8132a6ec9eb13bc8e2142172a753b6cf47367ed7
[linux-2.6.git] / include / linux / reiserfs_fs.h
1 /*
2  * Copyright 1996, 1997, 1998 Hans Reiser, see reiserfs/README for licensing and copyright details
3  */
4
5                                 /* this file has an amazingly stupid
6                                    name, yura please fix it to be
7                                    reiserfs.h, and merge all the rest
8                                    of our .h files that are in this
9                                    directory into it.  */
10
11
12 #ifndef _LINUX_REISER_FS_H
13 #define _LINUX_REISER_FS_H
14
15 #include <linux/types.h>
16 #ifdef __KERNEL__
17 #include <linux/slab.h>
18 #include <linux/interrupt.h>
19 #include <linux/workqueue.h>
20 #include <asm/unaligned.h>
21 #include <linux/bitops.h>
22 #include <linux/proc_fs.h>
23 #include <linux/smp_lock.h>
24 #include <linux/buffer_head.h>
25 #include <linux/reiserfs_fs_i.h>
26 #include <linux/reiserfs_fs_sb.h>
27 #endif
28
29 /*
30  *  include/linux/reiser_fs.h
31  *
32  *  Reiser File System constants and structures
33  *
34  */
35
36 /* in reading the #defines, it may help to understand that they employ
37    the following abbreviations:
38
39    B = Buffer
40    I = Item header
41    H = Height within the tree (should be changed to LEV)
42    N = Number of the item in the node
43    STAT = stat data
44    DEH = Directory Entry Header
45    EC = Entry Count
46    E = Entry number
47    UL = Unsigned Long
48    BLKH = BLocK Header
49    UNFM = UNForMatted node
50    DC = Disk Child
51    P = Path
52
53    These #defines are named by concatenating these abbreviations,
54    where first comes the arguments, and last comes the return value,
55    of the macro.
56
57 */
58
59 #define USE_INODE_GENERATION_COUNTER
60
61 #define REISERFS_PREALLOCATE
62 #define DISPLACE_NEW_PACKING_LOCALITIES
63 #define PREALLOCATION_SIZE 9
64
65 /* n must be power of 2 */
66 #define _ROUND_UP(x,n) (((x)+(n)-1u) & ~((n)-1u))
67
68 // to be ok for alpha and others we have to align structures to 8 byte
69 // boundary.
70 // FIXME: do not change 4 by anything else: there is code which relies on that
71 #define ROUND_UP(x) _ROUND_UP(x,8LL)
72
73 /* debug levels.  Right now, CONFIG_REISERFS_CHECK means print all debug
74 ** messages.
75 */
76 #define REISERFS_DEBUG_CODE 5 /* extra messages to help find/debug errors */ 
77
78 void reiserfs_warning (struct super_block *s, const char * fmt, ...);
79 /* assertions handling */
80
81 /** always check a condition and panic if it's false. */
82 #define RASSERT( cond, format, args... )                                        \
83 if( !( cond ) )                                                                 \
84   reiserfs_panic( 0, "reiserfs[%i]: assertion " #cond " failed at "     \
85                   __FILE__ ":%i:%s: " format "\n",              \
86                   in_interrupt() ? -1 : current -> pid, __LINE__ , __FUNCTION__ , ##args )
87
88 #if defined( CONFIG_REISERFS_CHECK )
89 #define RFALSE( cond, format, args... ) RASSERT( !( cond ), format, ##args )
90 #else
91 #define RFALSE( cond, format, args... ) do {;} while( 0 )
92 #endif
93
94 #define CONSTF __attribute_const__
95 /*
96  * Disk Data Structures
97  */
98
99 /***************************************************************************/
100 /*                             SUPER BLOCK                                 */
101 /***************************************************************************/
102
103 /*
104  * Structure of super block on disk, a version of which in RAM is often accessed as REISERFS_SB(s)->s_rs
105  * the version in RAM is part of a larger structure containing fields never written to disk.
106  */
107 #define UNSET_HASH 0 // read_super will guess about, what hash names
108                      // in directories were sorted with
109 #define TEA_HASH  1
110 #define YURA_HASH 2
111 #define R5_HASH   3
112 #define DEFAULT_HASH R5_HASH
113
114
115 struct journal_params {
116     __u32 jp_journal_1st_block;       /* where does journal start from on its
117                                        * device */
118     __u32 jp_journal_dev;             /* journal device st_rdev */
119     __u32 jp_journal_size;            /* size of the journal */
120     __u32 jp_journal_trans_max;       /* max number of blocks in a transaction. */
121     __u32 jp_journal_magic;           /* random value made on fs creation (this
122                                        * was sb_journal_block_count) */
123     __u32 jp_journal_max_batch;       /* max number of blocks to batch into a
124                                        * trans */
125     __u32 jp_journal_max_commit_age;  /* in seconds, how old can an async
126                                        * commit be */
127     __u32 jp_journal_max_trans_age;   /* in seconds, how old can a transaction
128                                        * be */
129 };
130
131 /* this is the super from 3.5.X, where X >= 10 */
132 struct reiserfs_super_block_v1
133 {
134     __u32 s_block_count;           /* blocks count         */
135     __u32 s_free_blocks;           /* free blocks count    */
136     __u32 s_root_block;            /* root block number    */
137     struct journal_params s_journal;
138     __u16 s_blocksize;             /* block size */
139     __u16 s_oid_maxsize;           /* max size of object id array, see
140                                     * get_objectid() commentary  */
141     __u16 s_oid_cursize;           /* current size of object id array */
142     __u16 s_umount_state;          /* this is set to 1 when filesystem was
143                                     * umounted, to 2 - when not */    
144     char s_magic[10];              /* reiserfs magic string indicates that
145                                     * file system is reiserfs:
146                                     * "ReIsErFs" or "ReIsEr2Fs" or "ReIsEr3Fs" */
147     __u16 s_fs_state;              /* it is set to used by fsck to mark which
148                                     * phase of rebuilding is done */
149     __u32 s_hash_function_code;    /* indicate, what hash function is being use
150                                     * to sort names in a directory*/
151     __u16 s_tree_height;           /* height of disk tree */
152     __u16 s_bmap_nr;               /* amount of bitmap blocks needed to address
153                                     * each block of file system */
154     __u16 s_version;               /* this field is only reliable on filesystem
155                                     * with non-standard journal */
156     __u16 s_reserved_for_journal;  /* size in blocks of journal area on main
157                                     * device, we need to keep after
158                                     * making fs with non-standard journal */    
159 } __attribute__ ((__packed__));
160
161 #define SB_SIZE_V1 (sizeof(struct reiserfs_super_block_v1))
162
163 /* this is the on disk super block */
164 struct reiserfs_super_block
165 {
166     struct reiserfs_super_block_v1 s_v1;
167     __u32 s_inode_generation;
168     __u32 s_flags;                  /* Right now used only by inode-attributes, if enabled */
169     unsigned char s_uuid[16];       /* filesystem unique identifier */
170     unsigned char s_label[16];      /* filesystem volume label */
171     char s_unused[88] ;             /* zero filled by mkreiserfs and
172                                      * reiserfs_convert_objectid_map_v1()
173                                      * so any additions must be updated
174                                      * there as well. */
175 }  __attribute__ ((__packed__));
176
177 #define SB_SIZE (sizeof(struct reiserfs_super_block))
178
179 #define REISERFS_VERSION_1 0
180 #define REISERFS_VERSION_2 2
181
182
183 // on-disk super block fields converted to cpu form
184 #define SB_DISK_SUPER_BLOCK(s) (REISERFS_SB(s)->s_rs)
185 #define SB_V1_DISK_SUPER_BLOCK(s) (&(SB_DISK_SUPER_BLOCK(s)->s_v1))
186 #define SB_BLOCKSIZE(s) \
187         le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_blocksize))
188 #define SB_BLOCK_COUNT(s) \
189         le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_block_count))
190 #define SB_FREE_BLOCKS(s) \
191         le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks))
192 #define SB_REISERFS_MAGIC(s) \
193         (SB_V1_DISK_SUPER_BLOCK(s)->s_magic)
194 #define SB_ROOT_BLOCK(s) \
195         le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_root_block))
196 #define SB_TREE_HEIGHT(s) \
197         le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height))
198 #define SB_REISERFS_STATE(s) \
199         le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state))
200 #define SB_VERSION(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_version))
201 #define SB_BMAP_NR(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr))
202
203 #define PUT_SB_BLOCK_COUNT(s, val) \
204    do { SB_V1_DISK_SUPER_BLOCK(s)->s_block_count = cpu_to_le32(val); } while (0)
205 #define PUT_SB_FREE_BLOCKS(s, val) \
206    do { SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks = cpu_to_le32(val); } while (0)
207 #define PUT_SB_ROOT_BLOCK(s, val) \
208    do { SB_V1_DISK_SUPER_BLOCK(s)->s_root_block = cpu_to_le32(val); } while (0)
209 #define PUT_SB_TREE_HEIGHT(s, val) \
210    do { SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height = cpu_to_le16(val); } while (0)
211 #define PUT_SB_REISERFS_STATE(s, val) \
212    do { SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state = cpu_to_le16(val); } while (0) 
213 #define PUT_SB_VERSION(s, val) \
214    do { SB_V1_DISK_SUPER_BLOCK(s)->s_version = cpu_to_le16(val); } while (0)
215 #define PUT_SB_BMAP_NR(s, val) \
216    do { SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr = cpu_to_le16 (val); } while (0)
217
218
219 #define SB_ONDISK_JP(s) (&SB_V1_DISK_SUPER_BLOCK(s)->s_journal)
220 #define SB_ONDISK_JOURNAL_SIZE(s) \
221          le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_size))
222 #define SB_ONDISK_JOURNAL_1st_BLOCK(s) \
223          le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_1st_block))
224 #define SB_ONDISK_JOURNAL_DEVICE(s) \
225          le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_dev))
226 #define SB_ONDISK_RESERVED_FOR_JOURNAL(s) \
227          le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_reserved_for_journal))
228
229 #define is_block_in_log_or_reserved_area(s, block) \
230          block >= SB_JOURNAL_1st_RESERVED_BLOCK(s) \
231          && block < SB_JOURNAL_1st_RESERVED_BLOCK(s) +  \
232          ((!is_reiserfs_jr(SB_DISK_SUPER_BLOCK(s)) ? \
233          SB_ONDISK_JOURNAL_SIZE(s) + 1 : SB_ONDISK_RESERVED_FOR_JOURNAL(s))) 
234
235
236
237                                 /* used by gcc */
238 #define REISERFS_SUPER_MAGIC 0x52654973
239                                 /* used by file system utilities that
240                                    look at the superblock, etc. */
241 #define REISERFS_SUPER_MAGIC_STRING "ReIsErFs"
242 #define REISER2FS_SUPER_MAGIC_STRING "ReIsEr2Fs"
243 #define REISER2FS_JR_SUPER_MAGIC_STRING "ReIsEr3Fs"
244
245 extern const char reiserfs_3_5_magic_string[];
246 extern const char reiserfs_3_6_magic_string[];
247 extern const char reiserfs_jr_magic_string[];
248
249 int is_reiserfs_3_5 (struct reiserfs_super_block * rs);
250 int is_reiserfs_3_6 (struct reiserfs_super_block * rs);
251 int is_reiserfs_jr (struct reiserfs_super_block * rs);
252
253 /* ReiserFS leaves the first 64k unused, so that partition labels have
254    enough space.  If someone wants to write a fancy bootloader that
255    needs more than 64k, let us know, and this will be increased in size.
256    This number must be larger than than the largest block size on any
257    platform, or code will break.  -Hans */
258 #define REISERFS_DISK_OFFSET_IN_BYTES (64 * 1024)
259 #define REISERFS_FIRST_BLOCK unused_define
260 #define REISERFS_JOURNAL_OFFSET_IN_BYTES REISERFS_DISK_OFFSET_IN_BYTES
261
262 /* the spot for the super in versions 3.5 - 3.5.10 (inclusive) */
263 #define REISERFS_OLD_DISK_OFFSET_IN_BYTES (8 * 1024)
264
265 // reiserfs internal error code (used by search_by_key adn fix_nodes))
266 #define CARRY_ON      0
267 #define REPEAT_SEARCH -1
268 #define IO_ERROR      -2
269 #define NO_DISK_SPACE -3
270 #define NO_BALANCING_NEEDED  (-4)
271 #define NO_MORE_UNUSED_CONTIGUOUS_BLOCKS (-5)
272 #define QUOTA_EXCEEDED -6
273
274 typedef __u32 b_blocknr_t;
275 typedef __u32 unp_t;
276
277 struct unfm_nodeinfo {
278     unp_t unfm_nodenum;
279     unsigned short unfm_freespace;
280 };
281
282 /* there are two formats of keys: 3.5 and 3.6
283  */
284 #define KEY_FORMAT_3_5 0
285 #define KEY_FORMAT_3_6 1
286
287 /* there are two stat datas */
288 #define STAT_DATA_V1 0
289 #define STAT_DATA_V2 1
290
291
292 static inline struct reiserfs_inode_info *REISERFS_I(const struct inode *inode)
293 {
294         return container_of(inode, struct reiserfs_inode_info, vfs_inode);
295 }
296
297 static inline struct reiserfs_sb_info *REISERFS_SB(const struct super_block *sb)
298 {
299         return sb->s_fs_info;
300 }
301
302 /** this says about version of key of all items (but stat data) the
303     object consists of */
304 #define get_inode_item_key_version( inode )                                    \
305     ((REISERFS_I(inode)->i_flags & i_item_key_version_mask) ? KEY_FORMAT_3_6 : KEY_FORMAT_3_5)
306
307 #define set_inode_item_key_version( inode, version )                           \
308          ({ if((version)==KEY_FORMAT_3_6)                                      \
309                 REISERFS_I(inode)->i_flags |= i_item_key_version_mask;      \
310             else                                                               \
311                 REISERFS_I(inode)->i_flags &= ~i_item_key_version_mask; })
312
313 #define get_inode_sd_version(inode)                                            \
314     ((REISERFS_I(inode)->i_flags & i_stat_data_version_mask) ? STAT_DATA_V2 : STAT_DATA_V1)
315
316 #define set_inode_sd_version(inode, version)                                   \
317          ({ if((version)==STAT_DATA_V2)                                        \
318                 REISERFS_I(inode)->i_flags |= i_stat_data_version_mask;     \
319             else                                                               \
320                 REISERFS_I(inode)->i_flags &= ~i_stat_data_version_mask; })
321
322 /* This is an aggressive tail suppression policy, I am hoping it
323    improves our benchmarks. The principle behind it is that percentage
324    space saving is what matters, not absolute space saving.  This is
325    non-intuitive, but it helps to understand it if you consider that the
326    cost to access 4 blocks is not much more than the cost to access 1
327    block, if you have to do a seek and rotate.  A tail risks a
328    non-linear disk access that is significant as a percentage of total
329    time cost for a 4 block file and saves an amount of space that is
330    less significant as a percentage of space, or so goes the hypothesis.
