1902e9d2eba2984914843973f11f3f1432b386a9
[linux-2.6.git] / kernel / fork.c
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13
14 #include <linux/config.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/unistd.h>
18 #include <linux/smp_lock.h>
19 #include <linux/module.h>
20 #include <linux/vmalloc.h>
21 #include <linux/completion.h>
22 #include <linux/namespace.h>
23 #include <linux/personality.h>
24 #include <linux/mempolicy.h>
25 #include <linux/sem.h>
26 #include <linux/file.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/fs.h>
31 #include <linux/cpu.h>
32 #include <linux/security.h>
33 #include <linux/swap.h>
34 #include <linux/syscalls.h>
35 #include <linux/jiffies.h>
36 #include <linux/futex.h>
37 #include <linux/ptrace.h>
38 #include <linux/mount.h>
39 #include <linux/audit.h>
40 #include <linux/profile.h>
41 #include <linux/rmap.h>
42 #include <linux/ckrm_events.h>
43 #include <linux/ckrm_tsk.h>
44 #include <linux/ckrm_mem_inline.h>
45 #include <linux/vs_network.h>
46 #include <linux/vs_limit.h>
47 #include <linux/vs_memory.h>
48
49 #include <asm/pgtable.h>
50 #include <asm/pgalloc.h>
51 #include <asm/uaccess.h>
52 #include <asm/mmu_context.h>
53 #include <asm/cacheflush.h>
54 #include <asm/tlbflush.h>
55
56 /* The idle threads do not count..
57  * Protected by write_lock_irq(&tasklist_lock)
58  */
59 int nr_threads;
60
61 int max_threads;
62 unsigned long total_forks;      /* Handle normal Linux uptimes. */
63
64 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
65
66 rwlock_t tasklist_lock __cacheline_aligned = RW_LOCK_UNLOCKED;  /* outer */
67
68 EXPORT_SYMBOL(tasklist_lock);
69
70 int nr_processes(void)
71 {
72         int cpu;
73         int total = 0;
74
75         for_each_online_cpu(cpu)
76                 total += per_cpu(process_counts, cpu);
77
78         return total;
79 }
80
81 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
82 # define alloc_task_struct()    kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
83 # define free_task_struct(tsk)  kmem_cache_free(task_struct_cachep, (tsk))
84 static kmem_cache_t *task_struct_cachep;
85 #endif
86
87 void free_task(struct task_struct *tsk)
88 {
89         free_thread_info(tsk->thread_info);
90         clr_vx_info(&tsk->vx_info);
91         clr_nx_info(&tsk->nx_info);
92         free_task_struct(tsk);
93 }
94 EXPORT_SYMBOL(free_task);
95
96 void __put_task_struct(struct task_struct *tsk)
97 {
98         WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
99         WARN_ON(atomic_read(&tsk->usage));
100         WARN_ON(tsk == current);
101
102         if (unlikely(tsk->audit_context))
103                 audit_free(tsk);
104         security_task_free(tsk);
105         free_uid(tsk->user);
106         put_group_info(tsk->group_info);
107
108         if (!profile_handoff_task(tsk))
109                 free_task(tsk);
110 }
111
112 void __init fork_init(unsigned long mempages)
113 {
114 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
115 #ifndef ARCH_MIN_TASKALIGN
116 #define ARCH_MIN_TASKALIGN      L1_CACHE_BYTES
117 #endif
118         /* create a slab on which task_structs can be allocated */
119         task_struct_cachep =
120                 kmem_cache_create("task_struct", sizeof(struct task_struct),
121                         ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
122 #endif
123
124         /*
125          * The default maximum number of threads is set to a safe
126          * value: the thread structures can take up at most half
127          * of memory.
128          */
129         max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
130
131         /*
132          * we need to allow at least 20 threads to boot a system
133          */
134         if(max_threads < 20)
135                 max_threads = 20;
136
137         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
138         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
139 }
140
141 static struct task_struct *dup_task_struct(struct task_struct *orig)
142 {
143         struct task_struct *tsk;
144         struct thread_info *ti;
145
146         prepare_to_copy(orig);
147
148         tsk = alloc_task_struct();
149         if (!tsk)
150                 return NULL;
151
152         ti = alloc_thread_info(tsk);
153         if (!ti) {
154                 free_task_struct(tsk);
155                 return NULL;
156         }
157
158         *ti = *orig->thread_info;
159         *tsk = *orig;
160         tsk->thread_info = ti;
161         ti->task = tsk;
162
163         ckrm_cb_newtask(tsk);
164         ckrm_task_mm_init(tsk);
165         /* One for us, one for whoever does the "release_task()" (usually parent) */
166         atomic_set(&tsk->usage,2);
167         return tsk;
168 }
169
170 #ifdef CONFIG_MMU
171 static inline int dup_mmap(struct mm_struct * mm, struct mm_struct * oldmm)
172 {
173         struct vm_area_struct * mpnt, *tmp, **pprev;
174         struct rb_node **rb_link, *rb_parent;
175         int retval;
176         unsigned long charge;
177         struct mempolicy *pol;
178
179         down_write(&oldmm->mmap_sem);
180         flush_cache_mm(current->mm);
181         mm->locked_vm = 0;
182         mm->mmap = NULL;
183         mm->mmap_cache = NULL;
184         mm->free_area_cache = oldmm->mmap_base;
