af4b6af3659101461ba13fb4441c98081317e5e3
[linux-2.6.git] / kernel / exit.c
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 #include <linux/config.h>
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/interrupt.h>
11 #include <linux/smp_lock.h>
12 #include <linux/module.h>
13 #include <linux/completion.h>
14 #include <linux/personality.h>
15 #include <linux/tty.h>
16 #include <linux/namespace.h>
17 #include <linux/security.h>
18 #include <linux/acct.h>
19 #include <linux/file.h>
20 #include <linux/binfmts.h>
21 #include <linux/ptrace.h>
22 #include <linux/profile.h>
23 #include <linux/mount.h>
24 #include <linux/proc_fs.h>
25 #include <linux/mempolicy.h>
26
27 #include <asm/uaccess.h>
28 #include <asm/unistd.h>
29 #include <asm/pgtable.h>
30 #include <asm/mmu_context.h>
31
32 extern void sem_exit (void);
33 extern struct task_struct *child_reaper;
34
35 int getrusage(struct task_struct *, int, struct rusage __user *);
36
37 static void __unhash_process(struct task_struct *p)
38 {
39         nr_threads--;
40         detach_pid(p, PIDTYPE_PID);
41         detach_pid(p, PIDTYPE_TGID);
42         if (thread_group_leader(p)) {
43                 detach_pid(p, PIDTYPE_PGID);
44                 detach_pid(p, PIDTYPE_SID);
45                 if (p->pid)
46                         __get_cpu_var(process_counts)--;
47         }
48
49         REMOVE_LINKS(p);
50 }
51
52 void release_task(struct task_struct * p)
53 {
54         int zap_leader;
55         task_t *leader;
56         struct dentry *proc_dentry;
57
58 repeat: 
59         BUG_ON(p->state < TASK_ZOMBIE);
60  
61         atomic_dec(&p->user->processes);
62         spin_lock(&p->proc_lock);
63         proc_dentry = proc_pid_unhash(p);
64         write_lock_irq(&tasklist_lock);
65         if (unlikely(p->ptrace))
66                 __ptrace_unlink(p);
67         BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children));
68         __exit_signal(p);
69         __exit_sighand(p);
70         __unhash_process(p);
71
72         /*
73          * If we are the last non-leader member of the thread
74          * group, and the leader is zombie, then notify the
75          * group leader's parent process. (if it wants notification.)
76          */
77         zap_leader = 0;
78         leader = p->group_leader;
79         if (leader != p && thread_group_empty(leader) && leader->state == TASK_ZOMBIE) {
80                 BUG_ON(leader->exit_signal == -1);
81                 do_notify_parent(leader, leader->exit_signal);
82                 /*
83                  * If we were the last child thread and the leader has
84                  * exited already, and the leader's parent ignores SIGCHLD,
85                  * then we are the one who should release the leader.
86                  *
87                  * do_notify_parent() will have marked it self-reaping in
88                  * that case.
89                  */
90                 zap_leader = (leader->exit_signal == -1);
91         }
92
93         p->parent->cutime += p->utime + p->cutime;
94         p->parent->cstime += p->stime + p->cstime;
95         p->parent->cmin_flt += p->min_flt + p->cmin_flt;
96         p->parent->cmaj_flt += p->maj_flt + p->cmaj_flt;
97         p->parent->cnvcsw += p->nvcsw + p->cnvcsw;
98         p->parent->cnivcsw += p->nivcsw + p->cnivcsw;
99         sched_exit(p);
100         write_unlock_irq(&tasklist_lock);
101         spin_unlock(&p->proc_lock);
102         proc_pid_flush(proc_dentry);
103         release_thread(p);
104         put_task_struct(p);
105
106         p = leader;
107         if (unlikely(zap_leader))
108                 goto repeat;
109 }
110
111 /* we are using it only for SMP init */
112
113 void unhash_process(struct task_struct *p)
114 {
115         struct dentry *proc_dentry;
116
117         spin_lock(&p->proc_lock);
118         proc_dentry = proc_pid_unhash(p);
119         write_lock_irq(&tasklist_lock);
120         __unhash_process(p);
121         write_unlock_irq(&tasklist_lock);
122         spin_unlock(&p->proc_lock);
123         proc_pid_flush(proc_dentry);
124 }
125
126 /*
127  * This checks not only the pgrp, but falls back on the pid if no
128  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
129  * without this...
130  */
131 int session_of_pgrp(int pgrp)
132 {
133         struct task_struct *p;
134         struct list_head *l;
135         struct pid *pid;
136         int sid = -1;
137
138         read_lock(&tasklist_lock);
139         for_each_task_pid(pgrp, PIDTYPE_PGID, p, l, pid)
140                 if (p->signal->session > 0) {
141                         sid = p->signal->session;
142                         goto out;
143                 }
144         p = find_task_by_pid(pgrp);
145         if (p)
146                 sid = p->signal->session;
147 out:
148         read_unlock(&tasklist_lock);
149         
150         return sid;
151 }
152
153 /*
154  * Determine if a process group is "orphaned", according to the POSIX
155  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
156  * by terminal-generated stop signals.  Newly orphaned process groups are
157  * to receive a SIGHUP and a SIGCONT.