331    -Hans */
332 #define STORE_TAIL_IN_UNFM_S1(n_file_size,n_tail_size,n_block_size) \
333 (\
334   (!(n_tail_size)) || \
335   (((n_tail_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) || \
336    ( (n_file_size) >= (n_block_size) * 4 ) || \
337    ( ( (n_file_size) >= (n_block_size) * 3 ) && \
338      ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size))/4) ) || \
339    ( ( (n_file_size) >= (n_block_size) * 2 ) && \
340      ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size))/2) ) || \
341    ( ( (n_file_size) >= (n_block_size) ) && \
342      ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size) * 3)/4) ) ) \
343 )
344
345 /* Another strategy for tails, this one means only create a tail if all the
346    file would fit into one DIRECT item.
347    Primary intention for this one is to increase performance by decreasing
348    seeking.
349 */   
350 #define STORE_TAIL_IN_UNFM_S2(n_file_size,n_tail_size,n_block_size) \
351 (\
352   (!(n_tail_size)) || \
353   (((n_file_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) ) \
354 )
355
356
357
358 /*
359  * values for s_umount_state field
360  */
361 #define REISERFS_VALID_FS    1
362 #define REISERFS_ERROR_FS    2
363
364 //
365 // there are 5 item types currently
366 //
367 #define TYPE_STAT_DATA 0
368 #define TYPE_INDIRECT 1
369 #define TYPE_DIRECT 2
370 #define TYPE_DIRENTRY 3 
371 #define TYPE_MAXTYPE 3 
372 #define TYPE_ANY 15 // FIXME: comment is required
373
374 /***************************************************************************/
375 /*                       KEY & ITEM HEAD                                   */
376 /***************************************************************************/
377
378 //
379 // directories use this key as well as old files
380 //
381 struct offset_v1 {
382     __u32 k_offset;
383     __u32 k_uniqueness;
384 } __attribute__ ((__packed__));
385
386 struct offset_v2 {
387 #ifdef __LITTLE_ENDIAN
388             /* little endian version */
389             __u64 k_offset:60;
390             __u64 k_type: 4;
391 #else
392             /* big endian version */
393             __u64 k_type: 4;
394             __u64 k_offset:60;
395 #endif
396 } __attribute__ ((__packed__));
397
398 #ifndef __LITTLE_ENDIAN
399 typedef union {
400     struct offset_v2 offset_v2;
401     __u64 linear;
402 } __attribute__ ((__packed__)) offset_v2_esafe_overlay;
403
404 static inline __u16 offset_v2_k_type( const struct offset_v2 *v2 )
405 {
406     offset_v2_esafe_overlay tmp = *(const offset_v2_esafe_overlay *)v2;
407     tmp.linear = le64_to_cpu( tmp.linear );
408     return (tmp.offset_v2.k_type <= TYPE_MAXTYPE)?tmp.offset_v2.k_type:TYPE_ANY;
409 }
410  
411 static inline void set_offset_v2_k_type( struct offset_v2 *v2, int type )
412 {
413     offset_v2_esafe_overlay *tmp = (offset_v2_esafe_overlay *)v2;
414     tmp->linear = le64_to_cpu(tmp->linear);
415     tmp->offset_v2.k_type = type;
416     tmp->linear = cpu_to_le64(tmp->linear);
417 }
418  
419 static inline loff_t offset_v2_k_offset( const struct offset_v2 *v2 )
420 {
421     offset_v2_esafe_overlay tmp = *(const offset_v2_esafe_overlay *)v2;
422     tmp.linear = le64_to_cpu( tmp.linear );
423     return tmp.offset_v2.k_offset;
424 }
425
426 static inline void set_offset_v2_k_offset( struct offset_v2 *v2, loff_t offset ){
427     offset_v2_esafe_overlay *tmp = (offset_v2_esafe_overlay *)v2;
428     tmp->linear = le64_to_cpu(tmp->linear);
429     tmp->offset_v2.k_offset = offset;
430     tmp->linear = cpu_to_le64(tmp->linear);
431 }
432 #else
433 # define offset_v2_k_type(v2)           ((v2)->k_type)
434 # define set_offset_v2_k_type(v2,val)   (offset_v2_k_type(v2) = (val))
435 # define offset_v2_k_offset(v2)         ((v2)->k_offset)
436 # define set_offset_v2_k_offset(v2,val) (offset_v2_k_offset(v2) = (val))
437 #endif
438
439 /* Key of an item determines its location in the S+tree, and
440    is composed of 4 components */
441 struct key {
442     __u32 k_dir_id;    /* packing locality: by default parent
443                           directory object id */
444     __u32 k_objectid;  /* object identifier */
445     union {
446         struct offset_v1 k_offset_v1;
447         struct offset_v2 k_offset_v2;
448     } __attribute__ ((__packed__)) u;
449 } __attribute__ ((__packed__));
450
451
452 struct cpu_key {
453     struct key on_disk_key;
454     int version;
455     int key_length; /* 3 in all cases but direct2indirect and
456                        indirect2direct conversion */
457 };
458
459 /* Our function for comparing keys can compare keys of different
460    lengths.  It takes as a parameter the length of the keys it is to
461    compare.  These defines are used in determining what is to be passed
462    to it as that parameter. */
463 #define REISERFS_FULL_KEY_LEN     4
464 #define REISERFS_SHORT_KEY_LEN    2
465
466 /* The result of the key compare */
467 #define FIRST_GREATER 1
468 #define SECOND_GREATER -1
469 #define KEYS_IDENTICAL 0
470 #define KEY_FOUND 1
471 #define KEY_NOT_FOUND 0
472
473 #define KEY_SIZE (sizeof(struct key))
474 #define SHORT_KEY_SIZE (sizeof (__u32) + sizeof (__u32))
475
476 /* return values for search_by_key and clones */
477 #define ITEM_FOUND 1
478 #define ITEM_NOT_FOUND 0
479 #define ENTRY_FOUND 1
480 #define ENTRY_NOT_FOUND 0
481 #define DIRECTORY_NOT_FOUND -1
482 #define REGULAR_FILE_FOUND -2
483 #define DIRECTORY_FOUND -3
484 #define BYTE_FOUND 1
485 #define BYTE_NOT_FOUND 0
486 #define FILE_NOT_FOUND -1
487
488 #define POSITION_FOUND 1
489 #define POSITION_NOT_FOUND 0
490
491 // return values for reiserfs_find_entry and search_by_entry_key
492 #define NAME_FOUND 1
493 #define NAME_NOT_FOUND 0
494 #define GOTO_PREVIOUS_ITEM 2
495 #define NAME_FOUND_INVISIBLE 3
496
497 /*  Everything in the filesystem is stored as a set of items.  The
498     item head contains the key of the item, its free space (for
499     indirect items) and specifies the location of the item itself
500     within the block.  */
501
502 struct item_head
503 {
504         /* Everything in the tree is found by searching for it based on
505          * its key.*/
506         struct key ih_key;      
507         union {
508                 /* The free space in the last unformatted node of an
509                    indirect item if this is an indirect item.  This
510                    equals 0xFFFF iff this is a direct item or stat data
511                    item. Note that the key, not this field, is used to
512                    determine the item type, and thus which field this
513                    union contains. */
514                 __u16 ih_free_space_reserved; 
515                 /* Iff this is a directory item, this field equals the
516                    number of directory entries in the directory item. */
517                 __u16 ih_entry_count; 
518         } __attribute__ ((__packed__)) u;
519         __u16 ih_item_len;           /* total size of the item body */
520         __u16 ih_item_location;      /* an offset to the item body
521                                       * within the block */
522         __u16 ih_version;            /* 0 for all old items, 2 for new
523                                         ones. Highest bit is set by fsck
524                                         temporary, cleaned after all
525                                         done */
526 } __attribute__ ((__packed__));
527 /* size of item header     */
528 #define IH_SIZE (sizeof(struct item_head))
529
530 #define ih_free_space(ih)            le16_to_cpu((ih)->u.ih_free_space_reserved)
531 #define ih_version(ih)               le16_to_cpu((ih)->ih_version)
532 #define ih_entry_count(ih)           le16_to_cpu((ih)->u.ih_entry_count)
533 #define ih_location(ih)              le16_to_cpu((ih)->ih_item_location)
534 #define ih_item_len(ih)              le16_to_cpu((ih)->ih_item_len)
535
536 #define put_ih_free_space(ih, val)   do { (ih)->u.ih_free_space_reserved = cpu_to_le16(val); } while(0)
537 #define put_ih_version(ih, val)      do { (ih)->ih_version = cpu_to_le16(val); } while (0)
538 #define put_ih_entry_count(ih, val)  do { (ih)->u.ih_entry_count = cpu_to_le16(val); } while (0)
539 #define put_ih_location(ih, val)     do { (ih)->ih_item_location = cpu_to_le16(val); } while (0)
540 #define put_ih_item_len(ih, val)     do { (ih)->ih_item_len = cpu_to_le16(val); } while (0)
541
542
543 #define unreachable_item(ih) (ih_version(ih) & (1 << 15))
544
545 #define get_ih_free_space(ih) (ih_version (ih) == KEY_FORMAT_3_6 ? 0 : ih_free_space (ih))
546 #define set_ih_free_space(ih,val) put_ih_free_space((ih), ((ih_version(ih) == KEY_FORMAT_3_6) ? 0 : (val)))
547
548 /* these operate on indirect items, where you've got an array of ints
549 ** at a possibly unaligned location.  These are a noop on ia32
550 ** 
551 ** p is the array of __u32, i is the index into the array, v is the value
552 ** to store there.
553 */
554 #define get_block_num(p, i) le32_to_cpu(get_unaligned((p) + (i)))
555 #define put_block_num(p, i, v) put_unaligned(cpu_to_le32(v), (p) + (i))
556
557 //
558 // in old version uniqueness field shows key type
559 //
560 #define V1_SD_UNIQUENESS 0
561 #define V1_INDIRECT_UNIQUENESS 0xfffffffe
562 #define V1_DIRECT_UNIQUENESS 0xffffffff
563 #define V1_DIRENTRY_UNIQUENESS 500
564 #define V1_ANY_UNIQUENESS 555 // FIXME: comment is required
565
566 //
567 // here are conversion routines
568 //
569 static inline int uniqueness2type (__u32 uniqueness) CONSTF;
570 static inline int uniqueness2type (__u32 uniqueness)
571 {
572     switch ((int)uniqueness) {
573     case V1_SD_UNIQUENESS: return TYPE_STAT_DATA;
574     case V1_INDIRECT_UNIQUENESS: return TYPE_INDIRECT;
575     case V1_DIRECT_UNIQUENESS: return TYPE_DIRECT;
576     case V1_DIRENTRY_UNIQUENESS: return TYPE_DIRENTRY;
577     default:
578             reiserfs_warning (NULL, "vs-500: unknown uniqueness %d",
579                               uniqueness);
580         case V1_ANY_UNIQUENESS:
581             return TYPE_ANY;
582     }
583 }
584
585 static inline __u32 type2uniqueness (int type) CONSTF;
586 static inline __u32 type2uniqueness (int type)
587 {
588     switch (type) {
589     case TYPE_STAT_DATA: return V1_SD_UNIQUENESS;
590     case TYPE_INDIRECT: return V1_INDIRECT_UNIQUENESS;
591     case TYPE_DIRECT: return V1_DIRECT_UNIQUENESS;
592     case TYPE_DIRENTRY: return V1_DIRENTRY_UNIQUENESS;
593     default:
594             reiserfs_warning (NULL, "vs-501: unknown type %d", type);
595         case TYPE_ANY:
596             return V1_ANY_UNIQUENESS;
597     }
598 }
599
600 //
601 // key is pointer to on disk key which is stored in le, result is cpu,
602 // there is no way to get version of object from key, so, provide
603 // version to these defines
604 //
605 static inline loff_t le_key_k_offset (int version, const struct key * key)
606 {
607     return (version == KEY_FORMAT_3_5) ?
608         le32_to_cpu( key->u.k_offset_v1.k_offset ) :
609         offset_v2_k_offset( &(key->u.k_offset_v2) );
610 }
611
612 static inline loff_t le_ih_k_offset (const struct item_head * ih)
613 {
614     return le_key_k_offset (ih_version (ih), &(ih->ih_key));
615 }
616
617 static inline loff_t le_key_k_type (int version, const struct key * key)
618 {
619     return (version == KEY_FORMAT_3_5) ?
620         uniqueness2type( le32_to_cpu( key->u.k_offset_v1.k_uniqueness)) :
621         offset_v2_k_type( &(key->u.k_offset_v2) );
622 }
623
624 static inline loff_t le_ih_k_type (const struct item_head * ih)
625 {
626     return le_key_k_type (ih_version (ih), &(ih->ih_key));
627 }
628
629
630 static inline void set_le_key_k_offset (int version, struct key * key, loff_t offset)
631 {
632     (version == KEY_FORMAT_3_5) ?
633         (key->u.k_offset_v1.k_offset = cpu_to_le32 (offset)) : /* jdm check */
634         (set_offset_v2_k_offset( &(key->u.k_offset_v2), offset ));
635 }
636
637
638 static inline void set_le_ih_k_offset (struct item_head * ih, loff_t offset)
639 {
640     set_le_key_k_offset (ih_version (ih), &(ih->ih_key), offset);
641 }
642
643
644 static inline void set_le_key_k_type (int version, struct key * key, int type)
645 {
646     (version == KEY_FORMAT_3_5) ?
