a523ca237636d487d8f0c66da82c6cbeeb5f7799
[linux-2.6.git] / mm / swapfile.c
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7
8 #include <linux/config.h>
9 #include <linux/mm.h>
10 #include <linux/hugetlb.h>
11 #include <linux/mman.h>
12 #include <linux/slab.h>
13 #include <linux/kernel_stat.h>
14 #include <linux/swap.h>
15 #include <linux/vmalloc.h>
16 #include <linux/pagemap.h>
17 #include <linux/namei.h>
18 #include <linux/shm.h>
19 #include <linux/blkdev.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28
29 #include <asm/pgtable.h>
30 #include <asm/tlbflush.h>
31 #include <linux/swapops.h>
32
33 spinlock_t swaplock = SPIN_LOCK_UNLOCKED;
34 unsigned int nr_swapfiles;
35 long total_swap_pages;
36 static int swap_overflow;
37
38 EXPORT_SYMBOL(total_swap_pages);
39
40 static const char Bad_file[] = "Bad swap file entry ";
41 static const char Unused_file[] = "Unused swap file entry ";
42 static const char Bad_offset[] = "Bad swap offset entry ";
43 static const char Unused_offset[] = "Unused swap offset entry ";
44
45 struct swap_list_t swap_list = {-1, -1};
46
47 struct swap_info_struct swap_info[MAX_SWAPFILES];
48
49 static DECLARE_MUTEX(swapon_sem);
50
51 /*
52  * We need this because the bdev->unplug_fn can sleep and we cannot
53  * hold swap_list_lock while calling the unplug_fn. And swap_list_lock
54  * cannot be turned into a semaphore.
55  */
56 static DECLARE_RWSEM(swap_unplug_sem);
57
58 #define SWAPFILE_CLUSTER 256
59
60 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
61 {
62         swp_entry_t entry;
63
64         down_read(&swap_unplug_sem);
65         entry.val = page->private;
66         if (PageSwapCache(page)) {
67                 struct block_device *bdev = swap_info[swp_type(entry)].bdev;
68                 struct backing_dev_info *bdi;
69
70                 /*
71                  * If the page is removed from swapcache from under us (with a
72                  * racy try_to_unuse/swapoff) we need an additional reference
73                  * count to avoid reading garbage from page->private above. If
74                  * the WARN_ON triggers during a swapoff it maybe the race
75                  * condition and it's harmless. However if it triggers without
76                  * swapoff it signals a problem.
77                  */
78                 WARN_ON(page_count(page) <= 1);
79
80                 bdi = bdev->bd_inode->i_mapping->backing_dev_info;
81                 bdi->unplug_io_fn(bdi, page);
82         }
83         up_read(&swap_unplug_sem);
84 }
85
86 static inline int scan_swap_map(struct swap_info_struct *si)
87 {
88         unsigned long offset;
89         /* 
90          * We try to cluster swap pages by allocating them
91          * sequentially in swap.  Once we've allocated
92          * SWAPFILE_CLUSTER pages this way, however, we resort to
93          * first-free allocation, starting a new cluster.  This
94          * prevents us from scattering swap pages all over the entire
95          * swap partition, so that we reduce overall disk seek times
96          * between swap pages.  -- sct */
97         if (si->cluster_nr) {
98                 while (si->cluster_next <= si->highest_bit) {
99                         offset = si->cluster_next++;
100                         if (si->swap_map[offset])
101                                 continue;
102                         si->cluster_nr--;
103                         goto got_page;
104                 }
105         }
106         si->cluster_nr = SWAPFILE_CLUSTER;
107
108         /* try to find an empty (even not aligned) cluster. */
109         offset = si->lowest_bit;
110  check_next_cluster:
111         if (offset+SWAPFILE_CLUSTER-1 <= si->highest_bit)
112         {
113                 unsigned long nr;
114                 for (nr = offset; nr < offset+SWAPFILE_CLUSTER; nr++)
115                         if (si->swap_map[nr])
116                         {
117                                 offset = nr+1;
118                                 goto check_next_cluster;
119                         }
120                 /* We found a completly empty cluster, so start
121                  * using it.
