2 * Copyright (c) 2009, 2010, 2011, 2012 Nicira, Inc.
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
8 * http://www.apache.org/licenses/LICENSE-2.0
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
20 #include <arpa/inet.h>
21 #include <sys/socket.h>
22 #include <netinet/in.h>
23 #include <netinet/ip6.h>
25 #include "byte-order.h"
29 #include "dynamic-string.h"
32 const struct in6_addr in6addr_exact = IN6ADDR_EXACT_INIT;
34 /* Parses 's' as a 16-digit hexadecimal number representing a datapath ID. On
35 * success stores the dpid into '*dpidp' and returns true, on failure stores 0
36 * into '*dpidp' and returns false.
38 * Rejects an all-zeros dpid as invalid. */
40 dpid_from_string(const char *s, uint64_t *dpidp)
42 *dpidp = (strlen(s) == 16 && strspn(s, "0123456789abcdefABCDEF") == 16
43 ? strtoull(s, NULL, 16)
48 /* Returns true if 'ea' is a reserved address, that a bridge must never
49 * forward, false otherwise.
51 * If you change this function's behavior, please update corresponding
52 * documentation in vswitch.xml at the same time. */
54 eth_addr_is_reserved(const uint8_t ea[ETH_ADDR_LEN])
56 struct eth_addr_node {
57 struct hmap_node hmap_node;
61 static struct eth_addr_node nodes[] = {
62 /* STP, IEEE pause frames, and other reserved protocols. */
63 { HMAP_NODE_NULL_INITIALIZER, 0x0108c2000000ULL },
64 { HMAP_NODE_NULL_INITIALIZER, 0x0108c2000001ULL },
65 { HMAP_NODE_NULL_INITIALIZER, 0x0108c2000002ULL },
66 { HMAP_NODE_NULL_INITIALIZER, 0x0108c2000003ULL },
67 { HMAP_NODE_NULL_INITIALIZER, 0x0108c2000004ULL },
68 { HMAP_NODE_NULL_INITIALIZER, 0x0108c2000005ULL },
69 { HMAP_NODE_NULL_INITIALIZER, 0x0108c2000006ULL },
70 { HMAP_NODE_NULL_INITIALIZER, 0x0108c2000007ULL },
71 { HMAP_NODE_NULL_INITIALIZER, 0x0108c2000008ULL },
72 { HMAP_NODE_NULL_INITIALIZER, 0x0108c2000009ULL },
73 { HMAP_NODE_NULL_INITIALIZER, 0x0108c200000aULL },
74 { HMAP_NODE_NULL_INITIALIZER, 0x0108c200000bULL },
75 { HMAP_NODE_NULL_INITIALIZER, 0x0108c200000cULL },
76 { HMAP_NODE_NULL_INITIALIZER, 0x0108c200000dULL },
77 { HMAP_NODE_NULL_INITIALIZER, 0x0108c200000eULL },
78 { HMAP_NODE_NULL_INITIALIZER, 0x0108c200000fULL },
80 /* Extreme protocols. */
81 { HMAP_NODE_NULL_INITIALIZER, 0x00e02b000000ULL }, /* EDP. */
82 { HMAP_NODE_NULL_INITIALIZER, 0x00e02b000004ULL }, /* EAPS. */
83 { HMAP_NODE_NULL_INITIALIZER, 0x00e02b000006ULL }, /* EAPS. */
85 /* Cisco protocols. */
86 { HMAP_NODE_NULL_INITIALIZER, 0x01000c000000ULL }, /* ISL. */
87 { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccccULL }, /* PAgP, UDLD, CDP,
89 { HMAP_NODE_NULL_INITIALIZER, 0x01000ccccccdULL }, /* PVST+. */
90 { HMAP_NODE_NULL_INITIALIZER, 0x01000ccdcdcdULL }, /* STP Uplink Fast,
94 { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc0ULL },
95 { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc1ULL },
96 { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc2ULL },
97 { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc3ULL },
98 { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc4ULL },
99 { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc5ULL },
100 { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc6ULL },
101 { HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc7ULL },
104 static struct hmap addrs = HMAP_INITIALIZER(&addrs);
105 struct eth_addr_node *node;
108 if (hmap_is_empty(&addrs)) {
109 for (node = nodes; node < &nodes[ARRAY_SIZE(nodes)]; node++) {
110 hmap_insert(&addrs, &node->hmap_node,
111 hash_2words(node->ea64, node->ea64 >> 32));
115 ea64 = eth_addr_to_uint64(ea);
116 HMAP_FOR_EACH_IN_BUCKET (node, hmap_node, hash_2words(ea64, ea64 >> 32),
118 if (node->ea64 == ea64) {
126 eth_addr_from_string(const char *s, uint8_t ea[ETH_ADDR_LEN])
128 if (sscanf(s, ETH_ADDR_SCAN_FMT, ETH_ADDR_SCAN_ARGS(ea))
129 == ETH_ADDR_SCAN_COUNT) {
132 memset(ea, 0, ETH_ADDR_LEN);
137 /* Fills 'b' with a Reverse ARP packet with Ethernet source address 'eth_src'.