647         (key->u.k_offset_v1.k_uniqueness = cpu_to_le32(type2uniqueness(type))):
648         (set_offset_v2_k_type( &(key->u.k_offset_v2), type ));
649 }
650 static inline void set_le_ih_k_type (struct item_head * ih, int type)
651 {
652     set_le_key_k_type (ih_version (ih), &(ih->ih_key), type);
653 }
654
655
656 #define is_direntry_le_key(version,key) (le_key_k_type (version, key) == TYPE_DIRENTRY)
657 #define is_direct_le_key(version,key) (le_key_k_type (version, key) == TYPE_DIRECT)
658 #define is_indirect_le_key(version,key) (le_key_k_type (version, key) == TYPE_INDIRECT)
659 #define is_statdata_le_key(version,key) (le_key_k_type (version, key) == TYPE_STAT_DATA)
660
661 //
662 // item header has version.
663 //
664 #define is_direntry_le_ih(ih) is_direntry_le_key (ih_version (ih), &((ih)->ih_key))
665 #define is_direct_le_ih(ih) is_direct_le_key (ih_version (ih), &((ih)->ih_key))
666 #define is_indirect_le_ih(ih) is_indirect_le_key (ih_version(ih), &((ih)->ih_key))
667 #define is_statdata_le_ih(ih) is_statdata_le_key (ih_version (ih), &((ih)->ih_key))
668
669
670
671 //
672 // key is pointer to cpu key, result is cpu
673 //
674 static inline loff_t cpu_key_k_offset (const struct cpu_key * key)
675 {
676     return (key->version == KEY_FORMAT_3_5) ?
677         key->on_disk_key.u.k_offset_v1.k_offset :
678         key->on_disk_key.u.k_offset_v2.k_offset;
679 }
680
681 static inline loff_t cpu_key_k_type (const struct cpu_key * key)
682 {
683     return (key->version == KEY_FORMAT_3_5) ?
684         uniqueness2type (key->on_disk_key.u.k_offset_v1.k_uniqueness) :
685         key->on_disk_key.u.k_offset_v2.k_type;
686 }
687
688 static inline void set_cpu_key_k_offset (struct cpu_key * key, loff_t offset)
689 {
690     (key->version == KEY_FORMAT_3_5) ?
691         (key->on_disk_key.u.k_offset_v1.k_offset = offset) :
692         (key->on_disk_key.u.k_offset_v2.k_offset = offset);
693 }
694
695
696 static inline void set_cpu_key_k_type (struct cpu_key * key, int type)
697 {
698     (key->version == KEY_FORMAT_3_5) ?
699         (key->on_disk_key.u.k_offset_v1.k_uniqueness = type2uniqueness (type)):
700         (key->on_disk_key.u.k_offset_v2.k_type = type);
701 }
702
703
704 static inline void cpu_key_k_offset_dec (struct cpu_key * key)
705 {
706     if (key->version == KEY_FORMAT_3_5)
707         key->on_disk_key.u.k_offset_v1.k_offset --;
708     else
709         key->on_disk_key.u.k_offset_v2.k_offset --;
710 }
711
712
713 #define is_direntry_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRENTRY)
714 #define is_direct_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRECT)
715 #define is_indirect_cpu_key(key) (cpu_key_k_type (key) == TYPE_INDIRECT)
716 #define is_statdata_cpu_key(key) (cpu_key_k_type (key) == TYPE_STAT_DATA)
717
718
719 /* are these used ? */
720 #define is_direntry_cpu_ih(ih) (is_direntry_cpu_key (&((ih)->ih_key)))
721 #define is_direct_cpu_ih(ih) (is_direct_cpu_key (&((ih)->ih_key)))
722 #define is_indirect_cpu_ih(ih) (is_indirect_cpu_key (&((ih)->ih_key)))
723 #define is_statdata_cpu_ih(ih) (is_statdata_cpu_key (&((ih)->ih_key)))
724
725
726
727
728
729 #define I_K_KEY_IN_ITEM(p_s_ih, p_s_key, n_blocksize) \
730     ( ! COMP_SHORT_KEYS(p_s_ih, p_s_key) && \
731           I_OFF_BYTE_IN_ITEM(p_s_ih, k_offset (p_s_key), n_blocksize) )
732
733 /* maximal length of item */ 
734 #define MAX_ITEM_LEN(block_size) (block_size - BLKH_SIZE - IH_SIZE)
735 #define MIN_ITEM_LEN 1
736
737
738 /* object identifier for root dir */
739 #define REISERFS_ROOT_OBJECTID 2
740 #define REISERFS_ROOT_PARENT_OBJECTID 1
741 extern struct key root_key;
742
743
744
745
746 /* 
747  * Picture represents a leaf of the S+tree
748  *  ______________________________________________________
749  * |      |  Array of     |                   |           |
750  * |Block |  Object-Item  |      F r e e      |  Objects- |
751  * | head |  Headers      |     S p a c e     |   Items   |
752  * |______|_______________|___________________|___________|
753  */
754
755 /* Header of a disk block.  More precisely, header of a formatted leaf
756    or internal node, and not the header of an unformatted node. */
757 struct block_head {       
758   __u16 blk_level;        /* Level of a block in the tree. */
759   __u16 blk_nr_item;      /* Number of keys/items in a block. */
760   __u16 blk_free_space;   /* Block free space in bytes. */
761   __u16 blk_reserved;
762                                 /* dump this in v4/planA */
763   struct key  blk_right_delim_key; /* kept only for compatibility */
764 };
765
766 #define BLKH_SIZE                     (sizeof(struct block_head))
767 #define blkh_level(p_blkh)            (le16_to_cpu((p_blkh)->blk_level))
768 #define blkh_nr_item(p_blkh)          (le16_to_cpu((p_blkh)->blk_nr_item))
769 #define blkh_free_space(p_blkh)       (le16_to_cpu((p_blkh)->blk_free_space))
770 #define blkh_reserved(p_blkh)         (le16_to_cpu((p_blkh)->blk_reserved))
771 #define set_blkh_level(p_blkh,val)    ((p_blkh)->blk_level = cpu_to_le16(val))
772 #define set_blkh_nr_item(p_blkh,val)  ((p_blkh)->blk_nr_item = cpu_to_le16(val))
773 #define set_blkh_free_space(p_blkh,val) ((p_blkh)->blk_free_space = cpu_to_le16(val))
774 #define set_blkh_reserved(p_blkh,val) ((p_blkh)->blk_reserved = cpu_to_le16(val))
775 #define blkh_right_delim_key(p_blkh)  ((p_blkh)->blk_right_delim_key)
776 #define set_blkh_right_delim_key(p_blkh,val)  ((p_blkh)->blk_right_delim_key = val)
777
778 /*
779  * values for blk_level field of the struct block_head
780  */
781
782 #define FREE_LEVEL 0 /* when node gets removed from the tree its
783                         blk_level is set to FREE_LEVEL. It is then
784                         used to see whether the node is still in the
785                         tree */
786
787 #define DISK_LEAF_NODE_LEVEL  1 /* Leaf node level.*/
788
789 /* Given the buffer head of a formatted node, resolve to the block head of that node. */
790 #define B_BLK_HEAD(p_s_bh)            ((struct block_head *)((p_s_bh)->b_data))
791 /* Number of items that are in buffer. */
792 #define B_NR_ITEMS(p_s_bh)            (blkh_nr_item(B_BLK_HEAD(p_s_bh)))
793 #define B_LEVEL(p_s_bh)               (blkh_level(B_BLK_HEAD(p_s_bh)))
794 #define B_FREE_SPACE(p_s_bh)          (blkh_free_space(B_BLK_HEAD(p_s_bh)))
795
796 #define PUT_B_NR_ITEMS(p_s_bh,val)    do { set_blkh_nr_item(B_BLK_HEAD(p_s_bh),val); } while (0)
797 #define PUT_B_LEVEL(p_s_bh,val)       do { set_blkh_level(B_BLK_HEAD(p_s_bh),val); } while (0)
798 #define PUT_B_FREE_SPACE(p_s_bh,val)  do { set_blkh_free_space(B_BLK_HEAD(p_s_bh),val); } while (0)
799
800
801 /* Get right delimiting key. -- little endian */
802 #define B_PRIGHT_DELIM_KEY(p_s_bh)   (&(blk_right_delim_key(B_BLK_HEAD(p_s_bh))
803
804 /* Does the buffer contain a disk leaf. */
805 #define B_IS_ITEMS_LEVEL(p_s_bh)     (B_LEVEL(p_s_bh) == DISK_LEAF_NODE_LEVEL)
806
807 /* Does the buffer contain a disk internal node */
808 #define B_IS_KEYS_LEVEL(p_s_bh)      (B_LEVEL(p_s_bh) > DISK_LEAF_NODE_LEVEL \
809                                             && B_LEVEL(p_s_bh) <= MAX_HEIGHT)
810
811
812
813
814 /***************************************************************************/
815 /*                             STAT DATA                                   */
816 /***************************************************************************/
817
818
819 //
820 // old stat data is 32 bytes long. We are going to distinguish new one by
821 // different size
822 //
823 struct stat_data_v1
824 {
825     __u16 sd_mode;      /* file type, permissions */
826     __u16 sd_nlink;     /* number of hard links */
827     __u16 sd_uid;               /* owner */
828     __u16 sd_gid;               /* group */
829     __u32 sd_size;      /* file size */
830     __u32 sd_atime;     /* time of last access */
831     __u32 sd_mtime;     /* time file was last modified  */
832     __u32 sd_ctime;     /* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */
833     union {
834         __u32 sd_rdev;
835         __u32 sd_blocks;        /* number of blocks file uses */
836     } __attribute__ ((__packed__)) u;
837     __u32 sd_first_direct_byte; /* first byte of file which is stored
838                                    in a direct item: except that if it
839                                    equals 1 it is a symlink and if it
840                                    equals ~(__u32)0 there is no
841                                    direct item.  The existence of this
842                                    field really grates on me. Let's
843                                    replace it with a macro based on
844                                    sd_size and our tail suppression
845                                    policy.  Someday.  -Hans */
846 } __attribute__ ((__packed__));
847
848 #define SD_V1_SIZE              (sizeof(struct stat_data_v1))
849 #define stat_data_v1(ih)        (ih_version (ih) == KEY_FORMAT_3_5)
850 #define sd_v1_mode(sdp)         (le16_to_cpu((sdp)->sd_mode))
851 #define set_sd_v1_mode(sdp,v)   ((sdp)->sd_mode = cpu_to_le16(v))
852 #define sd_v1_nlink(sdp)        (le16_to_cpu((sdp)->sd_nlink))
853 #define set_sd_v1_nlink(sdp,v)  ((sdp)->sd_nlink = cpu_to_le16(v))
854 #define sd_v1_uid(sdp)          (le16_to_cpu((sdp)->sd_uid))
855 #define set_sd_v1_uid(sdp,v)    ((sdp)->sd_uid = cpu_to_le16(v))
856 #define sd_v1_gid(sdp)          (le16_to_cpu((sdp)->sd_gid))
857 #define set_sd_v1_gid(sdp,v)    ((sdp)->sd_gid = cpu_to_le16(v))
858 #define sd_v1_size(sdp)         (le32_to_cpu((sdp)->sd_size))
859 #define set_sd_v1_size(sdp,v)   ((sdp)->sd_size = cpu_to_le32(v))
860 #define sd_v1_atime(sdp)        (le32_to_cpu((sdp)->sd_atime))
861 #define set_sd_v1_atime(sdp,v)  ((sdp)->sd_atime = cpu_to_le32(v))
862 #define sd_v1_mtime(sdp)        (le32_to_cpu((sdp)->sd_mtime))
863 #define set_sd_v1_mtime(sdp,v)  ((sdp)->sd_mtime = cpu_to_le32(v))
864 #define sd_v1_ctime(sdp)        (le32_to_cpu((sdp)->sd_ctime))
865 #define set_sd_v1_ctime(sdp,v)  ((sdp)->sd_ctime = cpu_to_le32(v))
866 #define sd_v1_rdev(sdp)         (le32_to_cpu((sdp)->u.sd_rdev))
867 #define set_sd_v1_rdev(sdp,v)   ((sdp)->u.sd_rdev = cpu_to_le32(v))
868 #define sd_v1_blocks(sdp)       (le32_to_cpu((sdp)->u.sd_blocks))
869 #define set_sd_v1_blocks(sdp,v) ((sdp)->u.sd_blocks = cpu_to_le32(v))
870 #define sd_v1_first_direct_byte(sdp) \
871                                 (le32_to_cpu((sdp)->sd_first_direct_byte))
872 #define set_sd_v1_first_direct_byte(sdp,v) \
873                                 ((sdp)->sd_first_direct_byte = cpu_to_le32(v))
874
875 #include <linux/ext2_fs.h>
876
877 /* inode flags stored in sd_attrs (nee sd_reserved) */
878
879 /* we want common flags to have the same values as in ext2,
880    so chattr(1) will work without problems */
881 #define REISERFS_IMMUTABLE_FL EXT2_IMMUTABLE_FL
882 #define REISERFS_APPEND_FL    EXT2_APPEND_FL
883 #define REISERFS_SYNC_FL      EXT2_SYNC_FL
884 #define REISERFS_NOATIME_FL   EXT2_NOATIME_FL
885 #define REISERFS_NODUMP_FL    EXT2_NODUMP_FL
886 #define REISERFS_SECRM_FL     EXT2_SECRM_FL
887 #define REISERFS_UNRM_FL      EXT2_UNRM_FL
888 #define REISERFS_COMPR_FL     EXT2_COMPR_FL
889 #define REISERFS_NOTAIL_FL    EXT2_NOTAIL_FL
890
891 /* persistent flags that file inherits from the parent directory */
892 #define REISERFS_INHERIT_MASK ( REISERFS_IMMUTABLE_FL | \
893                                 REISERFS_SYNC_FL |      \
894                                 REISERFS_NOATIME_FL |   \
895                                 REISERFS_NODUMP_FL |    \
896                                 REISERFS_SECRM_FL |     \
897                                 REISERFS_COMPR_FL |     \
898                                 REISERFS_NOTAIL_FL )
899
900 /* Stat Data on disk (reiserfs version of UFS disk inode minus the
901    address blocks) */
902 struct stat_data {
903     __u16 sd_mode;      /* file type, permissions */
904     __u16 sd_attrs;     /* persistent inode flags */
905     __u32 sd_nlink;     /* number of hard links */
906     __u64 sd_size;      /* file size */
907     __u32 sd_uid;               /* owner */
908     __u32 sd_gid;               /* group */
909     __u32 sd_atime;     /* time of last access */
910     __u32 sd_mtime;     /* time file was last modified  */
911     __u32 sd_ctime;     /* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */
912     __u32 sd_blocks;
913     union {
914         __u32 sd_rdev;
915         __u32 sd_generation;
916       //__u32 sd_first_direct_byte; 
917       /* first byte of file which is stored in a
918                                        direct item: except that if it equals 1
919                                        it is a symlink and if it equals
920                                        ~(__u32)0 there is no direct item.  The
921                                        existence of this field really grates
922                                        on me. Let's replace it with a macro
923                                        based on sd_size and our tail
924                                        suppression policy? */
925   } __attribute__ ((__packed__)) u;
926 } __attribute__ ((__packed__));
927 //
928 // this is 44 bytes long
929 //
930 #define SD_SIZE (sizeof(struct stat_data))
931 #define SD_V2_SIZE              SD_SIZE
932 #define stat_data_v2(ih)        (ih_version (ih) == KEY_FORMAT_3_6)
933 #define sd_v2_mode(sdp)         (le16_to_cpu((sdp)->sd_mode))
934 #define set_sd_v2_mode(sdp,v)   ((sdp)->sd_mode = cpu_to_le16(v))
935 /* sd_reserved */
936 /* set_sd_reserved */
937 #define sd_v2_nlink(sdp)        (le32_to_cpu((sdp)->sd_nlink))
938 #define set_sd_v2_nlink(sdp,v)  ((sdp)->sd_nlink = cpu_to_le32(v))
939 #define sd_v2_size(sdp)         (le64_to_cpu((sdp)->sd_size))
940 #define set_sd_v2_size(sdp,v)   ((sdp)->sd_size = cpu_to_le64(v))
941 #define sd_v2_uid(sdp)          (le32_to_cpu((sdp)->sd_uid))
942 #define set_sd_v2_uid(sdp,v)    ((sdp)->sd_uid = cpu_to_le32(v))
943 #define sd_v2_gid(sdp)          (le32_to_cpu((sdp)->sd_gid))
944 #define set_sd_v2_gid(sdp,v)    ((sdp)->sd_gid = cpu_to_le32(v))
945 #define sd_v2_atime(sdp)        (le32_to_cpu((sdp)->sd_atime))
946 #define set_sd_v2_atime(sdp,v)  ((sdp)->sd_atime = cpu_to_le32(v))
947 #define sd_v2_mtime(sdp)        (le32_to_cpu((sdp)->sd_mtime))
948 #define set_sd_v2_mtime(sdp,v)  ((sdp)->sd_mtime = cpu_to_le32(v))
949 #define sd_v2_ctime(sdp)        (le32_to_cpu((sdp)->sd_ctime))
950 #define set_sd_v2_ctime(sdp,v)  ((sdp)->sd_ctime = cpu_to_le32(v))
951 #define sd_v2_blocks(sdp)       (le32_to_cpu((sdp)->sd_blocks))
952 #define set_sd_v2_blocks(sdp,v) ((sdp)->sd_blocks = cpu_to_le32(v))
953 #define sd_v2_rdev(sdp)         (le32_to_cpu((sdp)->u.sd_rdev))
954 #define set_sd_v2_rdev(sdp,v)   ((sdp)->u.sd_rdev = cpu_to_le32(v))
955 #define sd_v2_generation(sdp)   (le32_to_cpu((sdp)->u.sd_generation))
956 #define set_sd_v2_generation(sdp,v) ((sdp)->u.sd_generation = cpu_to_le32(v))
957 #define sd_v2_attrs(sdp)         (le16_to_cpu((sdp)->sd_attrs))
958 #define set_sd_v2_attrs(sdp,v)   ((sdp)->sd_attrs = cpu_to_le16(v))
959
960
961 /***************************************************************************/
962 /*                      DIRECTORY STRUCTURE                                */
963 /***************************************************************************/