122                  */
123                 goto got_page;
124         }
125         /* No luck, so now go finegrined as usual. -Andrea */
126         for (offset = si->lowest_bit; offset <= si->highest_bit ; offset++) {
127                 if (si->swap_map[offset])
128                         continue;
129                 si->lowest_bit = offset+1;
130         got_page:
131                 if (offset == si->lowest_bit)
132                         si->lowest_bit++;
133                 if (offset == si->highest_bit)
134                         si->highest_bit--;
135                 if (si->lowest_bit > si->highest_bit) {
136                         si->lowest_bit = si->max;
137                         si->highest_bit = 0;
138                 }
139                 si->swap_map[offset] = 1;
140                 si->inuse_pages++;
141                 nr_swap_pages--;
142                 si->cluster_next = offset+1;
143                 return offset;
144         }
145         si->lowest_bit = si->max;
146         si->highest_bit = 0;
147         return 0;
148 }
149
150 swp_entry_t get_swap_page(void)
151 {
152         struct swap_info_struct * p;
153         unsigned long offset;
154         swp_entry_t entry;
155         int type, wrapped = 0;
156
157         entry.val = 0;  /* Out of memory */
158         swap_list_lock();
159         type = swap_list.next;
160         if (type < 0)
161                 goto out;
162         if (nr_swap_pages <= 0)
163                 goto out;
164
165         while (1) {
166                 p = &swap_info[type];
167                 if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) {
168                         swap_device_lock(p);
169                         offset = scan_swap_map(p);
170                         swap_device_unlock(p);
171                         if (offset) {
172                                 entry = swp_entry(type,offset);
173                                 type = swap_info[type].next;
174                                 if (type < 0 ||
175                                         p->prio != swap_info[type].prio) {
176                                                 swap_list.next = swap_list.head;
177                                 } else {
178                                         swap_list.next = type;
179                                 }
180                                 goto out;
181                         }
182                 }
183                 type = p->next;
184                 if (!wrapped) {
185                         if (type < 0 || p->prio != swap_info[type].prio) {
186                                 type = swap_list.head;
187                                 wrapped = 1;
188                         }
189                 } else
190                         if (type < 0)
191                                 goto out;       /* out of swap space */
192         }
193 out:
194         swap_list_unlock();
195         return entry;
196 }
197
198 static struct swap_info_struct * swap_info_get(swp_entry_t entry)
199 {
200         struct swap_info_struct * p;
201         unsigned long offset, type;
202
203         if (!entry.val)
204                 goto out;
205         type = swp_type(entry);
206         if (type >= nr_swapfiles)
207                 goto bad_nofile;
208         p = & swap_info[type];
209         if (!(p->flags & SWP_USED))
210                 goto bad_device;
211         offset = swp_offset(entry);
212         if (offset >= p->max)
213                 goto bad_offset;
214         if (!p->swap_map[offset])
215                 goto bad_free;
216         swap_list_lock();
217         if (p->prio > swap_info[swap_list.next].prio)
218                 swap_list.next = type;
219         swap_device_lock(p);
220         return p;
221
222 bad_free:
223         printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
224         goto out;
225 bad_offset:
226         printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
227         goto out;
228 bad_device:
229         printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
230         goto out;
231 bad_nofile:
232         printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
233 out:
234         return NULL;
235 }       
236
237 static void swap_info_put(struct swap_info_struct * p)
238 {
239         swap_device_unlock(p);
240         swap_list_unlock();
241 }
242
243 static int swap_entry_free(struct swap_info_struct *p, unsigned long offset)
244 {
245         int count = p->swap_map[offset];
246
247         if (count < SWAP_MAP_MAX) {
248                 count--;
249                 p->swap_map[offset] = count;
250                 if (!count) {
251                         if (offset < p->lowest_bit)
252                                 p->lowest_bit = offset;
253                         if (offset > p->highest_bit)
254                                 p->highest_bit = offset;
255                         nr_swap_pages++;
256                         p->inuse_pages--;
257                 }
258         }
259         return count;
260 }
261
262 /*
263  * Caller has made sure that the swapdevice corresponding to entry
264  * is still around or has not been recycled.
265  */
266 void swap_free(swp_entry_t entry)
267 {
268         struct swap_info_struct * p;
269
270         p = swap_info_get(entry);
271         if (p) {
272                 swap_entry_free(p, swp_offset(entry));
273                 swap_info_put(p);
274         }
275 }
276
277 /*
278  * Check if we're the only user of a swap page,
279  * when the page is locked.
280  */
281 static int exclusive_swap_page(struct page *page)
282 {
283         int retval = 0;
284         struct swap_info_struct * p;
285         swp_entry_t entry;
286
287         entry.val = page->private;
288         p = swap_info_get(entry);
289         if (p) {
290                 /* Is the only swap cache user the cache itself? */
291                 if (p->swap_map[swp_offset(entry)] == 1) {
292                         /* Recheck the page count with the swapcache lock held.. */
293                         spin_lock_irq(&swapper_space.tree_lock);
294                         if (page_count(page) == 2)
295                                 retval = 1;
296                         spin_unlock_irq(&swapper_space.tree_lock);
297                 }
298                 swap_info_put(p);
299         }
300         return retval;
301 }
302
303 /*
304  * We can use this swap cache entry directly
305  * if there are no other references to it.