138 * This function is used by Open vSwitch to compose packets in cases where
139 * context is important but content doesn't (or shouldn't) matter.
141 * The returned packet has enough headroom to insert an 802.1Q VLAN header if
144 compose_rarp(struct ofpbuf *b, const uint8_t eth_src[ETH_ADDR_LEN])
146 struct eth_header *eth;
147 struct arp_eth_header *arp;
150 ofpbuf_prealloc_tailroom(b, ETH_HEADER_LEN + VLAN_HEADER_LEN
151 + ARP_ETH_HEADER_LEN);
152 ofpbuf_reserve(b, VLAN_HEADER_LEN);
153 eth = ofpbuf_put_uninit(b, sizeof *eth);
154 memcpy(eth->eth_dst, eth_addr_broadcast, ETH_ADDR_LEN);
155 memcpy(eth->eth_src, eth_src, ETH_ADDR_LEN);
156 eth->eth_type = htons(ETH_TYPE_RARP);
158 arp = ofpbuf_put_uninit(b, sizeof *arp);
159 arp->ar_hrd = htons(ARP_HRD_ETHERNET);
160 arp->ar_pro = htons(ARP_PRO_IP);
161 arp->ar_hln = sizeof arp->ar_sha;
162 arp->ar_pln = sizeof arp->ar_spa;
163 arp->ar_op = htons(ARP_OP_RARP);
164 memcpy(arp->ar_sha, eth_src, ETH_ADDR_LEN);
165 arp->ar_spa = htonl(0);
166 memcpy(arp->ar_tha, eth_src, ETH_ADDR_LEN);
167 arp->ar_tpa = htonl(0);
170 /* Insert VLAN header according to given TCI. Packet passed must be Ethernet
171 * packet. Ignores the CFI bit of 'tci' using 0 instead.
173 * Also sets 'packet->l2' to point to the new Ethernet header. */
175 eth_push_vlan(struct ofpbuf *packet, ovs_be16 tci)
177 struct eth_header *eh = packet->data;
178 struct vlan_eth_header *veh;
180 /* Insert new 802.1Q header. */
181 struct vlan_eth_header tmp;
182 memcpy(tmp.veth_dst, eh->eth_dst, ETH_ADDR_LEN);
183 memcpy(tmp.veth_src, eh->eth_src, ETH_ADDR_LEN);
184 tmp.veth_type = htons(ETH_TYPE_VLAN);
185 tmp.veth_tci = tci & htons(~VLAN_CFI);
186 tmp.veth_next_type = eh->eth_type;
188 veh = ofpbuf_push_uninit(packet, VLAN_HEADER_LEN);
189 memcpy(veh, &tmp, sizeof tmp);
191 packet->l2 = packet->data;
194 /* Removes outermost VLAN header (if any is present) from 'packet'.