185         mm->map_count = 0;
186         mm->rss = 0;
187         mm->anon_rss = 0;
188         cpus_clear(mm->cpu_vm_mask);
189         mm->mm_rb = RB_ROOT;
190         rb_link = &mm->mm_rb.rb_node;
191         rb_parent = NULL;
192         pprev = &mm->mmap;
193
194         for (mpnt = current->mm->mmap ; mpnt ; mpnt = mpnt->vm_next) {
195                 struct file *file;
196
197                 if (mpnt->vm_flags & VM_DONTCOPY) {
198                         __vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
199                                                         -vma_pages(mpnt));
200                         continue;
201                 }
202                 charge = 0;
203                 if (mpnt->vm_flags & VM_ACCOUNT) {
204                         unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
205                         if (security_vm_enough_memory(len))
206                                 goto fail_nomem;
207                         charge = len;
208                 }
209                 tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
210                 if (!tmp)
211                         goto fail_nomem;
212                 *tmp = *mpnt;
213                 pol = mpol_copy(vma_policy(mpnt));
214                 retval = PTR_ERR(pol);
215                 if (IS_ERR(pol))
216                         goto fail_nomem_policy;
217                 vma_set_policy(tmp, pol);
218                 tmp->vm_flags &= ~VM_LOCKED;
219                 tmp->vm_mm = mm;
220                 tmp->vm_next = NULL;
221                 anon_vma_link(tmp);
222                 file = tmp->vm_file;
223                 if (file) {
224                         struct inode *inode = file->f_dentry->d_inode;
225                         get_file(file);
226                         if (tmp->vm_flags & VM_DENYWRITE)
227                                 atomic_dec(&inode->i_writecount);
228       
229                         /* insert tmp into the share list, just after mpnt */
230                         spin_lock(&file->f_mapping->i_mmap_lock);
231                         flush_dcache_mmap_lock(file->f_mapping);
232                         vma_prio_tree_add(tmp, mpnt);
233                         flush_dcache_mmap_unlock(file->f_mapping);
234                         spin_unlock(&file->f_mapping->i_mmap_lock);
235                 }
236
237                 /*
238                  * Link in the new vma and copy the page table entries:
239                  * link in first so that swapoff can see swap entries,
240                  * and try_to_unmap_one's find_vma find the new vma.
241                  */
242                 spin_lock(&mm->page_table_lock);
243                 *pprev = tmp;
244                 pprev = &tmp->vm_next;
245
246                 __vma_link_rb(mm, tmp, rb_link, rb_parent);
247                 rb_link = &tmp->vm_rb.rb_right;
248                 rb_parent = &tmp->vm_rb;
249
250                 mm->map_count++;
251                 retval = copy_page_range(mm, current->mm, tmp);
252                 spin_unlock(&mm->page_table_lock);
253
254                 if (tmp->vm_ops && tmp->vm_ops->open)
255                         tmp->vm_ops->open(tmp);
256
257                 if (retval)
258                         goto out;
259         }
260         retval = 0;
261
262 out:
263         flush_tlb_mm(current->mm);
264         up_write(&oldmm->mmap_sem);
265         return retval;
266 fail_nomem_policy:
267         kmem_cache_free(vm_area_cachep, tmp);
268 fail_nomem:
269         retval = -ENOMEM;
270         vm_unacct_memory(charge);
271         goto out;
272 }
273
274 static inline int mm_alloc_pgd(struct mm_struct * mm)
275 {
276         mm->pgd = pgd_alloc(mm);
277         if (unlikely(!mm->pgd))
278                 return -ENOMEM;
279         return 0;
280 }
281
282 static inline void mm_free_pgd(struct mm_struct * mm)
283 {
284         pgd_free(mm->pgd);
285 }
286 #else
287 #define dup_mmap(mm, oldmm)     (0)
288 #define mm_alloc_pgd(mm)        (0)
289 #define mm_free_pgd(mm)
290 #endif /* CONFIG_MMU */
291
292 spinlock_t mmlist_lock __cacheline_aligned_in_smp = SPIN_LOCK_UNLOCKED;
293
294 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, SLAB_KERNEL))
295 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
296
297 #include <linux/init_task.h>
298
299 static struct mm_struct * mm_init(struct mm_struct * mm)
300 {
301         atomic_set(&mm->mm_users, 1);
302         atomic_set(&mm->mm_count, 1);
303         init_rwsem(&mm->mmap_sem);
304         INIT_LIST_HEAD(&mm->mmlist);
305         mm->core_waiters = 0;
306         mm->nr_ptes = 0;
307         spin_lock_init(&mm->page_table_lock);
308         rwlock_init(&mm->ioctx_list_lock);
309         mm->ioctx_list = NULL;
310         mm->default_kioctx = (struct kioctx)INIT_KIOCTX(mm->default_kioctx, *mm);
311         mm->free_area_cache = TASK_UNMAPPED_BASE;
312         ckrm_mm_init(mm);
313
314         if (likely(!mm_alloc_pgd(mm))) {
315                 mm->def_flags = 0;
316                 set_vx_info(&mm->mm_vx_info, current->vx_info);
317                 return mm;
318         }
319         free_mm(mm);
320         return NULL;
321 }
322
323 /*
324  * Allocate and initialize an mm_struct.