964 /* 
965    Picture represents the structure of directory items
966    ________________________________________________
967    |  Array of     |   |     |        |       |   |
968    | directory     |N-1| N-2 | ....   |   1st |0th|
969    | entry headers |   |     |        |       |   |
970    |_______________|___|_____|________|_______|___|
971                     <----   directory entries         ------>
972
973  First directory item has k_offset component 1. We store "." and ".."
974  in one item, always, we never split "." and ".." into differing
975  items.  This makes, among other things, the code for removing
976  directories simpler. */
977 #define SD_OFFSET  0
978 #define SD_UNIQUENESS 0
979 #define DOT_OFFSET 1
980 #define DOT_DOT_OFFSET 2
981 #define DIRENTRY_UNIQUENESS 500
982
983 /* */
984 #define FIRST_ITEM_OFFSET 1
985
986 /*
987    Q: How to get key of object pointed to by entry from entry?  
988
989    A: Each directory entry has its header. This header has deh_dir_id and deh_objectid fields, those are key
990       of object, entry points to */
991
992 /* NOT IMPLEMENTED:   
993    Directory will someday contain stat data of object */
994
995
996
997 struct reiserfs_de_head
998 {
999   __u32 deh_offset;             /* third component of the directory entry key */
1000   __u32 deh_dir_id;             /* objectid of the parent directory of the object, that is referenced
1001                                            by directory entry */
1002   __u32 deh_objectid;           /* objectid of the object, that is referenced by directory entry */
1003   __u16 deh_location;           /* offset of name in the whole item */
1004   __u16 deh_state;              /* whether 1) entry contains stat data (for future), and 2) whether
1005                                            entry is hidden (unlinked) */
1006 } __attribute__ ((__packed__));
1007 #define DEH_SIZE                  sizeof(struct reiserfs_de_head)
1008 #define deh_offset(p_deh)         (le32_to_cpu((p_deh)->deh_offset))
1009 #define deh_dir_id(p_deh)         (le32_to_cpu((p_deh)->deh_dir_id))
1010 #define deh_objectid(p_deh)       (le32_to_cpu((p_deh)->deh_objectid))
1011 #define deh_location(p_deh)       (le16_to_cpu((p_deh)->deh_location))
1012 #define deh_state(p_deh)          (le16_to_cpu((p_deh)->deh_state))
1013
1014 #define put_deh_offset(p_deh,v)   ((p_deh)->deh_offset = cpu_to_le32((v)))
1015 #define put_deh_dir_id(p_deh,v)   ((p_deh)->deh_dir_id = cpu_to_le32((v)))
1016 #define put_deh_objectid(p_deh,v) ((p_deh)->deh_objectid = cpu_to_le32((v)))
1017 #define put_deh_location(p_deh,v) ((p_deh)->deh_location = cpu_to_le16((v)))
1018 #define put_deh_state(p_deh,v)    ((p_deh)->deh_state = cpu_to_le16((v)))
1019
1020 /* empty directory contains two entries "." and ".." and their headers */
1021 #define EMPTY_DIR_SIZE \
1022 (DEH_SIZE * 2 + ROUND_UP (strlen (".")) + ROUND_UP (strlen ("..")))
1023
1024 /* old format directories have this size when empty */
1025 #define EMPTY_DIR_SIZE_V1 (DEH_SIZE * 2 + 3)
1026
1027 #define DEH_Statdata 0                  /* not used now */
1028 #define DEH_Visible 2
1029
1030 /* 64 bit systems (and the S/390) need to be aligned explicitly -jdm */
1031 #if BITS_PER_LONG == 64 || defined(__s390__) || defined(__hppa__)
1032 #   define ADDR_UNALIGNED_BITS  (3)
1033 #endif
1034
1035 /* These are only used to manipulate deh_state.
1036  * Because of this, we'll use the ext2_ bit routines,
1037  * since they are little endian */
1038 #ifdef ADDR_UNALIGNED_BITS
1039
1040 #   define aligned_address(addr)           ((void *)((long)(addr) & ~((1UL << ADDR_UNALIGNED_BITS) - 1)))
1041 #   define unaligned_offset(addr)          (((int)((long)(addr) & ((1 << ADDR_UNALIGNED_BITS) - 1))) << 3)
1042
1043 #   define set_bit_unaligned(nr, addr)     ext2_set_bit((nr) + unaligned_offset(addr), aligned_address(addr))
1044 #   define clear_bit_unaligned(nr, addr)   ext2_clear_bit((nr) + unaligned_offset(addr), aligned_address(addr))
1045 #   define test_bit_unaligned(nr, addr)    ext2_test_bit((nr) + unaligned_offset(addr), aligned_address(addr))
1046
1047 #else
1048
1049 #   define set_bit_unaligned(nr, addr)     ext2_set_bit(nr, addr)
1050 #   define clear_bit_unaligned(nr, addr)   ext2_clear_bit(nr, addr)
1051 #   define test_bit_unaligned(nr, addr)    ext2_test_bit(nr, addr)
1052
1053 #endif
1054
1055 #define mark_de_with_sd(deh)        set_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1056 #define mark_de_without_sd(deh)     clear_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1057 #define mark_de_visible(deh)        set_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1058 #define mark_de_hidden(deh)         clear_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1059
1060 #define de_with_sd(deh)             test_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1061 #define de_visible(deh)             test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1062 #define de_hidden(deh)              !test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1063
1064 extern void make_empty_dir_item_v1 (char * body, __u32 dirid, __u32 objid,
1065                                     __u32 par_dirid, __u32 par_objid);
1066 extern void make_empty_dir_item (char * body, __u32 dirid, __u32 objid,
1067                                  __u32 par_dirid, __u32 par_objid);
1068
1069 /* array of the entry headers */
1070  /* get item body */
1071 #define B_I_PITEM(bh,ih) ( (bh)->b_data + ih_location(ih) )
1072 #define B_I_DEH(bh,ih) ((struct reiserfs_de_head *)(B_I_PITEM(bh,ih)))
1073
1074 /* length of the directory entry in directory item. This define
1075    calculates length of i-th directory entry using directory entry
1076    locations from dir entry head. When it calculates length of 0-th
1077    directory entry, it uses length of whole item in place of entry
1078    location of the non-existent following entry in the calculation.
1079    See picture above.*/
1080 /*
1081 #define I_DEH_N_ENTRY_LENGTH(ih,deh,i) \
1082 ((i) ? (deh_location((deh)-1) - deh_location((deh))) : (ih_item_len((ih)) - deh_location((deh))))
1083 */
1084 static inline int entry_length (const struct buffer_head * bh, 
1085                                                                 const struct item_head * ih, int pos_in_item)
1086 {
1087     struct reiserfs_de_head * deh;
1088
1089     deh = B_I_DEH (bh, ih) + pos_in_item;
1090     if (pos_in_item)
1091         return deh_location(deh-1) - deh_location(deh);
1092
1093     return ih_item_len(ih) - deh_location(deh);
1094 }
1095
1096
1097
1098 /* number of entries in the directory item, depends on ENTRY_COUNT being at the start of directory dynamic data. */
1099 #define I_ENTRY_COUNT(ih) (ih_entry_count((ih)))
1100
1101
1102 /* name by bh, ih and entry_num */
1103 #define B_I_E_NAME(bh,ih,entry_num) ((char *)(bh->b_data + ih_location(ih) + deh_location(B_I_DEH(bh,ih)+(entry_num))))
1104
1105 // two entries per block (at least)
1106 #define REISERFS_MAX_NAME(block_size) 255
1107
1108
1109 /* this structure is used for operations on directory entries. It is
1110    not a disk structure. */
1111 /* When reiserfs_find_entry or search_by_entry_key find directory
1112    entry, they return filled reiserfs_dir_entry structure */
1113 struct reiserfs_dir_entry
1114 {
1115   struct buffer_head * de_bh;
1116   int de_item_num;
1117   struct item_head * de_ih;
1118   int de_entry_num;
1119   struct reiserfs_de_head * de_deh;
1120   int de_entrylen;
1121   int de_namelen;
1122   char * de_name;
1123   char * de_gen_number_bit_string;
1124
1125   __u32 de_dir_id;
1126   __u32 de_objectid;
1127
1128   struct cpu_key de_entry_key;
1129 };
1130    
1131 /* these defines are useful when a particular member of a reiserfs_dir_entry is needed */
1132
1133 /* pointer to file name, stored in entry */
1134 #define B_I_DEH_ENTRY_FILE_NAME(bh,ih,deh) (B_I_PITEM (bh, ih) + deh_location(deh))
1135
1136 /* length of name */
1137 #define I_DEH_N_ENTRY_FILE_NAME_LENGTH(ih,deh,entry_num) \
1138 (I_DEH_N_ENTRY_LENGTH (ih, deh, entry_num) - (de_with_sd (deh) ? SD_SIZE : 0))
1139
1140
1141
1142 /* hash value occupies bits from 7 up to 30 */
1143 #define GET_HASH_VALUE(offset) ((offset) & 0x7fffff80LL)
1144 /* generation number occupies 7 bits starting from 0 up to 6 */
1145 #define GET_GENERATION_NUMBER(offset) ((offset) & 0x7fLL)
1146 #define MAX_GENERATION_NUMBER  127
1147
1148 #define SET_GENERATION_NUMBER(offset,gen_number) (GET_HASH_VALUE(offset)|(gen_number))
1149
1150
1151 /*
1152  * Picture represents an internal node of the reiserfs tree
1153  *  ______________________________________________________
1154  * |      |  Array of     |  Array of         |  Free     |
1155  * |block |    keys       |  pointers         | space     |
1156  * | head |      N        |      N+1          |           |
1157  * |______|_______________|___________________|___________|
1158  */
1159
1160 /***************************************************************************/
1161 /*                      DISK CHILD                                         */
1162 /***************************************************************************/
1163 /* Disk child pointer: The pointer from an internal node of the tree
1164    to a node that is on disk. */
1165 struct disk_child {
1166   __u32       dc_block_number;              /* Disk child's block number. */
1167   __u16       dc_size;                      /* Disk child's used space.   */
1168   __u16       dc_reserved;
1169 };
1170
1171 #define DC_SIZE (sizeof(struct disk_child))
1172 #define dc_block_number(dc_p)   (le32_to_cpu((dc_p)->dc_block_number))
1173 #define dc_size(dc_p)           (le16_to_cpu((dc_p)->dc_size))
1174 #define put_dc_block_number(dc_p, val)   do { (dc_p)->dc_block_number = cpu_to_le32(val); } while(0)
1175 #define put_dc_size(dc_p, val)   do { (dc_p)->dc_size = cpu_to_le16(val); } while(0)
1176
1177 /* Get disk child by buffer header and position in the tree node. */
1178 #define B_N_CHILD(p_s_bh,n_pos)  ((struct disk_child *)\
1179 ((p_s_bh)->b_data+BLKH_SIZE+B_NR_ITEMS(p_s_bh)*KEY_SIZE+DC_SIZE*(n_pos)))
1180
1181 /* Get disk child number by buffer header and position in the tree node. */
1182 #define B_N_CHILD_NUM(p_s_bh,n_pos) (dc_block_number(B_N_CHILD(p_s_bh,n_pos)))
1183 #define PUT_B_N_CHILD_NUM(p_s_bh,n_pos, val) (put_dc_block_number(B_N_CHILD(p_s_bh,n_pos), val ))
1184
1185  /* maximal value of field child_size in structure disk_child */ 
1186  /* child size is the combined size of all items and their headers */
1187 #define MAX_CHILD_SIZE(bh) ((int)( (bh)->b_size - BLKH_SIZE ))
1188
1189 /* amount of used space in buffer (not including block head) */
1190 #define B_CHILD_SIZE(cur) (MAX_CHILD_SIZE(cur)-(B_FREE_SPACE(cur)))
1191
1192 /* max and min number of keys in internal node */
1193 #define MAX_NR_KEY(bh) ( (MAX_CHILD_SIZE(bh)-DC_SIZE)/(KEY_SIZE+DC_SIZE) )
1194 #define MIN_NR_KEY(bh)    (MAX_NR_KEY(bh)/2)
1195
1196 /***************************************************************************/
1197 /*                      PATH STRUCTURES AND DEFINES                        */
1198 /***************************************************************************/
1199
1200
1201 /* Search_by_key fills up the path from the root to the leaf as it descends the tree looking for the
1202    key.  It uses reiserfs_bread to try to find buffers in the cache given their block number.  If it
1203    does not find them in the cache it reads them from disk.  For each node search_by_key finds using
1204    reiserfs_bread it then uses bin_search to look through that node.  bin_search will find the
1205    position of the block_number of the next node if it is looking through an internal node.  If it
1206    is looking through a leaf node bin_search will find the position of the item which has key either
1207    equal to given key, or which is the maximal key less than the given key. */
1208
1209 struct  path_element  {
1210   struct buffer_head *  pe_buffer;    /* Pointer to the buffer at the path in the tree. */
1211   int                   pe_position;  /* Position in the tree node which is placed in the */
1212                                       /* buffer above.                                  */
1213 };
1214
1215 #define MAX_HEIGHT 5 /* maximal height of a tree. don't change this without changing JOURNAL_PER_BALANCE_CNT */
1216 #define EXTENDED_MAX_HEIGHT         7 /* Must be equals MAX_HEIGHT + FIRST_PATH_ELEMENT_OFFSET */
1217 #define FIRST_PATH_ELEMENT_OFFSET   2 /* Must be equal to at least 2. */
1218
1219 #define ILLEGAL_PATH_ELEMENT_OFFSET 1 /* Must be equal to FIRST_PATH_ELEMENT_OFFSET - 1 */
1220 #define MAX_FEB_SIZE 6   /* this MUST be MAX_HEIGHT + 1. See about FEB below */
1221
1222
1223
1224 /* We need to keep track of who the ancestors of nodes are.  When we
1225    perform a search we record which nodes were visited while
1226    descending the tree looking for the node we searched for. This list
1227    of nodes is called the path.  This information is used while
1228    performing balancing.  Note that this path information may become
1229    invalid, and this means we must check it when using it to see if it
1230    is still valid. You'll need to read search_by_key and the comments
1231    in it, especially about decrement_counters_in_path(), to understand
1232    this structure.  