158  *
159  * "I ask you, have you ever known what it is to be an orphan?"
160  */
161 static int will_become_orphaned_pgrp(int pgrp, task_t *ignored_task)
162 {
163         struct task_struct *p;
164         struct list_head *l;
165         struct pid *pid;
166         int ret = 1;
167
168         for_each_task_pid(pgrp, PIDTYPE_PGID, p, l, pid) {
169                 if (p == ignored_task
170                                 || p->state >= TASK_ZOMBIE 
171                                 || p->real_parent->pid == 1)
172                         continue;
173                 if (process_group(p->real_parent) != pgrp
174                             && p->real_parent->signal->session == p->signal->session) {
175                         ret = 0;
176                         break;
177                 }
178         }
179         return ret;     /* (sighing) "Often!" */
180 }
181
182 int is_orphaned_pgrp(int pgrp)
183 {
184         int retval;
185
186         read_lock(&tasklist_lock);
187         retval = will_become_orphaned_pgrp(pgrp, NULL);
188         read_unlock(&tasklist_lock);
189
190         return retval;
191 }
192
193 static inline int has_stopped_jobs(int pgrp)
194 {
195         int retval = 0;
196         struct task_struct *p;
197         struct list_head *l;
198         struct pid *pid;
199
200         for_each_task_pid(pgrp, PIDTYPE_PGID, p, l, pid) {
201                 if (p->state != TASK_STOPPED)
202                         continue;
203
204                 /* If p is stopped by a debugger on a signal that won't
205                    stop it, then don't count p as stopped.  This isn't
206                    perfect but it's a good approximation.  */
207                 if (unlikely (p->ptrace)
208                     && p->exit_code != SIGSTOP
209                     && p->exit_code != SIGTSTP
210                     && p->exit_code != SIGTTOU
211                     && p->exit_code != SIGTTIN)
212                         continue;
213
214                 retval = 1;
215                 break;
216         }
217         return retval;
218 }
219
220 /**
221  * reparent_to_init() - Reparent the calling kernel thread to the init task.
222  *
223  * If a kernel thread is launched as a result of a system call, or if
224  * it ever exits, it should generally reparent itself to init so that
225  * it is correctly cleaned up on exit.
226  *
227  * The various task state such as scheduling policy and priority may have
228  * been inherited from a user process, so we reset them to sane values here.
229  *
230  * NOTE that reparent_to_init() gives the caller full capabilities.
231  */
232 void reparent_to_init(void)
233 {
234         write_lock_irq(&tasklist_lock);
235
236         ptrace_unlink(current);
237         /* Reparent to init */
238         REMOVE_LINKS(current);
239         current->parent = child_reaper;
240         current->real_parent = child_reaper;
241         SET_LINKS(current);
242
243         /* Set the exit signal to SIGCHLD so we signal init on exit */
244         current->exit_signal = SIGCHLD;
245
246         if ((current->policy == SCHED_NORMAL) && (task_nice(current) < 0))
247                 set_user_nice(current, 0);
248         /* cpus_allowed? */
249         /* rt_priority? */
250         /* signals? */
251         security_task_reparent_to_init(current);
252         memcpy(current->rlim, init_task.rlim, sizeof(*(current->rlim)));
253         atomic_inc(&(INIT_USER->__count));
254         switch_uid(INIT_USER);
255
256         write_unlock_irq(&tasklist_lock);
257 }
258
259 void __set_special_pids(pid_t session, pid_t pgrp)
260 {
261         struct task_struct *curr = current;
262
263         if (curr->signal->session != session) {
264                 detach_pid(curr, PIDTYPE_SID);
265                 curr->signal->session = session;
266                 attach_pid(curr, PIDTYPE_SID, session);
267         }
268         if (process_group(curr) != pgrp) {
269                 detach_pid(curr, PIDTYPE_PGID);
270                 curr->signal->pgrp = pgrp;
271                 attach_pid(curr, PIDTYPE_PGID, pgrp);
272         }
273 }
274
275 void set_special_pids(pid_t session, pid_t pgrp)
276 {
277         write_lock_irq(&tasklist_lock);
278         __set_special_pids(session, pgrp);
279         write_unlock_irq(&tasklist_lock);
280 }
281
282 /*
283  * Let kernel threads use this to say that they
284  * allow a certain signal (since daemonize() will
285  * have disabled all of them by default).
286  */
287 int allow_signal(int sig)
288 {
289         if (sig < 1 || sig > _NSIG)
290                 return -EINVAL;
291
292         spin_lock_irq(&current->sighand->siglock);
293         sigdelset(&current->blocked, sig);
294         if (!current->mm) {
295                 /* Kernel threads handle their own signals.