325  */
326 struct mm_struct * mm_alloc(void)
327 {
328         struct mm_struct * mm;
329
330         mm = allocate_mm();
331         if (mm) {
332                 memset(mm, 0, sizeof(*mm));
333                 mm = mm_init(mm);
334                 ckrm_mm_setclass(mm, ckrm_get_mem_class(current));
335         }
336         return mm;
337 }
338
339 /*
340  * Called when the last reference to the mm
341  * is dropped: either by a lazy thread or by
342  * mmput. Free the page directory and the mm.
343  */
344 void fastcall __mmdrop(struct mm_struct *mm)
345 {
346         BUG_ON(mm == &init_mm);
347         mm_free_pgd(mm);
348         destroy_context(mm);
349         ckrm_mm_clearclass(mm);
350         clr_vx_info(&mm->mm_vx_info);
351         free_mm(mm);
352 }
353
354 /*
355  * Decrement the use count and release all resources for an mm.
356  */
357 void mmput(struct mm_struct *mm)
358 {
359         if (atomic_dec_and_test(&mm->mm_users)) {
360                 exit_aio(mm);
361                 exit_mmap(mm);
362                 if (!list_empty(&mm->mmlist)) {
363                         spin_lock(&mmlist_lock);
364                         list_del(&mm->mmlist);
365                         spin_unlock(&mmlist_lock);
366                 }
367                 put_swap_token(mm);
368                 mmdrop(mm);
369         }
370 }
371 EXPORT_SYMBOL_GPL(mmput);
372
373 /**
374  * get_task_mm - acquire a reference to the task's mm
375  *
376  * Returns %NULL if the task has no mm.  Checks PF_BORROWED_MM (meaning
377  * this kernel workthread has transiently adopted a user mm with use_mm,
378  * to do its AIO) is not set and if so returns a reference to it, after
379  * bumping up the use count.  User must release the mm via mmput()
380  * after use.  Typically used by /proc and ptrace.
381  */
382 struct mm_struct *get_task_mm(struct task_struct *task)
383 {
384         struct mm_struct *mm;
385
386         task_lock(task);
387         mm = task->mm;
388         if (mm) {
389                 if (task->flags & PF_BORROWED_MM)
390                         mm = NULL;
391                 else
392                         atomic_inc(&mm->mm_users);
393         }
394         task_unlock(task);
395         return mm;
396 }
397 EXPORT_SYMBOL_GPL(get_task_mm);
398
399 /* Please note the differences between mmput and mm_release.
400  * mmput is called whenever we stop holding onto a mm_struct,
401  * error success whatever.
402  *
403  * mm_release is called after a mm_struct has been removed
404  * from the current process.
405  *
406  * This difference is important for error handling, when we
407  * only half set up a mm_struct for a new process and need to restore
408  * the old one.  Because we mmput the new mm_struct before
409  * restoring the old one. . .
410  * Eric Biederman 10 January 1998
411  */
412 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
413 {
414         struct completion *vfork_done = tsk->vfork_done;
415
416         /* Get rid of any cached register state */
417         deactivate_mm(tsk, mm);
418
419         /* notify parent sleeping on vfork() */
420         if (vfork_done) {
421                 tsk->vfork_done = NULL;
422                 complete(vfork_done);
423         }
424         if (tsk->clear_child_tid && atomic_read(&mm->mm_users) > 1) {
425                 u32 __user * tidptr = tsk->clear_child_tid;
426                 tsk->clear_child_tid = NULL;
427
428                 /*
429                  * We don't check the error code - if userspace has
430                  * not set up a proper pointer then tough luck.
431                  */
432                 put_user(0, tidptr);
433                 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
434         }
435 }
436
437 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
438 {
439         struct mm_struct * mm, *oldmm;
440         int retval;
441
442         tsk->min_flt = tsk->maj_flt = 0;
443         tsk->nvcsw = tsk->nivcsw = 0;
444
445         tsk->mm = NULL;
446         tsk->active_mm = NULL;
447
448         /*
449          * Are we cloning a kernel thread?
450          *
451          * We need to steal a active VM for that..
452          */
453         oldmm = current->mm;
454         if (!oldmm)
455                 return 0;
456
457         if (clone_flags & CLONE_VM) {
458                 atomic_inc(&oldmm->mm_users);
459                 mm = oldmm;
460                 /*
461                  * There are cases where the PTL is held to ensure no
462                  * new threads start up in user mode using an mm, which
463                  * allows optimizing out ipis; the tlb_gather_mmu code
464                  * is an example.