1233
1234 Paths make the code so much harder to work with and debug.... An
1235 enormous number of bugs are due to them, and trying to write or modify
1236 code that uses them just makes my head hurt.  They are based on an
1237 excessive effort to avoid disturbing the precious VFS code.:-( The
1238 gods only know how we are going to SMP the code that uses them.
1239 znodes are the way! */
1240
1241 struct  path {
1242   int                   path_length;                            /* Length of the array above.   */
1243   struct  path_element  path_elements[EXTENDED_MAX_HEIGHT];     /* Array of the path elements.  */
1244   int                   pos_in_item;
1245 };
1246
1247 #define pos_in_item(path) ((path)->pos_in_item)
1248
1249 #define INITIALIZE_PATH(var) \
1250 struct path var = {ILLEGAL_PATH_ELEMENT_OFFSET, }
1251
1252 /* Get path element by path and path position. */
1253 #define PATH_OFFSET_PELEMENT(p_s_path,n_offset)  ((p_s_path)->path_elements +(n_offset))
1254
1255 /* Get buffer header at the path by path and path position. */
1256 #define PATH_OFFSET_PBUFFER(p_s_path,n_offset)   (PATH_OFFSET_PELEMENT(p_s_path,n_offset)->pe_buffer)
1257
1258 /* Get position in the element at the path by path and path position. */
1259 #define PATH_OFFSET_POSITION(p_s_path,n_offset) (PATH_OFFSET_PELEMENT(p_s_path,n_offset)->pe_position)
1260
1261
1262 #define PATH_PLAST_BUFFER(p_s_path) (PATH_OFFSET_PBUFFER((p_s_path), (p_s_path)->path_length))
1263                                 /* you know, to the person who didn't
1264                                    write this the macro name does not
1265                                    at first suggest what it does.
1266                                    Maybe POSITION_FROM_PATH_END? Or
1267                                    maybe we should just focus on
1268                                    dumping paths... -Hans */
1269 #define PATH_LAST_POSITION(p_s_path) (PATH_OFFSET_POSITION((p_s_path), (p_s_path)->path_length))
1270
1271
1272 #define PATH_PITEM_HEAD(p_s_path)    B_N_PITEM_HEAD(PATH_PLAST_BUFFER(p_s_path),PATH_LAST_POSITION(p_s_path))
1273
1274 /* in do_balance leaf has h == 0 in contrast with path structure,
1275    where root has level == 0. That is why we need these defines */
1276 #define PATH_H_PBUFFER(p_s_path, h) PATH_OFFSET_PBUFFER (p_s_path, p_s_path->path_length - (h)) /* tb->S[h] */
1277 #define PATH_H_PPARENT(path, h) PATH_H_PBUFFER (path, (h) + 1)                  /* tb->F[h] or tb->S[0]->b_parent */
1278 #define PATH_H_POSITION(path, h) PATH_OFFSET_POSITION (path, path->path_length - (h))   
1279 #define PATH_H_B_ITEM_ORDER(path, h) PATH_H_POSITION(path, h + 1)               /* tb->S[h]->b_item_order */
1280
1281 #define PATH_H_PATH_OFFSET(p_s_path, n_h) ((p_s_path)->path_length - (n_h))
1282
1283 #define get_last_bh(path) PATH_PLAST_BUFFER(path)
1284 #define get_ih(path) PATH_PITEM_HEAD(path)
1285 #define get_item_pos(path) PATH_LAST_POSITION(path)
1286 #define get_item(path) ((void *)B_N_PITEM(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION (path)))
1287 #define item_moved(ih,path) comp_items(ih, path)
1288 #define path_changed(ih,path) comp_items (ih, path)
1289
1290
1291 /***************************************************************************/
1292 /*                       MISC                                              */
1293 /***************************************************************************/
1294
1295 /* Size of pointer to the unformatted node. */
1296 #define UNFM_P_SIZE (sizeof(unp_t))
1297 #define UNFM_P_SHIFT 2
1298
1299 // in in-core inode key is stored on le form
1300 #define INODE_PKEY(inode) ((struct key *)(REISERFS_I(inode)->i_key))
1301
1302 #define MAX_UL_INT 0xffffffff
1303 #define MAX_INT    0x7ffffff
1304 #define MAX_US_INT 0xffff
1305
1306 // reiserfs version 2 has max offset 60 bits. Version 1 - 32 bit offset
1307 #define U32_MAX (~(__u32)0)
1308
1309 static inline loff_t max_reiserfs_offset (struct inode * inode)
1310 {
1311     if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5)
1312         return (loff_t)U32_MAX;
1313
1314     return (loff_t)((~(__u64)0) >> 4);
1315 }
1316
1317
1318 /*#define MAX_KEY_UNIQUENESS    MAX_UL_INT*/
1319 #define MAX_KEY_OBJECTID        MAX_UL_INT
1320
1321
1322 #define MAX_B_NUM  MAX_UL_INT
1323 #define MAX_FC_NUM MAX_US_INT
1324
1325
1326 /* the purpose is to detect overflow of an unsigned short */
1327 #define REISERFS_LINK_MAX (MAX_US_INT - 1000)
1328
1329
1330 /* The following defines are used in reiserfs_insert_item and reiserfs_append_item  */
1331 #define REISERFS_KERNEL_MEM             0       /* reiserfs kernel memory mode  */
1332 #define REISERFS_USER_MEM               1       /* reiserfs user memory mode            */
1333
1334 #define fs_generation(s) (REISERFS_SB(s)->s_generation_counter)
1335 #define get_generation(s) atomic_read (&fs_generation(s))
1336 #define FILESYSTEM_CHANGED_TB(tb)  (get_generation((tb)->tb_sb) != (tb)->fs_gen)
1337 #define __fs_changed(gen,s) (gen != get_generation (s))
1338 #define fs_changed(gen,s) ({cond_resched(); __fs_changed(gen, s);})
1339
1340
1341 /***************************************************************************/
1342 /*                  FIXATE NODES                                           */
1343 /***************************************************************************/
1344
1345 #define VI_TYPE_LEFT_MERGEABLE 1
1346 #define VI_TYPE_RIGHT_MERGEABLE 2
1347
1348 /* To make any changes in the tree we always first find node, that
1349    contains item to be changed/deleted or place to insert a new
1350    item. We call this node S. To do balancing we need to decide what
1351    we will shift to left/right neighbor, or to a new node, where new
1352    item will be etc. To make this analysis simpler we build virtual
1353    node. Virtual node is an array of items, that will replace items of
1354    node S. (For instance if we are going to delete an item, virtual
1355    node does not contain it). Virtual node keeps information about
1356    item sizes and types, mergeability of first and last items, sizes
1357    of all entries in directory item. We use this array of items when
1358    calculating what we can shift to neighbors and how many nodes we
1359    have to have if we do not any shiftings, if we shift to left/right
1360    neighbor or to both. */
1361 struct virtual_item
1362 {
1363     int vi_index; // index in the array of item operations
1364     unsigned short vi_type;     // left/right mergeability
1365     unsigned short vi_item_len;           /* length of item that it will have after balancing */
1366     struct item_head * vi_ih;
1367     const char * vi_item;     // body of item (old or new)
1368     const void * vi_new_data; // 0 always but paste mode
1369     void * vi_uarea;    // item specific area
1370 };
1371
1372
1373 struct virtual_node
1374 {
1375   char * vn_free_ptr;           /* this is a pointer to the free space in the buffer */
1376   unsigned short vn_nr_item;    /* number of items in virtual node */
1377   short vn_size;                /* size of node , that node would have if it has unlimited size and no balancing is performed */
1378   short vn_mode;                /* mode of balancing (paste, insert, delete, cut) */
1379   short vn_affected_item_num; 
1380   short vn_pos_in_item;
1381   struct item_head * vn_ins_ih; /* item header of inserted item, 0 for other modes */
1382   const void * vn_data;
1383   struct virtual_item * vn_vi;  /* array of items (including a new one, excluding item to be deleted) */
1384 };
1385
1386 /* used by directory items when creating virtual nodes */
1387 struct direntry_uarea {
1388     int flags;
1389     __u16 entry_count;
1390     __u16 entry_sizes[1];
1391 } __attribute__ ((__packed__)) ;
1392
1393
1394 /***************************************************************************/
1395 /*                  TREE BALANCE                                           */
1396 /***************************************************************************/
1397
1398 /* This temporary structure is used in tree balance algorithms, and
1399    constructed as we go to the extent that its various parts are
1400    needed.  It contains arrays of nodes that can potentially be
1401    involved in the balancing of node S, and parameters that define how
1402    each of the nodes must be balanced.  Note that in these algorithms
1403    for balancing the worst case is to need to balance the current node
1404    S and the left and right neighbors and all of their parents plus
1405    create a new node.  We implement S1 balancing for the leaf nodes
1406    and S0 balancing for the internal nodes (S1 and S0 are defined in
1407    our papers.)*/
1408
1409 #define MAX_FREE_BLOCK 7        /* size of the array of buffers to free at end of do_balance */
1410
1411 /* maximum number of FEB blocknrs on a single level */
1412 #define MAX_AMOUNT_NEEDED 2
1413
1414 /* someday somebody will prefix every field in this struct with tb_ */
1415 struct tree_balance
1416 {
1417   int tb_mode;
1418   int need_balance_dirty;
1419   struct super_block * tb_sb;
1420   struct reiserfs_transaction_handle *transaction_handle ;
1421   struct path * tb_path;
1422   struct buffer_head * L[MAX_HEIGHT];        /* array of left neighbors of nodes in the path */
1423   struct buffer_head * R[MAX_HEIGHT];        /* array of right neighbors of nodes in the path*/
1424   struct buffer_head * FL[MAX_HEIGHT];       /* array of fathers of the left  neighbors      */
1425   struct buffer_head * FR[MAX_HEIGHT];       /* array of fathers of the right neighbors      */
1426   struct buffer_head * CFL[MAX_HEIGHT];      /* array of common parents of center node and its left neighbor  */
1427   struct buffer_head * CFR[MAX_HEIGHT];      /* array of common parents of center node and its right neighbor */
1428
1429   struct buffer_head * FEB[MAX_FEB_SIZE]; /* array of empty buffers. Number of buffers in array equals
1430                                              cur_blknum. */
1431   struct buffer_head * used[MAX_FEB_SIZE];
1432   struct buffer_head * thrown[MAX_FEB_SIZE];
1433   int lnum[MAX_HEIGHT]; /* array of number of items which must be
1434                            shifted to the left in order to balance the
1435                            current node; for leaves includes item that
1436                            will be partially shifted; for internal
1437                            nodes, it is the number of child pointers
1438                            rather than items. It includes the new item
1439                            being created. The code sometimes subtracts
1440                            one to get the number of wholly shifted
1441                            items for other purposes. */
1442   int rnum[MAX_HEIGHT]; /* substitute right for left in comment above */
1443   int lkey[MAX_HEIGHT];               /* array indexed by height h mapping the key delimiting L[h] and
1444                                                S[h] to its item number within the node CFL[h] */
1445   int rkey[MAX_HEIGHT];               /* substitute r for l in comment above */
1446   int insert_size[MAX_HEIGHT];        /* the number of bytes by we are trying to add or remove from
1447                                                S[h]. A negative value means removing.  */
1448   int blknum[MAX_HEIGHT];             /* number of nodes that will replace node S[h] after
1449                                                balancing on the level h of the tree.  If 0 then S is
1450                                                being deleted, if 1 then S is remaining and no new nodes
1451                                                are being created, if 2 or 3 then 1 or 2 new nodes is
1452                                                being created */
1453
1454   /* fields that are used only for balancing leaves of the tree */
1455   int cur_blknum;       /* number of empty blocks having been already allocated                 */
1456   int s0num;             /* number of items that fall into left most  node when S[0] splits     */
1457   int s1num;             /* number of items that fall into first  new node when S[0] splits     */
1458   int s2num;             /* number of items that fall into second new node when S[0] splits     */
1459   int lbytes;            /* number of bytes which can flow to the left neighbor from the        left    */
1460   /* most liquid item that cannot be shifted from S[0] entirely         */
1461   /* if -1 then nothing will be partially shifted */
1462   int rbytes;            /* number of bytes which will flow to the right neighbor from the right        */
1463   /* most liquid item that cannot be shifted from S[0] entirely         */
1464   /* if -1 then nothing will be partially shifted                           */
1465   int s1bytes;          /* number of bytes which flow to the first  new node when S[0] splits   */
1466                                 /* note: if S[0] splits into 3 nodes, then items do not need to be cut  */
1467   int s2bytes;
1468   struct buffer_head * buf_to_free[MAX_FREE_BLOCK]; /* buffers which are to be freed after do_balance finishes by unfix_nodes */
1469   char * vn_buf;                /* kmalloced memory. Used to create
1470                                    virtual node and keep map of
1471                                    dirtied bitmap blocks */
1472   int vn_buf_size;              /* size of the vn_buf */
1473   struct virtual_node * tb_vn;  /* VN starts after bitmap of bitmap blocks */
1474
1475   int fs_gen;                  /* saved value of `reiserfs_generation' counter
1476                                   see FILESYSTEM_CHANGED() macro in reiserfs_fs.h */
1477 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1478   struct key  key;            /* key pointer, to pass to block allocator or
1479                                  another low-level subsystem */
1480 #endif
1481 } ;
1482
1483 /* These are modes of balancing */
1484
1485 /* When inserting an item. */
1486 #define M_INSERT        'i'
1487 /* When inserting into (directories only) or appending onto an already
1488    existant item. */
1489 #define M_PASTE         'p'
1490 /* When deleting an item. */
1491 #define M_DELETE        'd'
1492 /* When truncating an item or removing an entry from a (directory) item. */
1493 #define M_CUT           'c'
1494
1495 /* used when balancing on leaf level skipped (in reiserfsck) */
1496 #define M_INTERNAL      'n'
1497
1498 /* When further balancing is not needed, then do_balance does not need
1499    to be called. */
1500 #define M_SKIP_BALANCING                's'
1501 #define M_CONVERT       'v'
1502
1503 /* modes of leaf_move_items */
1504 #define LEAF_FROM_S_TO_L 0
1505 #define LEAF_FROM_S_TO_R 1
1506 #define LEAF_FROM_R_TO_L 2
1507 #define LEAF_FROM_L_TO_R 3
1508 #define LEAF_FROM_S_TO_SNEW 4
1509
1510 #define FIRST_TO_LAST 0
1511 #define LAST_TO_FIRST 1
1512
1513 /* used in do_balance for passing parent of node information that has
1514    been gotten from tb struct */
1515 struct buffer_info {
1516     struct tree_balance * tb;
1517     struct buffer_head * bi_bh;
1518     struct buffer_head * bi_parent;
1519     int bi_position;
1520 };
1521
1522
1523 /* there are 4 types of items: stat data, directory item, indirect, direct.