296                    Let the signal code know it'll be handled, so
297                    that they don't get converted to SIGKILL or
298                    just silently dropped */
299                 current->sighand->action[(sig)-1].sa.sa_handler = (void *)2;
300         }
301         recalc_sigpending();
302         spin_unlock_irq(&current->sighand->siglock);
303         return 0;
304 }
305
306 EXPORT_SYMBOL(allow_signal);
307
308 int disallow_signal(int sig)
309 {
310         if (sig < 1 || sig > _NSIG)
311                 return -EINVAL;
312
313         spin_lock_irq(&current->sighand->siglock);
314         sigaddset(&current->blocked, sig);
315         recalc_sigpending();
316         spin_unlock_irq(&current->sighand->siglock);
317         return 0;
318 }
319
320 EXPORT_SYMBOL(disallow_signal);
321
322 /*
323  *      Put all the gunge required to become a kernel thread without
324  *      attached user resources in one place where it belongs.
325  */
326
327 void daemonize(const char *name, ...)
328 {
329         va_list args;
330         struct fs_struct *fs;
331         sigset_t blocked;
332
333         va_start(args, name);
334         vsnprintf(current->comm, sizeof(current->comm), name, args);
335         va_end(args);
336
337         /*
338          * If we were started as result of loading a module, close all of the
339          * user space pages.  We don't need them, and if we didn't close them
340          * they would be locked into memory.
341          */
342         exit_mm(current);
343
344         set_special_pids(1, 1);
345         current->signal->tty = NULL;
346
347         /* Block and flush all signals */
348         sigfillset(&blocked);
349         sigprocmask(SIG_BLOCK, &blocked, NULL);
350         flush_signals(current);
351
352         /* Become as one with the init task */
353
354         exit_fs(current);       /* current->fs->count--; */
355         fs = init_task.fs;
356         current->fs = fs;
357         atomic_inc(&fs->count);
358         exit_files(current);
359         current->files = init_task.files;
360         atomic_inc(&current->files->count);
361
362         reparent_to_init();
363 }
364
365 EXPORT_SYMBOL(daemonize);
366
367 static inline void close_files(struct files_struct * files)
368 {
369         int i, j;
370
371         j = 0;
372         for (;;) {
373                 unsigned long set;
374                 i = j * __NFDBITS;
375                 if (i >= files->max_fdset || i >= files->max_fds)
376                         break;
377                 set = files->open_fds->fds_bits[j++];
378                 while (set) {
379                         if (set & 1) {
380                                 struct file * file = xchg(&files->fd[i], NULL);
381                                 if (file)
382                                         filp_close(file, files);
383                         }
384                         i++;
385                         set >>= 1;
386                 }
387         }
388 }
389
390 struct files_struct *get_files_struct(struct task_struct *task)
391 {
392         struct files_struct *files;
393
394         task_lock(task);
395         files = task->files;
396         if (files)
397                 atomic_inc(&files->count);
398         task_unlock(task);
399
400         return files;
401 }
402
403 void fastcall put_files_struct(struct files_struct *files)
404 {
405         if (atomic_dec_and_test(&files->count)) {
406                 close_files(files);
407                 /*
408                  * Free the fd and fdset arrays if we expanded them.
409                  */
410                 if (files->fd != &files->fd_array[0])
411                         free_fd_array(files->fd, files->max_fds);
412                 if (files->max_fdset > __FD_SETSIZE) {
413                         free_fdset(files->open_fds, files->max_fdset);
414                         free_fdset(files->close_on_exec, files->max_fdset);
415                 }
416                 kmem_cache_free(files_cachep, files);
417         }
418 }
419
420 EXPORT_SYMBOL(put_files_struct);
421
422 static inline void __exit_files(struct task_struct *tsk)
423 {
424         struct files_struct * files = tsk->files;
425
426         if (files) {
427                 task_lock(tsk);
428                 tsk->files = NULL;
429                 task_unlock(tsk);
430                 put_files_struct(files);
431         }
432 }
433
434 void exit_files(struct task_struct *tsk)
435 {
436         __exit_files(tsk);
437 }
438
439 static inline void __put_fs_struct(struct fs_struct *fs)
440 {
441         /* No need to hold fs->lock if we are killing it */
442         if (atomic_dec_and_test(&fs->count)) {
443                 dput(fs->root);
444                 mntput(fs->rootmnt);
445                 dput(fs->pwd);
446                 mntput(fs->pwdmnt);
447                 if (fs->altroot) {
448                         dput(fs->altroot);
449                         mntput(fs->altrootmnt);
450                 }
451                 kmem_cache_free(fs_cachep, fs);
452         }
453 }
454
455 void put_fs_struct(struct fs_struct *fs)
456 {
457         __put_fs_struct(fs);
458 }
459
460 static inline void __exit_fs(struct task_struct *tsk)
461 {
462         struct fs_struct * fs = tsk->fs;
463
464         if (fs) {
465                 task_lock(tsk);
466                 tsk->fs = NULL;
467                 task_unlock(tsk);
468                 __put_fs_struct(fs);
469         }
470 }
471
472 void exit_fs(struct task_struct *tsk)
473 {
474         __exit_fs(tsk);
475 }
476
477 EXPORT_SYMBOL_GPL(exit_fs);
478
479 /*
480  * Turn us into a lazy TLB process if we
481  * aren't already..