196 * 'packet->l2' must initially point to 'packet''s Ethernet header. */
198 eth_pop_vlan(struct ofpbuf *packet)
200 struct vlan_eth_header *veh = packet->l2;
201 if (packet->size >= sizeof *veh
202 && veh->veth_type == htons(ETH_TYPE_VLAN)) {
203 struct eth_header tmp;
205 memcpy(tmp.eth_dst, veh->veth_dst, ETH_ADDR_LEN);
206 memcpy(tmp.eth_src, veh->veth_src, ETH_ADDR_LEN);
207 tmp.eth_type = veh->veth_next_type;
209 ofpbuf_pull(packet, VLAN_HEADER_LEN);
210 packet->l2 = (char*)packet->l2 + VLAN_HEADER_LEN;
211 memcpy(packet->data, &tmp, sizeof tmp);
215 /* Converts hex digits in 'hex' to an Ethernet packet in '*packetp'. The
216 * caller must free '*packetp'. On success, returns NULL. On failure, returns
217 * an error message and stores NULL in '*packetp'. */
219 eth_from_hex(const char *hex, struct ofpbuf **packetp)
221 struct ofpbuf *packet;
223 packet = *packetp = ofpbuf_new(strlen(hex) / 2);
225 if (ofpbuf_put_hex(packet, hex, NULL)[0] != '\0') {
226 ofpbuf_delete(packet);
228 return "Trailing garbage in packet data";
231 if (packet->size < ETH_HEADER_LEN) {
232 ofpbuf_delete(packet);
234 return "Packet data too short for Ethernet";
241 eth_format_masked(const uint8_t eth[ETH_ADDR_LEN],
242 const uint8_t mask[ETH_ADDR_LEN], struct ds *s)
244 ds_put_format(s, ETH_ADDR_FMT, ETH_ADDR_ARGS(eth));
245 if (mask && !eth_mask_is_exact(mask)) {
246 ds_put_format(s, "/"ETH_ADDR_FMT, ETH_ADDR_ARGS(mask));
251 eth_addr_bitand(const uint8_t src[ETH_ADDR_LEN],
252 const uint8_t mask[ETH_ADDR_LEN],
253 uint8_t dst[ETH_ADDR_LEN])
257 for (i = 0; i < ETH_ADDR_LEN; i++) {
258 dst[i] = src[i] & mask[i];
262 /* Given the IP netmask 'netmask', returns the number of bits of the IP address
263 * that it specifies, that is, the number of 1-bits in 'netmask'.
265 * If 'netmask' is not a CIDR netmask (see ip_is_cidr()), the return value will
266 * still be in the valid range but isn't otherwise meaningful. */
268 ip_count_cidr_bits(ovs_be32 netmask)
270 return 32 - ctz(ntohl(netmask));
274 ip_format_masked(ovs_be32 ip, ovs_be32 mask, struct ds *s)
276 ds_put_format(s, IP_FMT, IP_ARGS(ip));
277 if (mask != htonl(UINT32_MAX)) {
278 if (ip_is_cidr(mask)) {
279 ds_put_format(s, "/%d", ip_count_cidr_bits(mask));
281 ds_put_format(s, "/"IP_FMT, IP_ARGS(mask));
287 /* Stores the string representation of the IPv6 address 'addr' into the
288 * character array 'addr_str', which must be at least INET6_ADDRSTRLEN
291 format_ipv6_addr(char *addr_str, const struct in6_addr *addr)
293 inet_ntop(AF_INET6, addr, addr_str, INET6_ADDRSTRLEN);
297 print_ipv6_addr(struct ds *string, const struct in6_addr *addr)
301 ds_reserve(string, string->length + INET6_ADDRSTRLEN);
303 dst = string->string + string->length;
304 format_ipv6_addr(dst, addr);
305 string->length += strlen(dst);
309 print_ipv6_masked(struct ds *s, const struct in6_addr *addr,
310 const struct in6_addr *mask)
312 print_ipv6_addr(s, addr);
313 if (mask && !ipv6_mask_is_exact(mask)) {
314 if (ipv6_is_cidr(mask)) {
315 int cidr_bits = ipv6_count_cidr_bits(mask);
316 ds_put_format(s, "/%d", cidr_bits);
319 print_ipv6_addr(s, mask);
324 struct in6_addr ipv6_addr_bitand(const struct in6_addr *a,
325 const struct in6_addr *b)
331 for (i=0; i<4; i++) {
332 dst.s6_addr32[i] = a->s6_addr32[i] & b->s6_addr32[i];
335 for (i=0; i<16; i++) {
336 dst.s6_addr[i] = a->s6_addr[i] & b->s6_addr[i];
343 /* Returns an in6_addr consisting of 'mask' high-order 1-bits and 128-N
344 * low-order 0-bits. */
346 ipv6_create_mask(int mask)
348 struct in6_addr netmask;
349 uint8_t *netmaskp = &netmask.s6_addr[0];
351 memset(&netmask, 0, sizeof netmask);
359 *netmaskp = 0xff << (8 - mask);
365 /* Given the IPv6 netmask 'netmask', returns the number of bits of the IPv6
366 * address that it specifies, that is, the number of 1-bits in 'netmask'.