306  *
307  * Here "exclusive_swap_page()" does the real
308  * work, but we opportunistically check whether
309  * we need to get all the locks first..
310  */
311 int can_share_swap_page(struct page *page)
312 {
313         int retval = 0;
314
315         if (!PageLocked(page))
316                 BUG();
317         switch (page_count(page)) {
318         case 3:
319                 if (!PagePrivate(page))
320                         break;
321                 /* Fallthrough */
322         case 2:
323                 if (!PageSwapCache(page))
324                         break;
325                 retval = exclusive_swap_page(page);
326                 break;
327         case 1:
328                 if (PageReserved(page))
329                         break;
330                 retval = 1;
331         }
332         return retval;
333 }
334
335 /*
336  * Work out if there are any other processes sharing this
337  * swap cache page. Free it if you can. Return success.
338  */
339 int remove_exclusive_swap_page(struct page *page)
340 {
341         int retval;
342         struct swap_info_struct * p;
343         swp_entry_t entry;
344
345         BUG_ON(PagePrivate(page));
346         BUG_ON(!PageLocked(page));
347
348         if (!PageSwapCache(page))
349                 return 0;
350         if (PageWriteback(page))
351                 return 0;
352         if (page_count(page) != 2) /* 2: us + cache */
353                 return 0;
354
355         entry.val = page->private;
356         p = swap_info_get(entry);
357         if (!p)
358                 return 0;
359
360         /* Is the only swap cache user the cache itself? */
361         retval = 0;
362         if (p->swap_map[swp_offset(entry)] == 1) {
363                 /* Recheck the page count with the swapcache lock held.. */
364                 spin_lock_irq(&swapper_space.tree_lock);
365                 if ((page_count(page) == 2) && !PageWriteback(page)) {
366                         __delete_from_swap_cache(page);
367                         SetPageDirty(page);
368                         retval = 1;
369                 }
370                 spin_unlock_irq(&swapper_space.tree_lock);
371         }
372         swap_info_put(p);
373
374         if (retval) {
375                 swap_free(entry);
376                 page_cache_release(page);
377         }
378
379         return retval;
380 }
381
382 /*
383  * Free the swap entry like above, but also try to
384  * free the page cache entry if it is the last user.
385  */
386 void free_swap_and_cache(swp_entry_t entry)
387 {
388         struct swap_info_struct * p;
389         struct page *page = NULL;
390
391         p = swap_info_get(entry);
392         if (p) {
393                 if (swap_entry_free(p, swp_offset(entry)) == 1) {
394                         spin_lock_irq(&swapper_space.tree_lock);
395                         page = radix_tree_lookup(&swapper_space.page_tree,
396                                 entry.val);
397                         if (page && TestSetPageLocked(page))
398                                 page = NULL;
399                         spin_unlock_irq(&swapper_space.tree_lock);
400                 }
401                 swap_info_put(p);
402         }
403         if (page) {
404                 int one_user;
405
406                 BUG_ON(PagePrivate(page));
407                 page_cache_get(page);
408                 one_user = (page_count(page) == 2);
409                 /* Only cache user (+us), or swap space full? Free it! */
410                 if (!PageWriteback(page) && (one_user || vm_swap_full())) {
411                         delete_from_swap_cache(page);
412                         SetPageDirty(page);
413                 }
414                 unlock_page(page);
415                 page_cache_release(page);
416         }
417 }
418
419 /*
420  * The swap entry has been read in advance, and we return 1 to indicate
421  * that the page has been used or is no longer needed.
422  *
423  * Always set the resulting pte to be nowrite (the same as COW pages
424  * after one process has exited).  We don't know just how many PTEs will
425  * share this swap entry, so be cautious and let do_wp_page work out
426  * what to do if a write is requested later.