482  */
483 static inline void __exit_mm(struct task_struct * tsk)
484 {
485         struct mm_struct *mm = tsk->mm;
486
487         mm_release(tsk, mm);
488         if (!mm)
489                 return;
490         /*
491          * Serialize with any possible pending coredump.
492          * We must hold mmap_sem around checking core_waiters
493          * and clearing tsk->mm.  The core-inducing thread
494          * will increment core_waiters for each thread in the
495          * group with ->mm != NULL.
496          */
497         down_read(&mm->mmap_sem);
498         if (mm->core_waiters) {
499                 up_read(&mm->mmap_sem);
500                 down_write(&mm->mmap_sem);
501                 if (!--mm->core_waiters)
502                         complete(mm->core_startup_done);
503                 up_write(&mm->mmap_sem);
504
505                 wait_for_completion(&mm->core_done);
506                 down_read(&mm->mmap_sem);
507         }
508         atomic_inc(&mm->mm_count);
509         if (mm != tsk->active_mm) BUG();
510         /* more a memory barrier than a real lock */
511         task_lock(tsk);
512         tsk->mm = NULL;
513         up_read(&mm->mmap_sem);
514         enter_lazy_tlb(mm, current);
515         task_unlock(tsk);
516         mmput(mm);
517 }
518
519 void exit_mm(struct task_struct *tsk)
520 {
521         __exit_mm(tsk);
522 }
523
524 EXPORT_SYMBOL(exit_mm);
525
526 static inline void choose_new_parent(task_t *p, task_t *reaper, task_t *child_reaper)
527 {
528         /*
529          * Make sure we're not reparenting to ourselves and that
530          * the parent is not a zombie.
531          */
532         if (p == reaper || reaper->state >= TASK_ZOMBIE)
533                 p->real_parent = child_reaper;
534         else
535                 p->real_parent = reaper;
536         if (p->parent == p->real_parent)
537                 BUG();
538 }
539
540 static inline void reparent_thread(task_t *p, task_t *father, int traced)
541 {
542         /* We don't want people slaying init.  */
543         if (p->exit_signal != -1)
544                 p->exit_signal = SIGCHLD;
545         p->self_exec_id++;
546
547         if (p->pdeath_signal)
548                 /* We already hold the tasklist_lock here.  */
549                 group_send_sig_info(p->pdeath_signal, (void *) 0, p);
550
551         /* Move the child from its dying parent to the new one.  */
552         if (unlikely(traced)) {
553                 /* Preserve ptrace links if someone else is tracing this child.  */
554                 list_del_init(&p->ptrace_list);
555                 if (p->parent != p->real_parent)
556                         list_add(&p->ptrace_list, &p->real_parent->ptrace_children);
557         } else {
558                 /* If this child is being traced, then we're the one tracing it
559                  * anyway, so let go of it.
560                  */
561                 p->ptrace = 0;
562                 list_del_init(&p->sibling);
563                 p->parent = p->real_parent;
564                 list_add_tail(&p->sibling, &p->parent->children);
565
566                 /* If we'd notified the old parent about this child's death,
567                  * also notify the new parent.
568                  */
569                 if (p->state == TASK_ZOMBIE && p->exit_signal != -1 &&
570                     thread_group_empty(p))
571                         do_notify_parent(p, p->exit_signal);
572         }
573
574         /*
575          * process group orphan check
576          * Case ii: Our child is in a different pgrp
577          * than we are, and it was the only connection
578          * outside, so the child pgrp is now orphaned.
579          */
580         if ((process_group(p) != process_group(father)) &&
581             (p->signal->session == father->signal->session)) {
582                 int pgrp = process_group(p);
583
584                 if (will_become_orphaned_pgrp(pgrp, NULL) && has_stopped_jobs(pgrp)) {
585                         __kill_pg_info(SIGHUP, (void *)1, pgrp);
586                         __kill_pg_info(SIGCONT, (void *)1, pgrp);
587                 }
588         }
589 }
590
591 /*
592  * When we die, we re-parent all our children.
593  * Try to give them to another thread in our thread
594  * group, and if no such member exists, give it to
595  * the global child reaper process (ie "init")
596  */
597 static inline void forget_original_parent(struct task_struct * father)
598 {
599         struct task_struct *p, *reaper = father;
600         struct list_head *_p, *_n;
601
602         reaper = father->group_leader;
603         if (reaper == father)
604                 reaper = child_reaper;
605
606         /*
607          * There are only two places where our children can be:
608          *
609          * - in our child list
610          * - in our ptraced child list
611          *
612          * Search them and reparent children.