367 * 'netmask' must be a CIDR netmask (see ipv6_is_cidr()).
369 * If 'netmask' is not a CIDR netmask (see ipv6_is_cidr()), the return value
370 * will still be in the valid range but isn't otherwise meaningful. */
372 ipv6_count_cidr_bits(const struct in6_addr *netmask)
376 const uint8_t *netmaskp = &netmask->s6_addr[0];
378 for (i=0; i<16; i++) {
379 if (netmaskp[i] == 0xff) {
384 for(nm = netmaskp[i]; nm; nm <<= 1) {
395 /* Returns true if 'netmask' is a CIDR netmask, that is, if it consists of N
396 * high-order 1-bits and 128-N low-order 0-bits. */
398 ipv6_is_cidr(const struct in6_addr *netmask)
400 const uint8_t *netmaskp = &netmask->s6_addr[0];
403 for (i=0; i<16; i++) {
404 if (netmaskp[i] != 0xff) {
405 uint8_t x = ~netmaskp[i];
420 /* Populates 'b' with an Ethernet II packet headed with the given 'eth_dst',
421 * 'eth_src' and 'eth_type' parameters. A payload of 'size' bytes is allocated
422 * in 'b' and returned. This payload may be populated with appropriate
423 * information by the caller. Sets 'b''s 'l2' and 'l3' pointers to the
424 * Ethernet header and payload respectively.
426 * The returned packet has enough headroom to insert an 802.1Q VLAN header if
429 eth_compose(struct ofpbuf *b, const uint8_t eth_dst[ETH_ADDR_LEN],
430 const uint8_t eth_src[ETH_ADDR_LEN], uint16_t eth_type,
434 struct eth_header *eth;
438 ofpbuf_prealloc_tailroom(b, ETH_HEADER_LEN + VLAN_HEADER_LEN + size);
439 ofpbuf_reserve(b, VLAN_HEADER_LEN);
440 eth = ofpbuf_put_uninit(b, ETH_HEADER_LEN);
441 data = ofpbuf_put_uninit(b, size);
443 memcpy(eth->eth_dst, eth_dst, ETH_ADDR_LEN);
444 memcpy(eth->eth_src, eth_src, ETH_ADDR_LEN);
445 eth->eth_type = htons(eth_type);
454 packet_set_ipv4_addr(struct ofpbuf *packet, ovs_be32 *addr, ovs_be32 new_addr)
456 struct ip_header *nh = packet->l3;
458 if (nh->ip_proto == IPPROTO_TCP && packet->l7) {
459 struct tcp_header *th = packet->l4;
461 th->tcp_csum = recalc_csum32(th->tcp_csum, *addr, new_addr);
462 } else if (nh->ip_proto == IPPROTO_UDP && packet->l7) {
463 struct udp_header *uh = packet->l4;
466 uh->udp_csum = recalc_csum32(uh->udp_csum, *addr, new_addr);
468 uh->udp_csum = htons(0xffff);
472 nh->ip_csum = recalc_csum32(nh->ip_csum, *addr, new_addr);
476 /* Returns true, if packet contains at least one routing header where
477 * segements_left > 0.