427  */
428 /* vma->vm_mm->page_table_lock is held */
429 static void
430 unuse_pte(struct vm_area_struct *vma, unsigned long address, pte_t *dir,
431         swp_entry_t entry, struct page *page)
432 {
433         vma->vm_mm->rss++;
434         get_page(page);
435         set_pte(dir, pte_mkold(mk_pte(page, vma->vm_page_prot)));
436         page_add_anon_rmap(page, vma, address);
437         swap_free(entry);
438 }
439
440 /* vma->vm_mm->page_table_lock is held */
441 static unsigned long unuse_pmd(struct vm_area_struct * vma, pmd_t *dir,
442         unsigned long address, unsigned long size, unsigned long offset,
443         swp_entry_t entry, struct page *page)
444 {
445         pte_t * pte;
446         unsigned long end;
447         pte_t swp_pte = swp_entry_to_pte(entry);
448
449         if (pmd_none(*dir))
450                 return 0;
451         if (pmd_bad(*dir)) {
452                 pmd_ERROR(*dir);
453                 pmd_clear(dir);
454                 return 0;
455         }
456         pte = pte_offset_map(dir, address);
457         offset += address & PMD_MASK;
458         address &= ~PMD_MASK;
459         end = address + size;
460         if (end > PMD_SIZE)
461                 end = PMD_SIZE;
462         do {
463                 /*
464                  * swapoff spends a _lot_ of time in this loop!
465                  * Test inline before going to call unuse_pte.
466                  */
467                 if (unlikely(pte_same(*pte, swp_pte))) {
468                         unuse_pte(vma, offset + address, pte, entry, page);
469                         pte_unmap(pte);
470
471                         /*
472                          * Move the page to the active list so it is not
473                          * immediately swapped out again after swapon.
474                          */
475                         activate_page(page);
476
477                         /* add 1 since address may be 0 */
478                         return 1 + offset + address;
479                 }
480                 address += PAGE_SIZE;
481                 pte++;
482         } while (address && (address < end));
483         pte_unmap(pte - 1);
484         return 0;
485 }
486
487 /* vma->vm_mm->page_table_lock is held */
488 static unsigned long unuse_pgd(struct vm_area_struct * vma, pgd_t *dir,
489         unsigned long address, unsigned long size,
490         swp_entry_t entry, struct page *page)
491 {
492         pmd_t * pmd;
493         unsigned long offset, end;
494         unsigned long foundaddr;
495
496         if (pgd_none(*dir))
497                 return 0;
498         if (pgd_bad(*dir)) {
499                 pgd_ERROR(*dir);
500                 pgd_clear(dir);
501                 return 0;
502         }
503         pmd = pmd_offset(dir, address);
504         offset = address & PGDIR_MASK;
505         address &= ~PGDIR_MASK;
506         end = address + size;
507         if (end > PGDIR_SIZE)
508                 end = PGDIR_SIZE;
509         if (address >= end)
510                 BUG();
511         do {
512                 foundaddr = unuse_pmd(vma, pmd, address, end - address,
513                                                 offset, entry, page);
514                 if (foundaddr)
515                         return foundaddr;
516                 address = (address + PMD_SIZE) & PMD_MASK;
517                 pmd++;
518         } while (address && (address < end));
519         return 0;
520 }
521
522 /* vma->vm_mm->page_table_lock is held */
523 static unsigned long unuse_vma(struct vm_area_struct * vma, pgd_t *pgdir,
524         swp_entry_t entry, struct page *page)
525 {
526         unsigned long start = vma->vm_start, end = vma->vm_end;
527         unsigned long foundaddr;
528
529         if (start >= end)
530                 BUG();
531         do {
532                 foundaddr = unuse_pgd(vma, pgdir, start, end - start,
533                                                 entry, page);
534                 if (foundaddr)
535                         return foundaddr;
536                 start = (start + PGDIR_SIZE) & PGDIR_MASK;
537                 pgdir++;
538         } while (start && (start < end));
539         return 0;
540 }
541
542 static int unuse_process(struct mm_struct * mm,
543                         swp_entry_t entry, struct page* page)
544 {
545         struct vm_area_struct* vma;
546         unsigned long foundaddr = 0;
547
548         /*
549          * Go through process' page directory.
550          */
551         if (!down_read_trylock(&mm->mmap_sem)) {
552                 /*
553                  * Our reference to the page stops try_to_unmap_one from
554                  * unmapping its ptes, so swapoff can make progress.
555                  */
556                 unlock_page(page);
557                 down_read(&mm->mmap_sem);
558                 lock_page(page);
559         }
560         spin_lock(&mm->page_table_lock);
561         for (vma = mm->mmap; vma; vma = vma->vm_next) {
562                 if (!is_vm_hugetlb_page(vma)) {
563                         pgd_t * pgd = pgd_offset(mm, vma->vm_start);
564                         foundaddr = unuse_vma(vma, pgd, entry, page);
565                         if (foundaddr)
566                                 break;
567                 }
568         }
569         spin_unlock(&mm->page_table_lock);
570         up_read(&mm->mmap_sem);
571         /*
572          * Currently unuse_process cannot fail, but leave error handling
573          * at call sites for now, since we change it from time to time.
574          */
575         return 0;
576 }
577
578 /*
579  * Scan swap_map from current position to next entry still in use.