613          */
614         list_for_each_safe(_p, _n, &father->children) {
615                 p = list_entry(_p,struct task_struct,sibling);
616                 if (father == p->real_parent) {
617                         choose_new_parent(p, reaper, child_reaper);
618                         reparent_thread(p, father, 0);
619                 } else {
620                         ptrace_unlink (p);
621                         if (p->state == TASK_ZOMBIE && p->exit_signal != -1 &&
622                             thread_group_empty(p))
623                                 do_notify_parent(p, p->exit_signal);
624                 }
625         }
626         list_for_each_safe(_p, _n, &father->ptrace_children) {
627                 p = list_entry(_p,struct task_struct,ptrace_list);
628                 choose_new_parent(p, reaper, child_reaper);
629                 reparent_thread(p, father, 1);
630         }
631 }
632
633 /*
634  * Send signals to all our closest relatives so that they know
635  * to properly mourn us..
636  */
637 static void exit_notify(struct task_struct *tsk)
638 {
639         int state;
640         struct task_struct *t;
641
642         if (signal_pending(tsk) && !tsk->signal->group_exit
643             && !thread_group_empty(tsk)) {
644                 /*
645                  * This occurs when there was a race between our exit
646                  * syscall and a group signal choosing us as the one to
647                  * wake up.  It could be that we are the only thread
648                  * alerted to check for pending signals, but another thread
649                  * should be woken now to take the signal since we will not.
650                  * Now we'll wake all the threads in the group just to make
651                  * sure someone gets all the pending signals.
652                  */
653                 read_lock(&tasklist_lock);
654                 spin_lock_irq(&tsk->sighand->siglock);
655                 for (t = next_thread(tsk); t != tsk; t = next_thread(t))
656                         if (!signal_pending(t) && !(t->flags & PF_EXITING)) {
657                                 recalc_sigpending_tsk(t);
658                                 if (signal_pending(t))
659                                         signal_wake_up(t, 0);
660                         }
661                 spin_unlock_irq(&tsk->sighand->siglock);
662                 read_unlock(&tasklist_lock);
663         }
664
665         write_lock_irq(&tasklist_lock);
666
667         /*
668          * This does two things:
669          *
670          * A.  Make init inherit all the child processes
671          * B.  Check to see if any process groups have become orphaned
672          *      as a result of our exiting, and if they have any stopped
673          *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
674          */
675
676         forget_original_parent(tsk);
677         BUG_ON(!list_empty(&tsk->children));
678
679         /*
680          * Check to see if any process groups have become orphaned
681          * as a result of our exiting, and if they have any stopped
682          * jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
683          *
684          * Case i: Our father is in a different pgrp than we are
685          * and we were the only connection outside, so our pgrp
686          * is about to become orphaned.
687          */
688          
689         t = tsk->real_parent;
690         
691         if ((process_group(t) != process_group(tsk)) &&
692             (t->signal->session == tsk->signal->session) &&
693             will_become_orphaned_pgrp(process_group(tsk), tsk) &&
694             has_stopped_jobs(process_group(tsk))) {
695                 __kill_pg_info(SIGHUP, (void *)1, process_group(tsk));
696                 __kill_pg_info(SIGCONT, (void *)1, process_group(tsk));
697         }
698
699         /* Let father know we died 
700          *
701          * Thread signals are configurable, but you aren't going to use
702          * that to send signals to arbitary processes. 
703          * That stops right now.
704          *
705          * If the parent exec id doesn't match the exec id we saved
706          * when we started then we know the parent has changed security
707          * domain.
708          *
709          * If our self_exec id doesn't match our parent_exec_id then
710          * we have changed execution domain as these two values started
711          * the same after a fork.
712          *      
713          */
714         
715         if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 &&
716             ( tsk->parent_exec_id != t->self_exec_id  ||
717               tsk->self_exec_id != tsk->parent_exec_id)
718             && !capable(CAP_KILL))
719                 tsk->exit_signal = SIGCHLD;
720
721
722         /* If something other than our normal parent is ptracing us, then
723          * send it a SIGCHLD instead of honoring exit_signal.  exit_signal
724          * only has special meaning to our real parent.
725          */
726         if (tsk->exit_signal != -1 && thread_group_empty(tsk)) {
727                 int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD;
728                 do_notify_parent(tsk, signal);
729         } else if (tsk->ptrace) {
730                 do_notify_parent(tsk, SIGCHLD);
731         }
732
733         state = TASK_ZOMBIE;
734         if (tsk->exit_signal == -1 && tsk->ptrace == 0)
735                 state = TASK_DEAD;
736         tsk->state = state;
737         tsk->flags |= PF_DEAD;
738
739         /*
740          * Clear these here so that update_process_times() won't try to deliver
741          * itimer, profile or rlimit signals to this task while it is in late exit.
742          */
743         tsk->it_virt_value = 0;
744         tsk->it_prof_value = 0;
745         tsk->rlim[RLIMIT_CPU].rlim_cur = RLIM_INFINITY;
746
747         /*
748          * In the preemption case it must be impossible for the task
749          * to get runnable again, so use "_raw_" unlock to keep
750          * preempt_count elevated until we schedule().
