing function.
2937  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
2938  * we start and wait on commits.
2939  *
2940  * Is this efficient/effective?  Well, we're being nice to the system
2941  * by cleaning up our inodes proactively so they can be reaped
2942  * without I/O.  But we are potentially leaving up to five seconds'
2943  * worth of inodes floating about which prune_icache wants us to
2944  * write out.  One way to fix that would be to get prune_icache()
2945  * to do a write_super() to free up some memory.  It has the desired
2946  * effect.
2947  */
2948 int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
2949 {
2950         struct ext3_iloc iloc;
2951         int err;
2952
2953         err = ext3_reserve_inode_write(handle, inode, &iloc);
2954         if (!err)
2955                 err = ext3_mark_iloc_dirty(handle, inode, &iloc);
2956         return err;
2957 }
2958
2959 /*
2960  * akpm: ext3_dirty_inode() is called from __mark_inode_dirty()
2961  *
2962  * We're really interested in the case where a file is being extended.
2963  * i_size has been changed by generic_commit_write() and we thus need
2964  * to include the updated inode in the current transaction.
2965  *
2966  * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
2967  * are allocated to the file.
2968  *
2969  * If the inode is marked synchronous, we don't honour that here - doing
2970  * so would cause a commit on atime updates, which we don't bother doing.
2971  * We handle synchronous inodes at the highest possible level.
2972  */
2973 void ext3_dirty_inode(struct inode *inode)
2974 {
2975         handle_t *current_handle = ext3_journal_current_handle();
2976         handle_t *handle;
2977
2978         handle = ext3_journal_start(inode, 2);
2979         if (IS_ERR(handle))
2980                 goto out;
2981         if (current_handle &&
2982                 current_handle->h_transaction != handle->h_transaction) {
2983                 /* This task has a transaction open against a different fs */
2984                 printk(KERN_EMERG "%s: transactions do not match!\n",
2985                        __FUNCTION__);
2986         } else {
2987                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
2988                                 current_handle);
2989                 ext3_mark_inode_dirty(handle, inode);
2990         }
2991         ext3_journal_stop(handle);
2992 out:
2993         return;
2994 }
2995
2996 #ifdef AKPM
2997 /* 
2998  * Bind an inode's backing buffer_head into this transaction, to prevent
2999  * it from being flushed to disk early.  Unlike
3000  * ext3_reserve_inode_write, this leaves behind no bh reference and
3001  * returns no iloc structure, so the caller needs to repeat the iloc
3002  * lookup to mark the inode dirty later.
3003  */
3004 static inline int
3005 ext3_pin_inode(handle_t *handle, struct inode *inode)
3006 {
3007         struct ext3_iloc iloc;
3008
3009         int err = 0;
3010         if (handle) {
3011                 err = ext3_get_inode_loc(inode, &iloc, 1);
3012                 if (!err) {
3013                         BUFFER_TRACE(iloc.bh, "get_write_access");
3014                         err = journal_get_write_access(handle, iloc.bh);
3015                         if (!err)
3016                                 err = ext3_journal_dirty_metadata(handle, 
3017                                                                   iloc.bh);
3018                         brelse(iloc.bh);
3019                 }
3020         }
3021         ext3_std_error(inode->i_sb, err);
3022         return err;
3023 }
3024 #endif
3025
3026 int ext3_change_inode_journal_flag(struct inode *inode, int val)
3027 {
3028         journal_t *journal;
3029         handle_t *handle;
3030         int err;
3031
3032         /*
3033          * We have to be very careful here: changing a data block's
3034          * journaling status dynamically is dangerous.  If we write a
3035          * data block to the journal, change the status and then delete
3036          * that block, we risk forgetting to revoke the old log record
3037          * from the journal and so a subsequent replay can corrupt data.
3038          * So, first we make sure that the journal is empty and that
3039          * nobody is changing anything.
3040          */
3041
3042         journal = EXT3_JOURNAL(inode);
3043         if (is_journal_aborted(journal) || IS_RDONLY(inode))
3044                 return -EROFS;
3045
3046         journal_lock_updates(journal);
3047         journal_flush(journal);
3048
3049         /*
3050          * OK, there are no updates running now, and all cached data is
3051          * synced to disk.  We are now in a completely consistent state
3052          * which doesn't have anything in the journal, and we know that
3053          * no filesystem updates are running, so it is safe to modify
3054          * the inode's in-core data-journaling state flag now.
3055          */
3056
3057         if (val)
3058                 EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
3059         else
3060                 EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
3061         ext3_set_aops(inode);
3062
3063         journal_unlock_updates(journal);
3064
3065         /* Finally we can mark the inode as dirty. */
3066
3067         handle = ext3_journal_start(inode, 1);
3068         if (IS_ERR(handle))
3069                 return PTR_ERR(handle);
3070
3071         err = ext3_mark_inode_dirty(handle, inode);
3072         handle->h_sync = 1;
3073         ext3_journal_stop(handle);
3074         ext3_std_error(inode->i_sb, err);
3075
3076         return err;
3077 }