479 * This function assumes that L3 and L4 markers are set in the packet. */
481 packet_rh_present(struct ofpbuf *packet)
483 const struct ip6_hdr *nh;
487 uint8_t *data = packet->l3;
489 remaining = (uint8_t *)packet->l4 - (uint8_t *)packet->l3;
491 if (remaining < sizeof *nh) {
494 nh = (struct ip6_hdr *)data;
496 remaining -= sizeof *nh;
497 nexthdr = nh->ip6_nxt;
500 if ((nexthdr != IPPROTO_HOPOPTS)
501 && (nexthdr != IPPROTO_ROUTING)
502 && (nexthdr != IPPROTO_DSTOPTS)
503 && (nexthdr != IPPROTO_AH)
504 && (nexthdr != IPPROTO_FRAGMENT)) {
505 /* It's either a terminal header (e.g., TCP, UDP) or one we
506 * don't understand. In either case, we're done with the
507 * packet, so use it to fill in 'nw_proto'. */
511 /* We only verify that at least 8 bytes of the next header are
512 * available, but many of these headers are longer. Ensure that
513 * accesses within the extension header are within those first 8
514 * bytes. All extension headers are required to be at least 8
520 if (nexthdr == IPPROTO_AH) {
521 /* A standard AH definition isn't available, but the fields
522 * we care about are in the same location as the generic
523 * option header--only the header length is calculated
525 const struct ip6_ext *ext_hdr = (struct ip6_ext *)data;
527 nexthdr = ext_hdr->ip6e_nxt;
528 len = (ext_hdr->ip6e_len + 2) * 4;
529 } else if (nexthdr == IPPROTO_FRAGMENT) {
530 const struct ip6_frag *frag_hdr = (struct ip6_frag *)data;
532 nexthdr = frag_hdr->ip6f_nxt;
533 len = sizeof *frag_hdr;
534 } else if (nexthdr == IPPROTO_ROUTING) {
535 const struct ip6_rthdr *rh = (struct ip6_rthdr *)data;
537 if (rh->ip6r_segleft > 0) {
541 nexthdr = rh->ip6r_nxt;
542 len = (rh->ip6r_len + 1) * 8;
544 const struct ip6_ext *ext_hdr = (struct ip6_ext *)data;
546 nexthdr = ext_hdr->ip6e_nxt;
547 len = (ext_hdr->ip6e_len + 1) * 8;
550 if (remaining < len) {
561 packet_update_csum128(struct ofpbuf *packet, uint8_t proto,
562 ovs_be32 addr[4], const ovs_be32 new_addr[4])
564 if (proto == IPPROTO_TCP && packet->l7) {
565 struct tcp_header *th = packet->l4;
567 th->tcp_csum = recalc_csum128(th->tcp_csum, addr, new_addr);
568 } else if (proto == IPPROTO_UDP && packet->l7) {
569 struct udp_header *uh = packet->l4;
572 uh->udp_csum = recalc_csum128(uh->udp_csum, addr, new_addr);
574 uh->udp_csum = htons(0xffff);
581 packet_set_ipv6_addr(struct ofpbuf *packet, uint8_t proto,
582 struct in6_addr *addr, const ovs_be32 new_addr[4],
583 bool recalculate_csum)
585 if (recalculate_csum) {
586 packet_update_csum128(packet, proto, (ovs_be32 *)addr, new_addr);
588 memcpy(addr, new_addr, sizeof(*addr));
592 packet_set_ipv6_flow_label(ovs_be32 *flow_label, ovs_be32 flow_key)
594 *flow_label = (*flow_label & htonl(~IPV6_LABEL_MASK)) | flow_key;
598 packet_set_ipv6_tc(ovs_be32 *flow_label, uint8_t tc)
600 *flow_label = (*flow_label & htonl(0xF00FFFFF)) | htonl(tc << 20);
603 /* Modifies the IPv4 header fields of 'packet' to be consistent with 'src',
604 * 'dst', 'tos', and 'ttl'. Updates 'packet''s L4 checksums as appropriate.