751          *
752          * To avoid deadlock on SMP, interrupts must be unmasked.  If we
753          * don't, subsequently called functions (e.g, wait_task_inactive()
754          * via release_task()) will spin, with interrupt flags
755          * unwittingly blocked, until the other task sleeps.  That task
756          * may itself be waiting for smp_call_function() to answer and
757          * complete, and with interrupts blocked that will never happen.
758          */
759         _raw_write_unlock(&tasklist_lock);
760         local_irq_enable();
761
762         /* If the process is dead, release it - nobody will wait for it */
763         if (state == TASK_DEAD)
764                 release_task(tsk);
765
766 }
767
768 asmlinkage NORET_TYPE void do_exit(long code)
769 {
770         struct task_struct *tsk = current;
771
772         if (unlikely(in_interrupt()))
773                 panic("Aiee, killing interrupt handler!");
774         if (unlikely(!tsk->pid))
775                 panic("Attempted to kill the idle task!");
776         if (unlikely(tsk->pid == 1))
777                 panic("Attempted to kill init!");
778         if (tsk->io_context)
779                 exit_io_context();
780         tsk->flags |= PF_EXITING;
781         del_timer_sync(&tsk->real_timer);
782
783         if (unlikely(in_atomic()))
784                 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
785                                 current->comm, current->pid,
786                                 preempt_count());
787
788         profile_exit_task(tsk);
789  
790         if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
791                 current->ptrace_message = code;
792                 ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP);
793         }
794
795         acct_process(code);
796         if (current->tux_info) {
797 #ifdef CONFIG_TUX_DEBUG
798                 printk("Possibly unexpected TUX-thread exit(%ld) at %p?\n",
799                         code, __builtin_return_address(0));
800 #endif
801                 current->tux_exit();
802         }
803         __exit_mm(tsk);
804
805         exit_sem(tsk);
806         __exit_files(tsk);
807         __exit_fs(tsk);
808         exit_namespace(tsk);
809         exit_thread();
810 #ifdef CONFIG_NUMA
811         mpol_free(tsk->mempolicy);
812 #endif
813
814         if (tsk->signal->leader)
815                 disassociate_ctty(1);
816
817         module_put(tsk->thread_info->exec_domain->module);
818         if (tsk->binfmt)
819                 module_put(tsk->binfmt->module);
820
821         tsk->exit_code = code;
822         exit_notify(tsk);
823         schedule();
824         BUG();
825         /* Avoid "noreturn function does return".  */
826         for (;;) ;
827 }
828
829 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
830 {
831         if (comp)
832                 complete(comp);
833         
834         do_exit(code);
835 }
836
837 EXPORT_SYMBOL(complete_and_exit);
838
839 asmlinkage long sys_exit(int error_code)
840 {
841         do_exit((error_code&0xff)<<8);
842 }
843
844 task_t fastcall *next_thread(const task_t *p)
845 {
846         const struct pid_link *link = p->pids + PIDTYPE_TGID;
847         const struct list_head *tmp, *head = &link->pidptr->task_list;
848
849 #ifdef CONFIG_SMP
850         if (!p->sighand)
851                 BUG();
852         if (!spin_is_locked(&p->sighand->siglock) &&
853                                 !rwlock_is_locked(&tasklist_lock))
854                 BUG();
855 #endif
856         tmp = link->pid_chain.next;
857         if (tmp == head)
858                 tmp = head->next;
859
860         return pid_task(tmp, PIDTYPE_TGID);
861 }
862
863 EXPORT_SYMBOL(next_thread);
864
865 /*
866  * Take down every thread in the group.  This is called by fatal signals
867  * as well as by sys_exit_group (below).
868  */
869 NORET_TYPE void
870 do_group_exit(int exit_code)
871 {
872         BUG_ON(exit_code & 0x80); /* core dumps don't get here */
873
874         if (current->signal->group_exit)
875                 exit_code = current->signal->group_exit_code;
876         else if (!thread_group_empty(current)) {
877                 struct signal_struct *const sig = current->signal;
878                 struct sighand_struct *const sighand = current->sighand;
879                 read_lock(&tasklist_lock);
880                 spin_lock_irq(&sighand->siglock);
881                 if (sig->group_exit)
882                         /* Another thread got here before we took the lock.  */
883                         exit_code = sig->group_exit_code;
884                 else {
885                         sig->group_exit = 1;
886                         sig->group_exit_code = exit_code;
887                         zap_other_threads(current);
888                 }
889                 spin_unlock_irq(&sighand->siglock);
890                 read_unlock(&tasklist_lock);
891         }
892
893         do_exit(exit_code);
894         /* NOTREACHED */
895 }
896
897 /*
898  * this kills every thread in the thread group. Note that any externally
899  * wait4()-ing process will get the correct exit code - even if this
900  * thread is not the thread group leader.