465                  */
466                 spin_unlock_wait(&oldmm->page_table_lock);
467                 goto good_mm;
468         }
469
470         retval = -ENOMEM;
471         mm = allocate_mm();
472         if (!mm)
473                 goto fail_nomem;
474
475         /* Copy the current MM stuff.. */
476         memcpy(mm, oldmm, sizeof(*mm));
477         mm->mm_vx_info = NULL;
478         if (!mm_init(mm))
479                 goto fail_nomem;
480
481         if (init_new_context(tsk,mm))
482                 goto fail_nocontext;
483
484         retval = dup_mmap(mm, oldmm);
485         if (retval)
486                 goto free_pt;
487
488 good_mm:
489         ckrm_mm_setclass(mm, oldmm->memclass);
490         tsk->mm = mm;
491         tsk->active_mm = mm;
492         ckrm_init_mm_to_task(mm, tsk);
493         return 0;
494
495 free_pt:
496         mmput(mm);
497 fail_nomem:
498         return retval;
499
500 fail_nocontext:
501         /*
502          * If init_new_context() failed, we cannot use mmput() to free the mm
503          * because it calls destroy_context()
504          */
505         mm_free_pgd(mm);
506         free_mm(mm);
507         return retval;
508 }
509
510 static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
511 {
512         struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
513         /* We don't need to lock fs - think why ;-) */
514         if (fs) {
515                 atomic_set(&fs->count, 1);
516                 rwlock_init(&fs->lock);
517                 fs->umask = old->umask;
518                 read_lock(&old->lock);
519                 fs->rootmnt = mntget(old->rootmnt);
520                 fs->root = dget(old->root);
521                 fs->pwdmnt = mntget(old->pwdmnt);
522                 fs->pwd = dget(old->pwd);
523                 if (old->altroot) {
524                         fs->altrootmnt = mntget(old->altrootmnt);
525                         fs->altroot = dget(old->altroot);
526                 } else {
527                         fs->altrootmnt = NULL;
528                         fs->altroot = NULL;
529                 }
530                 read_unlock(&old->lock);
531         }
532         return fs;
533 }
534
535 struct fs_struct *copy_fs_struct(struct fs_struct *old)
536 {
537         return __copy_fs_struct(old);
538 }
539
540 EXPORT_SYMBOL_GPL(copy_fs_struct);
541
542 static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
543 {
544         if (clone_flags & CLONE_FS) {
545                 atomic_inc(&current->fs->count);
546                 return 0;
547         }
548         tsk->fs = __copy_fs_struct(current->fs);
549         if (!tsk->fs)
550                 return -ENOMEM;
551         return 0;
552 }
553
554 static int count_open_files(struct files_struct *files, int size)
555 {
556         int i;
557
558         /* Find the last open fd */
559         for (i = size/(8*sizeof(long)); i > 0; ) {
560                 if (files->open_fds->fds_bits[--i])
561                         break;
562         }
563         i = (i+1) * 8 * sizeof(long);
564         return i;
565 }
566
567 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
568 {
569         struct files_struct *oldf, *newf;
570         struct file **old_fds, **new_fds;
571         int open_files, nfds, size, i, error = 0;
572
573         /*
574          * A background process may not have any files ...
575          */
576         oldf = current->files;
577         if (!oldf)
578                 goto out;
579
580         if (clone_flags & CLONE_FILES) {
581                 atomic_inc(&oldf->count);
582                 goto out;
583         }
584
585         /*
586          * Note: we may be using current for both targets (See exec.c)
587          * This works because we cache current->files (old) as oldf. Don't
588          * break this.
589          */
590         tsk->files = NULL;
591         error = -ENOMEM;
592         newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL);
593         if (!newf) 
594                 goto out;
595
596         atomic_set(&newf->count, 1);
597
598         spin_lock_init(&newf->file_lock);
599         newf->next_fd       = 0;
600         newf->max_fds       = NR_OPEN_DEFAULT;
601         newf->max_fdset     = __FD_SETSIZE;
602         newf->close_on_exec = &newf->close_on_exec_init;
603         newf->open_fds      = &newf->open_fds_init;
604         newf->fd            = &newf->fd_array[0];
605
606         /* We don't yet have the oldf readlock, but even if the old
607            fdset gets grown now, we'll only copy up to "size" fds */
608         size = oldf->max_fdset;
609         if (size > __FD_SETSIZE) {
610                 newf->max_fdset = 0;
611                 spin_lock(&newf->file_lock);
612                 error = expand_fdset(newf, size-1);
613                 spin_unlock(&newf->file_lock);
614                 if (error)
615                         goto out_release;
616         }
617         spin_lock(&oldf->file_lock);
618
619         open_files = count_open_files(oldf, size);
620
621         /*
622          * Check whether we need to allocate a larger fd array.
623          * Note: we're not a clone task, so the open count won't
624          * change.
625          */
626         nfds = NR_OPEN_DEFAULT;
627         if (open_files > nfds) {
628                 spin_unlock(&oldf->file_lock);
629                 newf->max_fds = 0;
630                 spin_lock(&newf->file_lock);
631                 error = expand_fd_array(newf, open_files-1);
632                 spin_unlock(&newf->file_lock);
633                 if (error) 
634                         goto out_release;
635                 nfds = newf->max_fds;
636                 spin_lock(&oldf->file_lock);
637         }
638
639         old_fds = oldf->fd;
640         new_fds = newf->fd;
641
642         memcpy(newf->open_fds->fds_bits, oldf->open_fds->fds_bits, open_files/8);
643         memcpy(newf->close_on_exec->fds_bits, oldf->close_on_exec->fds_bits, open_files/8);
644
645         for (i = open_files; i != 0; i--) {
646                 struct file *f = *old_fds++;
647                 if (f) {
648                         get_file(f);
649                 } else {
650                         /*
651                          * The fd may be claimed in the fd bitmap but not yet
652                          * instantiated in the files array if a sibling thread
653                          * is partway through open().  So make sure that this
654                          * fd is available to the new process.