605 * 'packet' must contain a valid IPv4 packet with correctly populated l[347]
608 packet_set_ipv4(struct ofpbuf *packet, ovs_be32 src, ovs_be32 dst,
609 uint8_t tos, uint8_t ttl)
611 struct ip_header *nh = packet->l3;
613 if (nh->ip_src != src) {
614 packet_set_ipv4_addr(packet, &nh->ip_src, src);
617 if (nh->ip_dst != dst) {
618 packet_set_ipv4_addr(packet, &nh->ip_dst, dst);
621 if (nh->ip_tos != tos) {
622 uint8_t *field = &nh->ip_tos;
624 nh->ip_csum = recalc_csum16(nh->ip_csum, htons((uint16_t) *field),
625 htons((uint16_t) tos));
629 if (nh->ip_ttl != ttl) {
630 uint8_t *field = &nh->ip_ttl;
632 nh->ip_csum = recalc_csum16(nh->ip_csum, htons(*field << 8),
638 /* Modifies the IPv6 header fields of 'packet' to be consistent with 'src',
639 * 'dst', 'traffic class', and 'next hop'. Updates 'packet''s L4 checksums as
640 * appropriate. 'packet' must contain a valid IPv6 packet with correctly
641 * populated l[347] markers. */
643 packet_set_ipv6(struct ofpbuf *packet, uint8_t proto, const ovs_be32 src[4],
644 const ovs_be32 dst[4], uint8_t key_tc, ovs_be32 key_fl,
647 struct ip6_hdr *nh = packet->l3;
649 if (memcmp(&nh->ip6_src, src, sizeof(ovs_be32[4]))) {
650 packet_set_ipv6_addr(packet, proto, &nh->ip6_src, src, true);
653 if (memcmp(&nh->ip6_dst, dst, sizeof(ovs_be32[4]))) {
654 packet_set_ipv6_addr(packet, proto, &nh->ip6_dst, dst,
655 !packet_rh_present(packet));
658 packet_set_ipv6_tc(&nh->ip6_flow, key_tc);
660 packet_set_ipv6_flow_label(&nh->ip6_flow, key_fl);
662 nh->ip6_hlim = key_hl;
666 packet_set_port(ovs_be16 *port, ovs_be16 new_port, ovs_be16 *csum)
668 if (*port != new_port) {
669 *csum = recalc_csum16(*csum, *port, new_port);
674 /* Sets the TCP source and destination port ('src' and 'dst' respectively) of
675 * the TCP header contained in 'packet'. 'packet' must be a valid TCP packet
676 * with its l4 marker properly populated. */
678 packet_set_tcp_port(struct ofpbuf *packet, ovs_be16 src, ovs_be16 dst)
680 struct tcp_header *th = packet->l4;
682 packet_set_port(&th->tcp_src, src, &th->tcp_csum);
683 packet_set_port(&th->tcp_dst, dst, &th->tcp_csum);
686 /* Sets the UDP source and destination port ('src' and 'dst' respectively) of
687 * the UDP header contained in 'packet'. 'packet' must be a valid UDP packet
688 * with its l4 marker properly populated. */
690 packet_set_udp_port(struct ofpbuf *packet, ovs_be16 src, ovs_be16 dst)
692 struct udp_header *uh = packet->l4;
695 packet_set_port(&uh->udp_src, src, &uh->udp_csum);
696 packet_set_port(&uh->udp_dst, dst, &uh->udp_csum);
699 uh->udp_csum = htons(0xffff);
707 /* If 'packet' is a TCP packet, returns the TCP flags. Otherwise, returns 0.
709 * 'flow' must be the flow corresponding to 'packet' and 'packet''s header
710 * pointers must be properly initialized (e.g. with flow_extract()). */
712 packet_get_tcp_flags(const struct ofpbuf *packet, const struct flow *flow)
714 if ((flow->dl_type == htons(ETH_TYPE_IP) ||
715 flow->dl_type == htons(ETH_TYPE_IPV6)) &&
716 flow->nw_proto == IPPROTO_TCP && packet->l7) {
717 const struct tcp_header *tcp = packet->l4;
718 return TCP_FLAGS(tcp->tcp_ctl);
724 /* Appends a string representation of the TCP flags value 'tcp_flags'
725 * (e.g. obtained via packet_get_tcp_flags() or TCP_FLAGS) to 's', in the
726 * format used by tcpdump. */
728 packet_format_tcp_flags(struct ds *s, uint8_t tcp_flags)
731 ds_put_cstr(s, "none");
735 if (tcp_flags & TCP_SYN) {
738 if (tcp_flags & TCP_FIN) {
741 if (tcp_flags & TCP_PSH) {
744 if (tcp_flags & TCP_RST) {
747 if (tcp_flags & TCP_URG) {
750 if (tcp_flags & TCP_ACK) {
753 if (tcp_flags & 0x40) {
754 ds_put_cstr(s, "[40]");
756 if (tcp_flags & 0x80) {
757 ds_put_cstr(s, "[80]");