901  */
902 asmlinkage void sys_exit_group(int error_code)
903 {
904         do_group_exit((error_code & 0xff) << 8);
905 }
906
907 static int eligible_child(pid_t pid, int options, task_t *p)
908 {
909         if (pid > 0) {
910                 if (p->pid != pid)
911                         return 0;
912         } else if (!pid) {
913                 if (process_group(p) != process_group(current))
914                         return 0;
915         } else if (pid != -1) {
916                 if (process_group(p) != -pid)
917                         return 0;
918         }
919
920         /*
921          * Do not consider detached threads that are
922          * not ptraced:
923          */
924         if (p->exit_signal == -1 && !p->ptrace)
925                 return 0;
926
927         /* Wait for all children (clone and not) if __WALL is set;
928          * otherwise, wait for clone children *only* if __WCLONE is
929          * set; otherwise, wait for non-clone children *only*.  (Note:
930          * A "clone" child here is one that reports to its parent
931          * using a signal other than SIGCHLD.) */
932         if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
933             && !(options & __WALL))
934                 return 0;
935         /*
936          * Do not consider thread group leaders that are
937          * in a non-empty thread group:
938          */
939         if (current->tgid != p->tgid && delay_group_leader(p))
940                 return 2;
941
942         if (security_task_wait(p))
943                 return 0;
944
945         return 1;
946 }
947
948 /*
949  * Handle sys_wait4 work for one task in state TASK_ZOMBIE.  We hold
950  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
951  * the lock and this task is uninteresting.  If we return nonzero, we have
952  * released the lock and the system call should return.
953  */
954 static int wait_task_zombie(task_t *p, unsigned int __user *stat_addr, struct rusage __user *ru)
955 {
956         unsigned long state;
957         int retval;
958
959         /*
960          * Try to move the task's state to DEAD
961          * only one thread is allowed to do this:
962          */
963         state = xchg(&p->state, TASK_DEAD);
964         if (state != TASK_ZOMBIE) {
965                 BUG_ON(state != TASK_DEAD);
966                 return 0;
967         }
968         if (unlikely(p->exit_signal == -1 && p->ptrace == 0))
969                 /*
970                  * This can only happen in a race with a ptraced thread
971                  * dying on another processor.
972                  */
973                 return 0;
974
975         /*
976          * Now we are sure this task is interesting, and no other
977          * thread can reap it because we set its state to TASK_DEAD.
978          */
979         read_unlock(&tasklist_lock);
980
981         retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
982         if (!retval && stat_addr) {
983                 if (p->signal->group_exit)
984                         retval = put_user(p->signal->group_exit_code, stat_addr);
985                 else
986                         retval = put_user(p->exit_code, stat_addr);
987         }
988         if (retval) {
989                 p->state = TASK_ZOMBIE;
990                 return retval;
991         }
992         retval = p->pid;
993         if (p->real_parent != p->parent) {
994                 write_lock_irq(&tasklist_lock);
995                 /* Double-check with lock held.  */
996                 if (p->real_parent != p->parent) {
997                         __ptrace_unlink(p);
998                         p->state = TASK_ZOMBIE;
999                         /* If this is a detached thread, this is where it goes away.  */
1000                         if (p->exit_signal == -1) {
1001                                 /* release_task takes the lock itself.  */
1002                                 write_unlock_irq(&tasklist_lock);
1003                                 release_task (p);
1004                         }
1005                         else {
1006                                 do_notify_parent(p, p->exit_signal);
1007                                 write_unlock_irq(&tasklist_lock);
1008                         }
1009                         p = NULL;
1010                 }
1011                 else
1012                         write_unlock_irq(&tasklist_lock);
1013         }
1014         if (p != NULL)
1015                 release_task(p);
1016         BUG_ON(!retval);
1017         return retval;
1018 }
1019
1020 /*
1021  * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1022  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1023  * the lock and this task is uninteresting.  If we return nonzero, we have
1024  * released the lock and the system call should return.
1025  */
1026 static int wait_task_stopped(task_t *p, int delayed_group_leader,
1027                              unsigned int __user *stat_addr,
1028                              struct rusage __user *ru)
1029 {
1030         int retval, exit_code;
1031
1032         if (!p->exit_code)
1033                 return 0;
1034         if (delayed_group_leader && !(p->ptrace & PT_PTRACED) &&
1035             p->signal && p->signal->group_stop_count > 0)
1036                 /*
1037                  * A group stop is in progress and this is the group leader.
1038                  * We won't report until all threads have stopped.
1039                  */
1040                 return 0;
1041
1042         /*
1043          * Now we are pretty sure this task is interesting.
1044          * Make sure it doesn't get reaped out from under us while we
1045          * give up the lock and then examine it below.  We don't want to
1046          * keep holding onto the tasklist_lock while we call getrusage and
1047          * possibly take page faults for user memory.
1048          */
1049         get_task_struct(p);
1050         read_unlock(&tasklist_lock);
1051         write_lock_irq(&tasklist_lock);
1052
1053         /*
1054          * This uses xchg to be atomic with the thread resuming and setting
1055          * it.  It must also be done with the write lock held to prevent a
1056          * race with the TASK_ZOMBIE case.