655                          */
656                         FD_CLR(open_files - i, newf->open_fds);
657                 }
658                 *new_fds++ = f;
659         }
660         spin_unlock(&oldf->file_lock);
661
662         /* compute the remainder to be cleared */
663         size = (newf->max_fds - open_files) * sizeof(struct file *);
664
665         /* This is long word aligned thus could use a optimized version */ 
666         memset(new_fds, 0, size); 
667
668         if (newf->max_fdset > open_files) {
669                 int left = (newf->max_fdset-open_files)/8;
670                 int start = open_files / (8 * sizeof(unsigned long));
671
672                 memset(&newf->open_fds->fds_bits[start], 0, left);
673                 memset(&newf->close_on_exec->fds_bits[start], 0, left);
674         }
675
676         tsk->files = newf;
677         error = 0;
678 out:
679         return error;
680
681 out_release:
682         free_fdset (newf->close_on_exec, newf->max_fdset);
683         free_fdset (newf->open_fds, newf->max_fdset);
684         kmem_cache_free(files_cachep, newf);
685         goto out;
686 }
687
688 /*
689  *      Helper to unshare the files of the current task.
690  *      We don't want to expose copy_files internals to
691  *      the exec layer of the kernel.
692  */
693
694 int unshare_files(void)
695 {
696         struct files_struct *files  = current->files;
697         int rc;
698
699         if(!files)
700                 BUG();
701
702         /* This can race but the race causes us to copy when we don't
703            need to and drop the copy */
704         if(atomic_read(&files->count) == 1)
705         {
706                 atomic_inc(&files->count);
707                 return 0;
708         }
709         rc = copy_files(0, current);
710         if(rc)
711                 current->files = files;
712         return rc;
713 }
714
715 EXPORT_SYMBOL(unshare_files);
716
717 static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
718 {
719         struct sighand_struct *sig;
720
721         if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
722                 atomic_inc(&current->sighand->count);
723                 return 0;
724         }
725         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
726         tsk->sighand = sig;
727         if (!sig)
728                 return -ENOMEM;
729         spin_lock_init(&sig->siglock);
730         atomic_set(&sig->count, 1);
731         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
732         return 0;
733 }
734
735 static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
736 {
737         struct signal_struct *sig;
738
739         if (clone_flags & CLONE_THREAD) {
740                 atomic_inc(&current->signal->count);
741                 atomic_inc(&current->signal->live);
742                 return 0;
743         }
744         sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
745         tsk->signal = sig;
746         if (!sig)
747                 return -ENOMEM;
748         atomic_set(&sig->count, 1);
749         atomic_set(&sig->live, 1);
750         sig->group_exit = 0;
751         sig->group_exit_code = 0;
752         sig->group_exit_task = NULL;
753         sig->group_stop_count = 0;
754         sig->stop_state = 0;
755         sig->curr_target = NULL;
756         init_sigpending(&sig->shared_pending);
757         INIT_LIST_HEAD(&sig->posix_timers);
758
759         sig->tty = current->signal->tty;
760         sig->pgrp = process_group(current);
761         sig->session = current->signal->session;
762         sig->leader = 0;        /* session leadership doesn't inherit */
763         sig->tty_old_pgrp = 0;
764
765         sig->utime = sig->stime = sig->cutime = sig->cstime = 0;
766         sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
767         sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
768
769         task_lock(current->group_leader);
770         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
771         task_unlock(current->group_leader);
772
773         return 0;
774 }
775
776 static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
777 {
778         unsigned long new_flags = p->flags;
779
780         new_flags &= ~PF_SUPERPRIV;
781         new_flags |= PF_FORKNOEXEC;
782         if (!(clone_flags & CLONE_PTRACE))
783                 p->ptrace = 0;
784         p->flags = new_flags;
785 }
786
787 asmlinkage long sys_set_tid_address(int __user *tidptr)
788 {
789         current->clear_child_tid = tidptr;
790
791         return current->pid;
792 }
793
794 /*
795  * This creates a new process as a copy of the old one,
796  * but does not actually start it yet.
797  *
798  * It copies the registers, and all the appropriate
799  * parts of the process environment (as per the clone
800  * flags). The actual kick-off is left to the caller.
801  */
802 static task_t *copy_process(unsigned long clone_flags,
803                                  unsigned long stack_start,
804                                  struct pt_regs *regs,
805                                  unsigned long stack_size,
806                                  int __user *parent_tidptr,
807                                  int __user *child_tidptr,
808                                  int pid)
809 {
810         int retval;
811         struct task_struct *p = NULL;
812         struct vx_info *vxi;
813
814         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
815                 return ERR_PTR(-EINVAL);
816
817         /*
818          * Thread groups must share signals as well, and detached threads
819          * can only be started up within the thread group.
820          */
821         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
822                 return ERR_PTR(-EINVAL);
823
824         /*
825          * Shared signal handlers imply shared VM. By way of the above,
826          * thread groups also imply shared VM. Blocking this case allows
827          * for various simplifications in other code.