1524 +-------------------+------------+--------------+------------+
1525 |                   |  k_offset  | k_uniqueness | mergeable? |
1526 +-------------------+------------+--------------+------------+
1527 |     stat data     |   0        |      0       |   no       |
1528 +-------------------+------------+--------------+------------+
1529 | 1st directory item| DOT_OFFSET |DIRENTRY_UNIQUENESS|   no       | 
1530 | non 1st directory | hash value |              |   yes      |
1531 |     item          |            |              |            |
1532 +-------------------+------------+--------------+------------+
1533 | indirect item     | offset + 1 |TYPE_INDIRECT |   if this is not the first indirect item of the object
1534 +-------------------+------------+--------------+------------+
1535 | direct item       | offset + 1 |TYPE_DIRECT   | if not this is not the first direct item of the object
1536 +-------------------+------------+--------------+------------+
1537 */
1538
1539 struct item_operations {
1540     int (*bytes_number) (struct item_head * ih, int block_size);
1541     void (*decrement_key) (struct cpu_key *);
1542     int (*is_left_mergeable) (struct key * ih, unsigned long bsize);
1543     void (*print_item) (struct item_head *, char * item);
1544     void (*check_item) (struct item_head *, char * item);
1545
1546     int (*create_vi) (struct virtual_node * vn, struct virtual_item * vi, 
1547                       int is_affected, int insert_size);
1548     int (*check_left) (struct virtual_item * vi, int free, 
1549                             int start_skip, int end_skip);
1550     int (*check_right) (struct virtual_item * vi, int free);
1551     int (*part_size) (struct virtual_item * vi, int from, int to);
1552     int (*unit_num) (struct virtual_item * vi);
1553     void (*print_vi) (struct virtual_item * vi);
1554 };
1555
1556
1557 extern struct item_operations stat_data_ops, indirect_ops, direct_ops, 
1558   direntry_ops;
1559 extern struct item_operations * item_ops [TYPE_ANY + 1];
1560
1561 #define op_bytes_number(ih,bsize)                    item_ops[le_ih_k_type (ih)]->bytes_number (ih, bsize)
1562 #define op_is_left_mergeable(key,bsize)              item_ops[le_key_k_type (le_key_version (key), key)]->is_left_mergeable (key, bsize)
1563 #define op_print_item(ih,item)                       item_ops[le_ih_k_type (ih)]->print_item (ih, item)
1564 #define op_check_item(ih,item)                       item_ops[le_ih_k_type (ih)]->check_item (ih, item)
1565 #define op_create_vi(vn,vi,is_affected,insert_size)  item_ops[le_ih_k_type ((vi)->vi_ih)]->create_vi (vn,vi,is_affected,insert_size)
1566 #define op_check_left(vi,free,start_skip,end_skip) item_ops[(vi)->vi_index]->check_left (vi, free, start_skip, end_skip)
1567 #define op_check_right(vi,free)                      item_ops[(vi)->vi_index]->check_right (vi, free)
1568 #define op_part_size(vi,from,to)                     item_ops[(vi)->vi_index]->part_size (vi, from, to)
1569 #define op_unit_num(vi)                              item_ops[(vi)->vi_index]->unit_num (vi)
1570 #define op_print_vi(vi)                              item_ops[(vi)->vi_index]->print_vi (vi)
1571
1572
1573
1574
1575
1576 #define COMP_KEYS comp_keys
1577 #define COMP_SHORT_KEYS comp_short_keys
1578 /*#define keys_of_same_object comp_short_keys*/
1579
1580 /* number of blocks pointed to by the indirect item */
1581 #define I_UNFM_NUM(p_s_ih)      ( ih_item_len(p_s_ih) / UNFM_P_SIZE )
1582
1583 /* the used space within the unformatted node corresponding to pos within the item pointed to by ih */
1584 #define I_POS_UNFM_SIZE(ih,pos,size) (((pos) == I_UNFM_NUM(ih) - 1 ) ? (size) - ih_free_space(ih) : (size))
1585
1586 /* number of bytes contained by the direct item or the unformatted nodes the indirect item points to */
1587
1588
1589 /* get the item header */ 
1590 #define B_N_PITEM_HEAD(bh,item_num) ( (struct item_head * )((bh)->b_data + BLKH_SIZE) + (item_num) )
1591
1592 /* get key */
1593 #define B_N_PDELIM_KEY(bh,item_num) ( (struct key * )((bh)->b_data + BLKH_SIZE) + (item_num) )
1594
1595 /* get the key */
1596 #define B_N_PKEY(bh,item_num) ( &(B_N_PITEM_HEAD(bh,item_num)->ih_key) )
1597
1598 /* get item body */
1599 #define B_N_PITEM(bh,item_num) ( (bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(item_num))))
1600
1601 /* get the stat data by the buffer header and the item order */
1602 #define B_N_STAT_DATA(bh,nr) \
1603 ( (struct stat_data *)((bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(nr))) ) )
1604
1605     /* following defines use reiserfs buffer header and item header */
1606
1607 /* get stat-data */
1608 #define B_I_STAT_DATA(bh, ih) ( (struct stat_data * )((bh)->b_data + ih_location(ih)) )
1609
1610 // this is 3976 for size==4096
1611 #define MAX_DIRECT_ITEM_LEN(size) ((size) - BLKH_SIZE - 2*IH_SIZE - SD_SIZE - UNFM_P_SIZE)
1612
1613 /* indirect items consist of entries which contain blocknrs, pos
1614    indicates which entry, and B_I_POS_UNFM_POINTER resolves to the
1615    blocknr contained by the entry pos points to */
1616 #define B_I_POS_UNFM_POINTER(bh,ih,pos) le32_to_cpu(*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)))
1617 #define PUT_B_I_POS_UNFM_POINTER(bh,ih,pos, val) do {*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)) = cpu_to_le32(val); } while (0)
1618
1619 struct reiserfs_iget_args {
1620     __u32 objectid ;
1621     __u32 dirid ;
1622 } ;
1623
1624 /***************************************************************************/
1625 /*                    FUNCTION DECLARATIONS                                */
1626 /***************************************************************************/
1627
1628 /*#ifdef __KERNEL__*/
1629 #define get_journal_desc_magic(bh) (bh->b_data + bh->b_size - 12)
1630
1631 #define journal_trans_half(blocksize) \
1632         ((blocksize - sizeof (struct reiserfs_journal_desc) + sizeof (__u32) - 12) / sizeof (__u32))
1633
1634 /* journal.c see journal.c for all the comments here */
1635
1636 /* first block written in a commit.  */
1637 struct reiserfs_journal_desc {
1638   __u32 j_trans_id ;                    /* id of commit */
1639   __u32 j_len ;                 /* length of commit. len +1 is the commit block */
1640   __u32 j_mount_id ;                            /* mount id of this trans*/
1641   __u32 j_realblock[1] ; /* real locations for each block */
1642 } ;
1643
1644 #define get_desc_trans_id(d)   le32_to_cpu((d)->j_trans_id)
1645 #define get_desc_trans_len(d)  le32_to_cpu((d)->j_len)
1646 #define get_desc_mount_id(d)   le32_to_cpu((d)->j_mount_id)
1647
1648 #define set_desc_trans_id(d,val)       do { (d)->j_trans_id = cpu_to_le32 (val); } while (0)
1649 #define set_desc_trans_len(d,val)      do { (d)->j_len = cpu_to_le32 (val); } while (0)
1650 #define set_desc_mount_id(d,val)       do { (d)->j_mount_id = cpu_to_le32 (val); } while (0)
1651
1652 /* last block written in a commit */
1653 struct reiserfs_journal_commit {
1654   __u32 j_trans_id ;                    /* must match j_trans_id from the desc block */
1655   __u32 j_len ;                 /* ditto */
1656   __u32 j_realblock[1] ; /* real locations for each block */
1657 } ;
1658
1659 #define get_commit_trans_id(c) le32_to_cpu((c)->j_trans_id)
1660 #define get_commit_trans_len(c)        le32_to_cpu((c)->j_len)
1661 #define get_commit_mount_id(c) le32_to_cpu((c)->j_mount_id)
1662
1663 #define set_commit_trans_id(c,val)     do { (c)->j_trans_id = cpu_to_le32 (val); } while (0)
1664 #define set_commit_trans_len(c,val)    do { (c)->j_len = cpu_to_le32 (val); } while (0)
1665
1666 /* this header block gets written whenever a transaction is considered fully flushed, and is more recent than the
1667 ** last fully flushed transaction.  fully flushed means all the log blocks and all the real blocks are on disk,
1668 ** and this transaction does not need to be replayed.
1669 */
1670 struct reiserfs_journal_header {
1671   __u32 j_last_flush_trans_id ;         /* id of last fully flushed transaction */
1672   __u32 j_first_unflushed_offset ;      /* offset in the log of where to start replay after a crash */
1673   __u32 j_mount_id ;
1674   /* 12 */ struct journal_params jh_journal;
1675 } ;
1676
1677 /* biggest tunable defines are right here */
1678 #define JOURNAL_BLOCK_COUNT 8192 /* number of blocks in the journal */
1679 #define JOURNAL_TRANS_MAX_DEFAULT 1024   /* biggest possible single transaction, don't change for now (8/3/99) */
1680 #define JOURNAL_TRANS_MIN_DEFAULT 256
1681 #define JOURNAL_MAX_BATCH_DEFAULT   900 /* max blocks to batch into one transaction, don't make this any bigger than 900 */
1682 #define JOURNAL_MIN_RATIO 2
1683 #define JOURNAL_MAX_COMMIT_AGE 30 
1684 #define JOURNAL_MAX_TRANS_AGE 30
1685 #define JOURNAL_PER_BALANCE_CNT (3 * (MAX_HEIGHT-2) + 9)
1686
1687 /* both of these can be as low as 1, or as high as you want.  The min is the
1688 ** number of 4k bitmap nodes preallocated on mount. New nodes are allocated
1689 ** as needed, and released when transactions are committed.  On release, if 
1690 ** the current number of nodes is > max, the node is freed, otherwise, 
1691 ** it is put on a free list for faster use later.