1057          */
1058         exit_code = xchg(&p->exit_code, 0);
1059         if (unlikely(p->state > TASK_STOPPED)) {
1060                 /*
1061                  * The task resumed and then died.  Let the next iteration
1062                  * catch it in TASK_ZOMBIE.  Note that exit_code might
1063                  * already be zero here if it resumed and did _exit(0).
1064                  * The task itself is dead and won't touch exit_code again;
1065                  * other processors in this function are locked out.
1066                  */
1067                 p->exit_code = exit_code;
1068                 exit_code = 0;
1069         }
1070         if (unlikely(exit_code == 0)) {
1071                 /*
1072                  * Another thread in this function got to it first, or it
1073                  * resumed, or it resumed and then died.
1074                  */
1075                 write_unlock_irq(&tasklist_lock);
1076                 put_task_struct(p);
1077                 read_lock(&tasklist_lock);
1078                 return 0;
1079         }
1080
1081         /* move to end of parent's list to avoid starvation */
1082         remove_parent(p);
1083         add_parent(p, p->parent);
1084
1085         write_unlock_irq(&tasklist_lock);
1086
1087         retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1088         if (!retval && stat_addr)
1089                 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1090         if (!retval)
1091                 retval = p->pid;
1092         put_task_struct(p);
1093
1094         BUG_ON(!retval);
1095         return retval;
1096 }
1097
1098 asmlinkage long sys_wait4(pid_t pid,unsigned int __user *stat_addr, int options, struct rusage __user *ru)
1099 {
1100         DECLARE_WAITQUEUE(wait, current);
1101         struct task_struct *tsk;
1102         int flag, retval;
1103
1104         if (options & ~(WNOHANG|WUNTRACED|__WNOTHREAD|__WCLONE|__WALL))
1105                 return -EINVAL;
1106
1107         add_wait_queue(&current->wait_chldexit,&wait);
1108 repeat:
1109         flag = 0;
1110         current->state = TASK_INTERRUPTIBLE;
1111         read_lock(&tasklist_lock);
1112         tsk = current;
1113         do {
1114                 struct task_struct *p;
1115                 struct list_head *_p;
1116                 int ret;
1117
1118                 list_for_each(_p,&tsk->children) {
1119                         p = list_entry(_p,struct task_struct,sibling);
1120
1121                         ret = eligible_child(pid, options, p);
1122                         if (!ret)
1123                                 continue;
1124                         flag = 1;
1125
1126                         switch (p->state) {
1127                         case TASK_STOPPED:
1128                                 if (!(options & WUNTRACED) &&
1129                                     !(p->ptrace & PT_PTRACED))
1130                                         continue;
1131                                 retval = wait_task_stopped(p, ret == 2,
1132                                                            stat_addr, ru);
1133                                 if (retval != 0) /* He released the lock.  */
1134                                         goto end_wait4;
1135                                 break;
1136                         case TASK_ZOMBIE:
1137                                 /*
1138                                  * Eligible but we cannot release it yet:
1139                                  */
1140                                 if (ret == 2)
1141                                         continue;
1142                                 retval = wait_task_zombie(p, stat_addr, ru);
1143                                 if (retval != 0) /* He released the lock.  */
1144                                         goto end_wait4;
1145                                 break;
1146                         }
1147                 }
1148                 if (!flag) {
1149                         list_for_each (_p,&tsk->ptrace_children) {
1150                                 p = list_entry(_p,struct task_struct,ptrace_list);
1151                                 if (!eligible_child(pid, options, p))
1152                                         continue;
1153                                 flag = 1;
1154                                 break;
1155                         }
1156                 }
1157                 if (options & __WNOTHREAD)
1158                         break;
1159                 tsk = next_thread(tsk);
1160                 if (tsk->signal != current->signal)
1161                         BUG();
1162         } while (tsk != current);
1163         read_unlock(&tasklist_lock);
1164         if (flag) {
1165                 retval = 0;
1166                 if (options & WNOHANG)
1167                         goto end_wait4;
1168                 retval = -ERESTARTSYS;
1169                 if (signal_pending(current))
1170                         goto end_wait4;
1171                 schedule();
1172                 goto repeat;
1173         }
1174         retval = -ECHILD;
1175 end_wait4:
1176         current->state = TASK_RUNNING;
1177         remove_wait_queue(&current->wait_chldexit,&wait);
1178         return retval;
1179 }
1180
1181 #ifdef __ARCH_WANT_SYS_WAITPID
1182
1183 /*
1184  * sys_waitpid() remains for compatibility. waitpid() should be
1185  * implemented by calling sys_wait4() from libc.a.
1186  */
1187 asmlinkage long sys_waitpid(pid_t pid, unsigned __user *stat_addr, int options)
1188 {
1189         return sys_wait4(pid, stat_addr, options, NULL);
1190 }
1191
1192 #endif