828          */
829         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
830                 return ERR_PTR(-EINVAL);
831
832         retval = security_task_create(clone_flags);
833         if (retval)
834                 goto fork_out;
835
836         retval = -ENOMEM;
837         p = dup_task_struct(current);
838         if (!p)
839                 goto fork_out;
840         p->tux_info = NULL;
841
842         p->vx_info = NULL;
843         set_vx_info(&p->vx_info, current->vx_info);
844         p->nx_info = NULL;
845         set_nx_info(&p->nx_info, current->nx_info);
846
847         /* check vserver memory */
848         if (p->mm && !(clone_flags & CLONE_VM)) {
849                 if (vx_vmpages_avail(p->mm, p->mm->total_vm))
850                         vx_pages_add(p->mm->mm_vx_info, RLIMIT_AS, p->mm->total_vm);
851                 else
852                         goto bad_fork_free;
853         }
854         if (p->mm && vx_flags(VXF_FORK_RSS, 0)) {
855                 if (!vx_rsspages_avail(p->mm, p->mm->rss))
856                         goto bad_fork_cleanup_vm;
857         }
858
859         p->vx_info = NULL;
860         set_vx_info(&p->vx_info, current->vx_info);
861         p->nx_info = NULL;
862         set_nx_info(&p->nx_info, current->nx_info);
863
864         /* check vserver memory */
865         if (p->mm && !(clone_flags & CLONE_VM)) {
866                 if (vx_vmpages_avail(p->mm, p->mm->total_vm))
867                         vx_pages_add(p->mm->mm_vx_info, RLIMIT_AS, p->mm->total_vm);
868                 else
869                         goto bad_fork_free;
870         }
871         if (p->mm && vx_flags(VXF_FORK_RSS, 0)) {
872                 if (!vx_rsspages_avail(p->mm, p->mm->rss))
873                         goto bad_fork_cleanup_vm;
874         }
875
876         retval = -EAGAIN;
877         if (!vx_nproc_avail(1))
878                 goto bad_fork_cleanup_vm;
879
880         if (atomic_read(&p->user->processes) >=
881                         p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
882                 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
883                                 p->user != &root_user)
884                         goto bad_fork_cleanup_vm;
885         }
886
887         atomic_inc(&p->user->__count);
888         atomic_inc(&p->user->processes);
889         get_group_info(p->group_info);
890
891         /*
892          * If multiple threads are within copy_process(), then this check
893          * triggers too late. This doesn't hurt, the check is only there
894          * to stop root fork bombs.
895          */
896         if (nr_threads >= max_threads)
897                 goto bad_fork_cleanup_count;
898
899         if (!try_module_get(p->thread_info->exec_domain->module))
900                 goto bad_fork_cleanup_count;
901
902         if (p->binfmt && !try_module_get(p->binfmt->module))
903                 goto bad_fork_cleanup_put_domain;
904
905         init_delays(p);
906         p->did_exec = 0;
907         copy_flags(clone_flags, p);
908         p->pid = pid;
909         retval = -EFAULT;
910         if (clone_flags & CLONE_PARENT_SETTID)
911                 if (put_user(p->pid, parent_tidptr))
912                         goto bad_fork_cleanup;
913
914         p->proc_dentry = NULL;
915
916         INIT_LIST_HEAD(&p->children);
917         INIT_LIST_HEAD(&p->sibling);
918         init_waitqueue_head(&p->wait_chldexit);
919         p->vfork_done = NULL;
920         spin_lock_init(&p->alloc_lock);
921         spin_lock_init(&p->proc_lock);
922
923         clear_tsk_thread_flag(p, TIF_SIGPENDING);
924         init_sigpending(&p->pending);
925
926         p->it_real_value = p->it_virt_value = p->it_prof_value = 0;
927         p->it_real_incr = p->it_virt_incr = p->it_prof_incr = 0;
928         init_timer(&p->real_timer);
929         p->real_timer.data = (unsigned long) p;
930
931         p->utime = p->stime = 0;
932         p->lock_depth = -1;             /* -1 = no lock */
933         do_posix_clock_monotonic_gettime(&p->start_time);
934         p->security = NULL;
935         p->io_context = NULL;
936         p->io_wait = NULL;
937         p->audit_context = NULL;
938 #ifdef CONFIG_NUMA
939         p->mempolicy = mpol_copy(p->mempolicy);
940         if (IS_ERR(p->mempolicy)) {
941                 retval = PTR_ERR(p->mempolicy);
942                 p->mempolicy = NULL;
943                 goto bad_fork_cleanup;
944         }
945 #endif
946
947         p->tgid = p->pid;
948         if (clone_flags & CLONE_THREAD)
949                 p->tgid = current->tgid;
950
951         if ((retval = security_task_alloc(p)))
952                 goto bad_fork_cleanup_policy;
953         if ((retval = audit_alloc(p)))
954                 goto bad_fork_cleanup_security;
955         /* copy all the process information */
956         if ((retval = copy_semundo(clone_flags, p)))
957                 goto bad_fork_cleanup_audit;
958         if ((retval = copy_files(clone_flags, p)))
959                 goto bad_fork_cleanup_semundo;
960         if ((retval = copy_fs(clone_flags, p)))
961                 goto bad_fork_cleanup_files;
962         if ((retval = copy_sighand(clone_flags, p)))
963                 goto bad_fork_cleanup_fs;
964         if ((retval = copy_signal(clone_flags, p)))
965                 goto bad_fork_cleanup_sighand;
966         if ((retval = copy_mm(clone_flags, p)))
967                 goto bad_fork_cleanup_signal;
968         if ((retval = copy_keys(clone_flags, p)))
969                 goto bad_fork_cleanup_mm;
970         if ((retval = copy_namespace(clone_flags, p)))
971                 goto bad_fork_cleanup_keys;
972         retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
973         if (retval)
974                 goto bad_fork_cleanup_namespace;
975
976         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
977         /*
978          * Clear TID on mm_release()?
979          */
980         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
981
982         /*
983          * Syscall tracing should be turned off in the child regardless
984          * of CLONE_PTRACE.
985          */
986         clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
987
988         /* Our parent execution domain becomes current domain
989            These must match for thread signalling to apply */
990            
991         p->parent_exec_id = p->self_exec_id;
992
993         /* ok, now we should be set up.. */
994         p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
995         p->pdeath_signal = 0;
996         p->exit_state = 0;
997
998         /* Perform scheduler related setup */
999         sched_fork(p);
1000
1001         /*
1002          * Ok, make it visible to the rest of the system.