1692 */
1693 #define REISERFS_MIN_BITMAP_NODES 10 
1694 #define REISERFS_MAX_BITMAP_NODES 100 
1695
1696 #define JBH_HASH_SHIFT 13 /* these are based on journal hash size of 8192 */
1697 #define JBH_HASH_MASK 8191
1698
1699 #define _jhashfn(sb,block)      \
1700         (((unsigned long)sb>>L1_CACHE_SHIFT) ^ \
1701          (((block)<<(JBH_HASH_SHIFT - 6)) ^ ((block) >> 13) ^ ((block) << (JBH_HASH_SHIFT - 12))))
1702 #define journal_hash(t,sb,block) ((t)[_jhashfn((sb),(block)) & JBH_HASH_MASK])
1703
1704 // We need these to make journal.c code more readable
1705 #define journal_find_get_block(s, block) __find_get_block(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
1706 #define journal_getblk(s, block) __getblk(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
1707 #define journal_bread(s, block) __bread(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
1708
1709 enum reiserfs_bh_state_bits {
1710     BH_JDirty = BH_PrivateStart,
1711     BH_JDirty_wait,
1712     BH_JNew,
1713     BH_JPrepared,
1714     BH_JRestore_dirty,
1715     BH_JTest, // debugging only will go away
1716 };
1717
1718 /*
1719 ** transaction handle which is passed around for all journal calls
1720 */
1721 struct reiserfs_transaction_handle {
1722   struct super_block *t_super ; /* super for this FS when journal_begin was
1723                                    called. saves calls to reiserfs_get_super
1724                                    also used by nested transactions to make
1725                                    sure they are nesting on the right FS
1726                                    _must_ be first in the handle
1727                                 */
1728   int t_refcount;
1729   int t_blocks_logged ;         /* number of blocks this writer has logged */
1730   int t_blocks_allocated ;      /* number of blocks this writer allocated */
1731   unsigned long t_trans_id ;    /* sanity check, equals the current trans id */
1732   void *t_handle_save ;         /* save existing current->journal_info */
1733   int displace_new_blocks:1;    /* if new block allocation occurres, that block
1734                                    should be displaced from others */
1735 } ;
1736
1737 /* used to keep track of ordered and tail writes, attached to the buffer
1738  * head through b_journal_head.
1739  */
1740 struct reiserfs_jh {
1741     struct reiserfs_journal_list *jl;
1742     struct buffer_head *bh;
1743     struct list_head list;
1744 };
1745
1746 void reiserfs_free_jh(struct buffer_head *bh);
1747 int reiserfs_add_tail_list(struct inode *inode, struct buffer_head *bh);
1748 int reiserfs_add_ordered_list(struct inode *inode, struct buffer_head *bh);
1749 int journal_mark_dirty(struct reiserfs_transaction_handle *, struct super_block *, struct buffer_head *bh) ;
1750
1751 static inline int reiserfs_transaction_running(struct super_block *s) {
1752     struct reiserfs_transaction_handle *th = current->journal_info ;
1753     if (th && th->t_super == s)
1754         return 1 ;
1755     if (th && th->t_super == NULL)
1756         BUG();
1757     return 0 ;
1758 }
1759
1760 int reiserfs_async_progress_wait(struct super_block *s);
1761
1762 struct reiserfs_transaction_handle *
1763 reiserfs_persistent_transaction(struct super_block *, int count);
1764 int reiserfs_end_persistent_transaction(struct reiserfs_transaction_handle *);
1765 int reiserfs_commit_page(struct inode *inode, struct page *page,
1766                 unsigned from, unsigned to);
1767 int reiserfs_flush_old_commits(struct super_block *);
1768 void reiserfs_commit_for_inode(struct inode *) ;
1769 void reiserfs_update_inode_transaction(struct inode *) ;
1770 void reiserfs_wait_on_write_block(struct super_block *s) ;
1771 void reiserfs_block_writes(struct reiserfs_transaction_handle *th) ;
1772 void reiserfs_allow_writes(struct super_block *s) ;
1773 void reiserfs_check_lock_depth(struct super_block *s, char *caller) ;
1774 int reiserfs_prepare_for_journal(struct super_block *, struct buffer_head *bh, int wait) ;
1775 void reiserfs_restore_prepared_buffer(struct super_block *, struct buffer_head *bh) ;
1776 int journal_init(struct super_block *, const char * j_dev_name, int old_format, unsigned int) ;
1777 int journal_release(struct reiserfs_transaction_handle*, struct super_block *) ;
1778 int journal_release_error(struct reiserfs_transaction_handle*, struct super_block *) ;
1779 int journal_end(struct reiserfs_transaction_handle *, struct super_block *, unsigned long) ;
1780 int journal_end_sync(struct reiserfs_transaction_handle *, struct super_block *, unsigned long) ;
1781 int journal_mark_freed(struct reiserfs_transaction_handle *, struct super_block *, b_blocknr_t blocknr) ;
1782 int journal_transaction_should_end(struct reiserfs_transaction_handle *, int) ;
1783 int reiserfs_in_journal(struct super_block *p_s_sb, int bmap_nr, int bit_nr, int searchall, b_blocknr_t *next) ;
1784 int journal_begin(struct reiserfs_transaction_handle *, struct super_block *p_s_sb, unsigned long) ;
1785
1786 int buffer_journaled(const struct buffer_head *bh) ;
1787 int mark_buffer_journal_new(struct buffer_head *bh) ;
1788 int reiserfs_allocate_list_bitmaps(struct super_block *s, struct reiserfs_list_bitmap *, int) ;
1789
1790                                 /* why is this kerplunked right here? */
1791 static inline int reiserfs_buffer_prepared(const struct buffer_head *bh) {
1792   if (bh && test_bit(BH_JPrepared, &bh->b_state))
1793     return 1 ;
1794   else
1795     return 0 ;
1796 }
1797
1798 /* buffer was journaled, waiting to get to disk */
1799 static inline int buffer_journal_dirty(const struct buffer_head *bh) {
1800   if (bh)
1801     return test_bit(BH_JDirty_wait, &bh->b_state) ;
1802   else
1803     return 0 ;
1804 }
1805 static inline int mark_buffer_notjournal_dirty(struct buffer_head *bh) {
1806   if (bh)
1807     clear_bit(BH_JDirty_wait, &bh->b_state) ;
1808   return 0 ;
1809 }
1810 static inline int mark_buffer_notjournal_new(struct buffer_head *bh) {
1811   if (bh) {
1812     clear_bit(BH_JNew, &bh->b_state) ;
1813   }
1814   return 0 ;
1815 }
1816
1817 void add_save_link (struct reiserfs_transaction_handle * th,
1818                                         struct inode * inode, int truncate);
1819 void remove_save_link (struct inode * inode, int truncate);
1820
1821 /* objectid.c */
1822 __u32 reiserfs_get_unused_objectid (struct reiserfs_transaction_handle *th);
1823 void reiserfs_release_objectid (struct reiserfs_transaction_handle *th, __u32 objectid_to_release);
1824 int reiserfs_convert_objectid_map_v1(struct super_block *) ;
1825
1826 /* stree.c */
1827 int B_IS_IN_TREE(const struct buffer_head *);
1828 extern inline void copy_short_key (void * to, const void * from);
1829 extern void copy_item_head(struct item_head * p_v_to,
1830                                                                   const struct item_head * p_v_from);
1831
1832 // first key is in cpu form, second - le
1833 extern int comp_keys (const struct key * le_key,
1834                              const struct cpu_key * cpu_key);
1835 extern int  comp_short_keys (const struct key * le_key,
1836                                     const struct cpu_key * cpu_key);
1837 extern void le_key2cpu_key (struct cpu_key * to, const struct key * from);
1838
1839 // both are cpu keys
1840 extern  int comp_cpu_keys (const struct cpu_key *, const struct cpu_key *);
1841 extern int comp_short_cpu_keys (const struct cpu_key *,
1842                                        const struct cpu_key *);
1843 extern void cpu_key2cpu_key (struct cpu_key *, const struct cpu_key *);
1844
1845 // both are in le form
1846 extern int comp_le_keys (const struct key *, const struct key *);
1847 extern int comp_short_le_keys (const struct key *, const struct key *);
1848
1849 //
1850 // get key version from on disk key - kludge
1851 //
1852 static inline int le_key_version (const struct key * key)
1853 {
1854     int type;
1855     
1856     type = offset_v2_k_type( &(key->u.k_offset_v2));
1857     if (type != TYPE_DIRECT && type != TYPE_INDIRECT && type != TYPE_DIRENTRY)
1858         return KEY_FORMAT_3_5;
1859
1860     return KEY_FORMAT_3_6;
1861         
1862 }
1863
1864
1865 static inline void copy_key (struct key *to, const struct key *from)
1866 {
1867     memcpy (to, from, KEY_SIZE);
1868 }
1869
1870
1871 int comp_items (const struct item_head * stored_ih, const struct path * p_s_path);
1872 const struct key * get_rkey (const struct path * p_s_chk_path, 
1873                                                          const struct super_block  * p_s_sb);
1874 inline int bin_search (const void * p_v_key, const void * p_v_base, 
1875                                            int p_n_num, int p_n_width, int * p_n_pos);
1876 int search_by_key (struct super_block *, const struct cpu_key *, 
1877                                    struct path *, int);
1878 #define search_item(s,key,path) search_by_key (s, key, path, DISK_LEAF_NODE_LEVEL)
1879 int search_for_position_by_key (struct super_block * p_s_sb, 
1880                                                                 const struct cpu_key * p_s_cpu_key, 
1881                                                                 struct path * p_s_search_path);
1882 extern void decrement_bcount (struct buffer_head * p_s_bh);
1883 void decrement_counters_in_path (struct path * p_s_search_path);
1884 void pathrelse (struct path * p_s_search_path);
1885 int reiserfs_check_path(struct path *p) ;
1886 void pathrelse_and_restore (struct super_block *s, struct path * p_s_search_path);
1887
1888 int reiserfs_insert_item (struct reiserfs_transaction_handle *th, 
1889                           struct path * path, 
1890                           const struct cpu_key * key,
1891                           struct item_head * ih,
1892                           struct inode *inode, const char * body);
1893
1894 int reiserfs_paste_into_item (struct reiserfs_transaction_handle *th,
1895                               struct path * path,
1896                               const struct cpu_key * key,
1897                               struct inode *inode,
1898                               const char * body, int paste_size);
1899
1900 int reiserfs_cut_from_item (struct reiserfs_transaction_handle *th,
1901                             struct path * path,
1902                             struct cpu_key * key,
1903                             struct inode * inode,
1904                             struct page *page,
1905                             loff_t new_file_size);
1906
1907 int reiserfs_delete_item (struct reiserfs_transaction_handle *th,
1908                           struct path * path, 
1909                           const struct cpu_key * key,
1910                           struct inode * inode, 
1911                           struct buffer_head  * p_s_un_bh);
1912
1913 void reiserfs_delete_solid_item (struct reiserfs_transaction_handle *th,
1914                                  struct inode *inode, struct key * key);
1915 void reiserfs_delete_object (struct reiserfs_transaction_handle *th, struct inode * p_s_inode);
1916 void reiserfs_do_truncate (struct reiserfs_transaction_handle *th, 
1917                            struct  inode * p_s_inode, struct page *, 
1918                            int update_timestamps);
1919
1920 #define i_block_size(inode) ((inode)->i_sb->s_blocksize)
1921 #define file_size(inode) ((inode)->i_size)
1922 #define tail_size(inode) (file_size (inode) & (i_block_size (inode) - 1))
1923
1924 #define tail_has_to_be_packed(inode) (have_large_tails ((inode)->i_sb)?\
1925 !STORE_TAIL_IN_UNFM_S1(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):have_small_tails ((inode)->i_sb)?!STORE_TAIL_IN_UNFM_S2(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):0 )
1926
1927 void padd_item (char * item, int total_length, int length);
1928
1929 /* inode.c */
1930 void restart_transaction(struct reiserfs_transaction_handle *th, struct inode *inode, struct path *path);
1931 void reiserfs_read_locked_inode(struct inode * inode, struct reiserfs_iget_args *args) ;
1932 int reiserfs_find_actor(struct inode * inode, void *p) ;
1933 int reiserfs_init_locked_inode(struct inode * inode, void *p) ;
1934 void reiserfs_delete_inode (struct inode * inode);
1935 void reiserfs_write_inode (struct inode * inode, int) ;
1936 struct dentry *reiserfs_get_dentry(struct super_block *, void *) ;
1937 struct dentry *reiserfs_decode_fh(struct super_block *sb, __u32 *data,
1938                                      int len, int fhtype,
1939                                   int (*acceptable)(void *contect, struct dentry *de),
1940                                   void *context) ;
1941 int reiserfs_encode_fh( struct dentry *dentry, __u32 *data, int *lenp, 
1942                                                 int connectable );
1943
1944 int reiserfs_prepare_write(struct file *, struct page *, unsigned, unsigned) ;
1945 void reiserfs_truncate_file(struct inode *, int update_timestamps) ;
1946 void make_cpu_key (struct cpu_key * cpu_key, struct inode * inode, loff_t offset,
1947                    int type, int key_length);
1948 void make_le_item_head (struct item_head * ih, const struct cpu_key * key, 
1949                         int version,
1950                         loff_t offset, int type, int length, int entry_count);
1951 struct inode * reiserfs_iget (struct super_block * s, 
1952                               const struct cpu_key * key);
1953
1954
1955 int reiserfs_new_inode (struct reiserfs_transaction_handle *th, 
1956                                    struct inode * dir, int mode, 
1957                                    const char * symname, loff_t i_size,
1958                                    struct dentry *dentry, struct inode *inode);
1959
1960 int reiserfs_sync_inode (struct reiserfs_transaction_handle *th,
1961                          struct inode * inode);
1962
1963 void reiserfs_update_sd_size (struct reiserfs_transaction_handle *th,
1964                               struct inode * inode, loff_t size);
1965
1966 static inline void reiserfs_update_sd(struct reiserfs_transaction_handle *th,
1967                                       struct inode *inode)
1968 {
1969     reiserfs_update_sd_size(th, inode, inode->i_size) ;
1970 }
1971
1972 void sd_attrs_to_i_attrs( __u16 sd_attrs, struct inode *inode );
1973 void i_attrs_to_sd_attrs( struct inode *inode, __u16 *sd_attrs );
1974 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr);
1975
1976 /* namei.c */
1977 void set_de_name_and_namelen (struct reiserfs_dir_entry * de);