1003          * We dont wake it up yet.
1004          */
1005         p->group_leader = p;
1006         INIT_LIST_HEAD(&p->ptrace_children);
1007         INIT_LIST_HEAD(&p->ptrace_list);
1008
1009         /* Need tasklist lock for parent etc handling! */
1010         write_lock_irq(&tasklist_lock);
1011
1012         /*
1013          * The task hasn't been attached yet, so cpus_allowed mask cannot
1014          * have changed. The cpus_allowed mask of the parent may have
1015          * changed after it was copied first time, and it may then move to
1016          * another CPU - so we re-copy it here and set the child's CPU to
1017          * the parent's CPU. This avoids alot of nasty races.
1018          */
1019         p->cpus_allowed = current->cpus_allowed;
1020         set_task_cpu(p, smp_processor_id());
1021
1022         /*
1023          * Check for pending SIGKILL! The new thread should not be allowed
1024          * to slip out of an OOM kill. (or normal SIGKILL.)
1025          */
1026         if (sigismember(&current->pending.signal, SIGKILL)) {
1027                 write_unlock_irq(&tasklist_lock);
1028                 retval = -EINTR;
1029                 goto bad_fork_cleanup_namespace;
1030         }
1031
1032         /* CLONE_PARENT re-uses the old parent */
1033         if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1034                 p->real_parent = current->real_parent;
1035         else
1036                 p->real_parent = current;
1037         p->parent = p->real_parent;
1038
1039         if (clone_flags & CLONE_THREAD) {
1040                 spin_lock(&current->sighand->siglock);
1041                 /*
1042                  * Important: if an exit-all has been started then
1043                  * do not create this new thread - the whole thread
1044                  * group is supposed to exit anyway.
1045                  */
1046                 if (current->signal->group_exit) {
1047                         spin_unlock(&current->sighand->siglock);
1048                         write_unlock_irq(&tasklist_lock);
1049                         retval = -EAGAIN;
1050                         goto bad_fork_cleanup_namespace;
1051                 }
1052                 p->group_leader = current->group_leader;
1053
1054                 if (current->signal->group_stop_count > 0) {
1055                         /*
1056                          * There is an all-stop in progress for the group.
1057                          * We ourselves will stop as soon as we check signals.
1058                          * Make the new thread part of that group stop too.
1059                          */
1060                         current->signal->group_stop_count++;
1061                         set_tsk_thread_flag(p, TIF_SIGPENDING);
1062                 }
1063
1064                 spin_unlock(&current->sighand->siglock);
1065         }
1066
1067         SET_LINKS(p);
1068         if (unlikely(p->ptrace & PT_PTRACED))
1069                 __ptrace_link(p, current->parent);
1070
1071         attach_pid(p, PIDTYPE_PID, p->pid);
1072         attach_pid(p, PIDTYPE_TGID, p->tgid);
1073         if (thread_group_leader(p)) {
1074                 attach_pid(p, PIDTYPE_PGID, process_group(p));
1075                 attach_pid(p, PIDTYPE_SID, p->signal->session);
1076                 if (p->pid)
1077                         __get_cpu_var(process_counts)++;
1078         }
1079
1080         p->ioprio = current->ioprio;
1081         nr_threads++;
1082         /* p is copy of current */
1083         vxi = p->vx_info;
1084         if (vxi) {
1085                 atomic_inc(&vxi->cvirt.nr_threads);
1086                 vx_nproc_inc(p);
1087         }
1088         write_unlock_irq(&tasklist_lock);
1089         retval = 0;
1090
1091 fork_out:
1092         if (retval)
1093                 return ERR_PTR(retval);
1094         return p;
1095
1096 bad_fork_cleanup_namespace:
1097         exit_namespace(p);
1098 bad_fork_cleanup_keys:
1099         exit_keys(p);
1100 bad_fork_cleanup_mm:
1101         if (p->mm)
1102                 mmput(p->mm);
1103 bad_fork_cleanup_signal:
1104         exit_signal(p);
1105 bad_fork_cleanup_sighand:
1106         exit_sighand(p);
1107 bad_fork_cleanup_fs:
1108         exit_fs(p); /* blocking */
1109 bad_fork_cleanup_files:
1110         exit_files(p); /* blocking */
1111 bad_fork_cleanup_semundo:
1112         exit_sem(p);
1113 bad_fork_cleanup_audit:
1114         audit_free(p);
1115 bad_fork_cleanup_security:
1116         security_task_free(p);
1117 bad_fork_cleanup_policy:
1118 #ifdef CONFIG_NUMA
1119         mpol_free(p->mempolicy);
1120 #endif
1121 bad_fork_cleanup:
1122         if (p->binfmt)
1123                 module_put(p->binfmt->module);
1124 bad_fork_cleanup_put_domain:
1125         module_put(p->thread_info->exec_domain->module);
1126 bad_fork_cleanup_count:
1127         put_group_info(p->group_info);
1128         atomic_dec(&p->user->processes);
1129         free_uid(p->user);
1130 bad_fork_cleanup_vm:
1131         if (p->mm && !(clone_flags & CLONE_VM))
1132                 vx_pages_sub(p->mm->mm_vx_info, RLIMIT_AS, p->mm->total_vm);
1133 bad_fork_free:
1134         free_task(p);
1135         goto fork_out;
1136 }
1137
1138 struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1139 {
1140         memset(regs, 0, sizeof(struct pt_regs));
1141         return regs;
1142 }
1143
1144 task_t * __devinit fork_idle(int cpu)
1145 {
1146         task_t *task;
1147         struct pt_regs regs;
1148
1149         task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL, 0);
1150         if (!task)
1151                 return ERR_PTR(-ENOMEM);
1152         init_idle(task, cpu);
1153         unhash_process(task);
1154         return task;
1155 }
1156
1157 static inline int fork_traceflag (unsigned clone_flags)
1158 {
1159         if (clone_flags & CLONE_UNTRACED)
1160                 return 0;
1161         else if (clone_flags & CLONE_VFORK) {
1162                 if (current->ptrace & PT_TRACE_VFORK)
1163                         return PTRACE_EVENT_VFORK;
1164         } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1165                 if (current->ptrace & PT_TRACE_CLONE)
1166                         return PTRACE_EVENT_CLONE;
1167         } else if (current->ptrace & PT_TRACE_FORK)
1168                 return PTRACE_EVENT_FORK;
1169
1170         return 0;
1171 }
1172
1173 /*
1174  *  Ok, this is the main fork-routine.
1175  *
1176  * It copies the process, and if successful kick-starts
1177  * it and waits for it to finish using the VM if required.
1178  */
1179 long do_fork(unsigned long clone_flags,
1180               unsigned long stack_start,
1181               struct pt_regs *regs,
1182               unsigned long stack_size,
1183               int __user *parent_tidptr,
1184               int __user *child_tidptr)
1185 {
1186         struct task_struct *p;
1187         int trace = 0;
1188         long pid = alloc_pidmap();
1189
1190         if (pid < 0)
1191                 return -EAGAIN;
1192         if (unlikely(current->ptrace)) {
1193                 trace = fork_traceflag (clone_flags);
1194                 if (trace)
1195                         clone_flags |= CLONE_PTRACE;
1196         }
1197
1198         if (numtasks_get_ref(current->taskclass, 0) == 0) {
1199                 return -ENOMEM;
1200         }
1201         p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, pid);
1202
1203         /*
1204          * Do this prior waking up the new thread - the thread pointer
1205          * might get invalid after that point, if the thread exits quickly.
1206          */
1207         if (!IS_ERR(p)) {
1208                 struct completion vfork;
1209
1210                 ckrm_cb_fork(p);
1211
1212                 if (clone_flags & CLONE_VFORK) {
1213                         p->vfork_done = &vfork;
1214                         init_completion(&vfork);
1215                 }
1216
1217                 if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1218                         /*
1219                          * We'll start up with an immediate SIGSTOP.
1220                          */
1221                         sigaddset(&p->pending.signal, SIGSTOP);
1222                         set_tsk_thread_flag(p, TIF_SIGPENDING);
1223                 }
1224
1225                 if (!(clone_flags & CLONE_STOPPED))
1226                         wake_up_new_task(p, clone_flags);
1227                 else
1228                         p->state = TASK_STOPPED;
1229                 ++total_forks;
1230
1231                 if (unlikely (trace)) {
1232                         current->ptrace_message = pid;
1233                         ptrace_notify ((trace << 8) | SIGTRAP);
1234                 }
1235
1236                 if (clone_flags & CLONE_VFORK) {
1237                         wait_for_completion(&vfork);
1238                         if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE))
1239                                 ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1240                 }
1241         } else {
1242                 numtasks_put_ref(current->taskclass);
1243                 free_pidmap(pid);
1244                 pid = PTR_ERR(p);
1245         }
1246         return pid;
1247 }
1248
1249 /* SLAB cache for signal_struct structures (tsk->signal) */
1250 kmem_cache_t *signal_cachep;
1251
1252 /* SLAB cache for sighand_struct structures (tsk->sighand) */
1253 kmem_cache_t *sighand_cachep;
1254
1255 /* SLAB cache for files_struct structures (tsk->files) */
1256 kmem_cache_t *files_cachep;
1257
1258 /* SLAB cache for fs_struct structures (tsk->fs) */
1259 kmem_cache_t *fs_cachep;
1260
1261 /* SLAB cache for vm_area_struct structures */
1262 kmem_cache_t *vm_area_cachep;
1263
1264 /* SLAB cache for mm_struct structures (tsk->mm) */
1265 kmem_cache_t *mm_cachep;
1266
1267 void __init proc_caches_init(void)
1268 {
1269         sighand_cachep = kmem_cache_create("sighand_cache",
1270                         sizeof(struct sighand_struct), 0,
1271                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1272         signal_cachep = kmem_cache_create("signal_cache",
1273                         sizeof(struct signal_struct), 0,
1274                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1275         files_cachep = kmem_cache_create("files_cache", 
1276                         sizeof(struct files_struct), 0,
1277                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1278         fs_cachep = kmem_cache_create("fs_cache", 
1279                         sizeof(struct fs_struct), 0,
1280                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1281         vm_area_cachep = kmem_cache_create("vm_area_struct",
1282                         sizeof(struct vm_area_struct), 0,
1283                         SLAB_PANIC, NULL, NULL);
1284         mm_cachep = kmem_cache_create("mm_struct",
1285                         sizeof(struct mm_struct), 0,
1286                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1287 }