1978 int search_by_entry_key (struct super_block * sb, const struct cpu_key * key, 
1979                          struct path * path, 
1980                          struct reiserfs_dir_entry * de);
1981 struct dentry *reiserfs_get_parent(struct dentry *) ;
1982 /* procfs.c */
1983
1984 #if defined( CONFIG_PROC_FS ) && defined( CONFIG_REISERFS_PROC_INFO )
1985 #define REISERFS_PROC_INFO
1986 #else
1987 #undef REISERFS_PROC_INFO
1988 #endif
1989
1990 int reiserfs_proc_info_init( struct super_block *sb );
1991 int reiserfs_proc_info_done( struct super_block *sb );
1992 struct proc_dir_entry *reiserfs_proc_register_global( char *name, 
1993                                                                                                           read_proc_t *func );
1994 void reiserfs_proc_unregister_global( const char *name );
1995 int reiserfs_proc_info_global_init( void );
1996 int reiserfs_proc_info_global_done( void );
1997 int reiserfs_global_version_in_proc( char *buffer, char **start, off_t offset,
1998                                                                          int count, int *eof, void *data );
1999
2000 #if defined( REISERFS_PROC_INFO )
2001
2002 #define PROC_EXP( e )   e
2003
2004 #define __PINFO( sb ) REISERFS_SB(sb) -> s_proc_info_data
2005 #define PROC_INFO_MAX( sb, field, value )                                                               \
2006     __PINFO( sb ).field =                                                                                               \
2007         max( REISERFS_SB( sb ) -> s_proc_info_data.field, value )
2008 #define PROC_INFO_INC( sb, field ) ( ++ ( __PINFO( sb ).field ) )
2009 #define PROC_INFO_ADD( sb, field, val ) ( __PINFO( sb ).field += ( val ) )
2010 #define PROC_INFO_BH_STAT( sb, bh, level )                                                      \
2011     PROC_INFO_INC( sb, sbk_read_at[ ( level ) ] );                                              \
2012     PROC_INFO_ADD( sb, free_at[ ( level ) ], B_FREE_SPACE( bh ) );      \
2013     PROC_INFO_ADD( sb, items_at[ ( level ) ], B_NR_ITEMS( bh ) )
2014 #else
2015 #define PROC_EXP( e )
2016 #define VOID_V ( ( void ) 0 )
2017 #define PROC_INFO_MAX( sb, field, value ) VOID_V
2018 #define PROC_INFO_INC( sb, field ) VOID_V
2019 #define PROC_INFO_ADD( sb, field, val ) VOID_V
2020 #define PROC_INFO_BH_STAT( p_s_sb, p_s_bh, n_node_level ) VOID_V
2021 #endif
2022
2023 /* dir.c */
2024 extern struct inode_operations reiserfs_dir_inode_operations;
2025 extern struct inode_operations reiserfs_symlink_inode_operations;
2026 extern struct inode_operations reiserfs_special_inode_operations;
2027 extern struct file_operations reiserfs_dir_operations;
2028
2029 /* tail_conversion.c */
2030 int direct2indirect (struct reiserfs_transaction_handle *, struct inode *, struct path *, struct buffer_head *, loff_t);
2031 int indirect2direct (struct reiserfs_transaction_handle *, struct inode *, struct page *, struct path *, const struct cpu_key *, loff_t, char *);
2032 void reiserfs_unmap_buffer(struct buffer_head *) ;
2033
2034
2035 /* file.c */
2036 extern struct inode_operations reiserfs_file_inode_operations;
2037 extern struct file_operations reiserfs_file_operations;
2038 extern struct address_space_operations reiserfs_address_space_operations ;
2039
2040 /* fix_nodes.c */
2041 #ifdef CONFIG_REISERFS_CHECK
2042 void * reiserfs_kmalloc (size_t size, int flags, struct super_block * s);
2043 void reiserfs_kfree (const void * vp, size_t size, struct super_block * s);
2044 #else
2045 static inline void *reiserfs_kmalloc(size_t size, int flags,
2046                                         struct super_block *s)
2047 {
2048         return kmalloc(size, flags);
2049 }
2050
2051 static inline void reiserfs_kfree(const void *vp, size_t size,
2052                                         struct super_block *s)
2053 {
2054         kfree(vp);
2055 }
2056 #endif
2057
2058 int fix_nodes (int n_op_mode, struct tree_balance * p_s_tb, 
2059                struct item_head * p_s_ins_ih, const void *);
2060 void unfix_nodes (struct tree_balance *);
2061 void free_buffers_in_tb (struct tree_balance * p_s_tb);
2062
2063
2064 /* prints.c */
2065 void reiserfs_panic (struct super_block * s, const char * fmt, ...) __attribute__ ( ( noreturn ) );
2066 void reiserfs_info (struct super_block *s, const char * fmt, ...);
2067 void reiserfs_printk (const char * fmt, ...);
2068 void reiserfs_debug (struct super_block *s, int level, const char * fmt, ...);
2069 void print_virtual_node (struct virtual_node * vn);
2070 void print_indirect_item (struct buffer_head * bh, int item_num);
2071 void store_print_tb (struct tree_balance * tb);
2072 void print_cur_tb (char * mes);
2073 void print_de (struct reiserfs_dir_entry * de);
2074 void print_bi (struct buffer_info * bi, char * mes);
2075 #define PRINT_LEAF_ITEMS 1   /* print all items */
2076 #define PRINT_DIRECTORY_ITEMS 2 /* print directory items */
2077 #define PRINT_DIRECT_ITEMS 4 /* print contents of direct items */
2078 void print_block (struct buffer_head * bh, ...);
2079 void print_path (struct tree_balance * tb, struct path * path);
2080 void print_bmap (struct super_block * s, int silent);
2081 void print_bmap_block (int i, char * data, int size, int silent);
2082 /*void print_super_block (struct super_block * s, char * mes);*/
2083 void print_objectid_map (struct super_block * s);
2084 void print_block_head (struct buffer_head * bh, char * mes);
2085 void check_leaf (struct buffer_head * bh);
2086 void check_internal (struct buffer_head * bh);
2087 void print_statistics (struct super_block * s);
2088 char * reiserfs_hashname(int code);
2089
2090 /* lbalance.c */
2091 int leaf_move_items (int shift_mode, struct tree_balance * tb, int mov_num, int mov_bytes, struct buffer_head * Snew);
2092 int leaf_shift_left (struct tree_balance * tb, int shift_num, int shift_bytes);
2093 int leaf_shift_right (struct tree_balance * tb, int shift_num, int shift_bytes);
2094 void leaf_delete_items (struct buffer_info * cur_bi, int last_first, int first, int del_num, int del_bytes);
2095 void leaf_insert_into_buf (struct buffer_info * bi, int before, 
2096                            struct item_head * inserted_item_ih, const char * inserted_item_body, int zeros_number);
2097 void leaf_paste_in_buffer (struct buffer_info * bi, int pasted_item_num, 
2098                            int pos_in_item, int paste_size, const char * body, int zeros_number);
2099 void leaf_cut_from_buffer (struct buffer_info * bi, int cut_item_num, int pos_in_item, 
2100                            int cut_size);
2101 void leaf_paste_entries (struct buffer_head * bh, int item_num, int before, 
2102                          int new_entry_count, struct reiserfs_de_head * new_dehs, const char * records, int paste_size);
2103 /* ibalance.c */
2104 int balance_internal (struct tree_balance * , int, int, struct item_head * , 
2105                       struct buffer_head **);
2106
2107 /* do_balance.c */
2108 void do_balance_mark_leaf_dirty (struct tree_balance * tb,
2109                                         struct buffer_head * bh, int flag);
2110 #define do_balance_mark_internal_dirty do_balance_mark_leaf_dirty
2111 #define do_balance_mark_sb_dirty do_balance_mark_leaf_dirty
2112
2113 void do_balance (struct tree_balance * tb, struct item_head * ih, 
2114                  const char * body, int flag);
2115 void reiserfs_invalidate_buffer (struct tree_balance * tb, struct buffer_head * bh);
2116
2117 int get_left_neighbor_position (struct tree_balance * tb, int h);
2118 int get_right_neighbor_position (struct tree_balance * tb, int h);
2119 void replace_key (struct tree_balance * tb, struct buffer_head *, int, struct buffer_head *, int);
2120 void replace_lkey (struct tree_balance *, int, struct item_head *);
2121 void replace_rkey (struct tree_balance *, int, struct item_head *);
2122 void make_empty_node (struct buffer_info *);
2123 struct buffer_head * get_FEB (struct tree_balance *);
2124
2125 /* bitmap.c */
2126
2127 /* structure contains hints for block allocator, and it is a container for
2128  * arguments, such as node, search path, transaction_handle, etc. */
2129  struct __reiserfs_blocknr_hint {
2130      struct inode * inode;              /* inode passed to allocator, if we allocate unf. nodes */
2131      long block;                        /* file offset, in blocks */
2132      struct key key;
2133      struct path * path;                /* search path, used by allocator to deternine search_start by
2134                                          * various ways */
2135      struct reiserfs_transaction_handle * th; /* transaction handle is needed to log super blocks and
2136                                                * bitmap blocks changes  */
2137      b_blocknr_t beg, end;
2138      b_blocknr_t search_start;          /* a field used to transfer search start value (block number)
2139                                          * between different block allocator procedures
2140                                          * (determine_search_start() and others) */
2141     int prealloc_size;                  /* is set in determine_prealloc_size() function, used by underlayed
2142                                          * function that do actual allocation */
2143
2144     int formatted_node:1;               /* the allocator uses different polices for getting disk space for
2145                                          * formatted/unformatted blocks with/without preallocation */
2146     int preallocate:1;
2147 };
2148
2149 typedef struct __reiserfs_blocknr_hint reiserfs_blocknr_hint_t;
2150
2151 int reiserfs_parse_alloc_options (struct super_block *, char *);
2152 int is_reusable (struct super_block * s, b_blocknr_t block, int bit_value);
2153 void reiserfs_free_block (struct reiserfs_transaction_handle *th, struct inode *, b_blocknr_t, int for_unformatted);
2154 int reiserfs_allocate_blocknrs(reiserfs_blocknr_hint_t *, b_blocknr_t * , int, int);
2155 extern inline int reiserfs_new_form_blocknrs (struct tree_balance * tb,
2156                                               b_blocknr_t *new_blocknrs, int amount_needed)
2157 {
2158     reiserfs_blocknr_hint_t hint = {
2159         .th = tb->transaction_handle,
2160         .path = tb->tb_path,
2161         .inode = NULL,
2162         .key = tb->key,
2163         .block = 0,
2164         .formatted_node = 1
2165     };
2166     return reiserfs_allocate_blocknrs(&hint, new_blocknrs, amount_needed, 0);
2167 }
2168
2169 extern inline int reiserfs_new_unf_blocknrs (struct reiserfs_transaction_handle *th,
2170                                              struct inode *inode,
2171                                              b_blocknr_t *new_blocknrs,
2172                                              struct path * path, long block)
2173 {
2174     reiserfs_blocknr_hint_t hint = {
2175         .th = th,
2176         .path = path,
2177         .inode = inode,
2178         .block = block,
2179         .formatted_node = 0,
2180         .preallocate = 0
2181     };
2182     return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
2183 }
2184
2185 #ifdef REISERFS_PREALLOCATE
2186 extern inline int reiserfs_new_unf_blocknrs2(struct reiserfs_transaction_handle *th,
2187                                              struct inode * inode,
2188                                              b_blocknr_t *new_blocknrs,
2189                                              struct path * path, long block)
2190 {
2191     reiserfs_blocknr_hint_t hint = {
2192         .th = th,
2193         .path = path,
2194         .inode = inode,
2195         .block = block,
2196         .formatted_node = 0,
2197         .preallocate = 1
2198     };
2199     return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
2200 }
2201
2202 void reiserfs_discard_prealloc (struct reiserfs_transaction_handle *th, 
2203                                 struct inode * inode);
2204 void reiserfs_discard_all_prealloc (struct reiserfs_transaction_handle *th);
2205 #endif
2206 void reiserfs_claim_blocks_to_be_allocated( struct super_block *sb, int blocks);
2207 void reiserfs_release_claimed_blocks( struct super_block *sb, int blocks);
2208 int reiserfs_can_fit_pages(struct super_block *sb);
2209
2210 /* hashes.c */
2211 __u32 keyed_hash (const signed char *msg, int len);
2212 __u32 yura_hash (const signed char *msg, int len);
2213 __u32 r5_hash (const signed char *msg, int len);
2214
2215 /* the ext2 bit routines adjust for big or little endian as
2216 ** appropriate for the arch, so in our laziness we use them rather
2217 ** than using the bit routines they call more directly.  These
2218 ** routines must be used when changing on disk bitmaps.  */
2219 #define reiserfs_test_and_set_le_bit   ext2_set_bit
2220 #define reiserfs_test_and_clear_le_bit ext2_clear_bit
2221 #define reiserfs_test_le_bit           ext2_test_bit
2222 #define reiserfs_find_next_zero_le_bit ext2_find_next_zero_bit
2223
2224 /* sometimes reiserfs_truncate may require to allocate few new blocks
2225    to perform indirect2direct conversion. People probably used to
2226    think, that truncate should work without problems on a filesystem
2227    without free disk space. They may complain that they can not
2228    truncate due to lack of free disk space. This spare space allows us
2229    to not worry about it. 500 is probably too much, but it should be
2230    absolutely safe */
2231 #define SPARE_SPACE 500
2232
2233
2234 /* prototypes from ioctl.c */
2235 int reiserfs_ioctl (struct inode * inode, struct file * filp, 
2236                     unsigned int cmd, unsigned long arg);
2237 int reiserfs_unpack (struct inode * inode, struct file * filp);
2238  
2239 /* ioctl's command */
2240 #define REISERFS_IOC_UNPACK             _IOW(0xCD,1,long)
2241 /* define following flags to be the same as in ext2, so that chattr(1),
2242    lsattr(1) will work with us. */
2243 #define REISERFS_IOC_GETFLAGS           EXT2_IOC_GETFLAGS
2244 #define REISERFS_IOC_SETFLAGS           EXT2_IOC_SETFLAGS
2245 #define REISERFS_IOC_GETVERSION         EXT2_IOC_GETVERSION
2246 #define REISERFS_IOC_SETVERSION         EXT2_IOC_SETVERSION
2247
2248 /* Locking primitives */
2249 /* Right now we are still falling back to (un)lock_kernel, but eventually that
2250    would evolve into real per-fs locks */
2251 #define reiserfs_write_lock( sb ) lock_kernel()
2252 #define reiserfs_write_unlock( sb ) unlock_kernel()
2253                                  
2254 /* xattr stuff */
2255 #define REISERFS_XATTR_DIR_SEM(s) (REISERFS_SB(s)->xattr_dir_sem)
2256
2257 #endif /* _LINUX_REISER_FS_H */
2258
2259