580  * Recycle to start on reaching the end, returning 0 when empty.
581  */
582 static int find_next_to_unuse(struct swap_info_struct *si, int prev)
583 {
584         int max = si->max;
585         int i = prev;
586         int count;
587
588         /*
589          * No need for swap_device_lock(si) here: we're just looking
590          * for whether an entry is in use, not modifying it; false
591          * hits are okay, and sys_swapoff() has already prevented new
592          * allocations from this area (while holding swap_list_lock()).
593          */
594         for (;;) {
595                 if (++i >= max) {
596                         if (!prev) {
597                                 i = 0;
598                                 break;
599                         }
600                         /*
601                          * No entries in use at top of swap_map,
602                          * loop back to start and recheck there.
603                          */
604                         max = prev + 1;
605                         prev = 0;
606                         i = 1;
607                 }
608                 count = si->swap_map[i];
609                 if (count && count != SWAP_MAP_BAD)
610                         break;
611         }
612         return i;
613 }
614
615 /*
616  * We completely avoid races by reading each swap page in advance,
617  * and then search for the process using it.  All the necessary
618  * page table adjustments can then be made atomically.
619  */
620 static int try_to_unuse(unsigned int type)
621 {
622         struct swap_info_struct * si = &swap_info[type];
623         struct mm_struct *start_mm;
624         unsigned short *swap_map;
625         unsigned short swcount;
626         struct page *page;
627         swp_entry_t entry;
628         int i = 0;
629         int retval = 0;
630         int reset_overflow = 0;
631         int shmem;
632
633         /*
634          * When searching mms for an entry, a good strategy is to
635          * start at the first mm we freed the previous entry from
636          * (though actually we don't notice whether we or coincidence
637          * freed the entry).  Initialize this start_mm with a hold.
638          *
639          * A simpler strategy would be to start at the last mm we
640          * freed the previous entry from; but that would take less
641          * advantage of mmlist ordering (now preserved by swap_out()),
642          * which clusters forked address spaces together, most recent
643          * child immediately after parent.  If we race with dup_mmap(),
644          * we very much want to resolve parent before child, otherwise
645          * we may miss some entries: using last mm would invert that.
646          */
647         start_mm = &init_mm;
648         atomic_inc(&init_mm.mm_users);
649
650         /*
651          * Keep on scanning until all entries have gone.  Usually,
652          * one pass through swap_map is enough, but not necessarily:
653          * mmput() removes mm from mmlist before exit_mmap() and its
654          * zap_page_range().  That's not too bad, those entries are
655          * on their way out, and handled faster there than here.
656          * do_munmap() behaves similarly, taking the range out of mm's
657          * vma list before zap_page_range().  But unfortunately, when
658          * unmapping a part of a vma, it takes the whole out first,
659          * then reinserts what's left after (might even reschedule if
660          * open() method called) - so swap entries may be invisible
661          * to swapoff for a while, then reappear - but that is rare.
662          */
663         while ((i = find_next_to_unuse(si, i)) != 0) {
664                 if (signal_pending(current)) {
665                         retval = -EINTR;
666                         break;
667                 }
668
669                 /* 
670                  * Get a page for the entry, using the existing swap
671                  * cache page if there is one.  Otherwise, get a clean
672                  * page and read the swap into it. 
673                  */
674                 swap_map = &si->swap_map[i];
675                 entry = swp_entry(type, i);
676                 page = read_swap_cache_async(entry, NULL, 0);
677                 if (!page) {
678                         /*
679                          * Either swap_duplicate() failed because entry
680                          * has been freed independently, and will not be
681                          * reused since sys_swapoff() already disabled
682                          * allocation from here, or alloc_page() failed.
683                          */
684                         if (!*swap_map)
685                                 continue;
686                         retval = -ENOMEM;
687                         break;
688                 }
689
690                 /*
691                  * Don't hold on to start_mm if it looks like exiting.
692                  */
693                 if (atomic_read(&start_mm->mm_users) == 1) {
694                         mmput(start_mm);
695                         start_mm = &init_mm;
696                         atomic_inc(&init_mm.mm_users);
697                 }
698
699                 /*
700                  * Wait for and lock page.  When do_swap_page races with
701                  * try_to_unuse, do_swap_page can handle the fault much
702                  * faster than try_to_unuse can locate the entry.  This
703                  * apparently redundant "wait_on_page_locked" lets try_to_unuse
704                  * defer to do_swap_page in such a case - in some tests,
705                  * do_swap_page and try_to_unuse repeatedly compete.
706                  */
707                 wait_on_page_locked(page);
708                 wait_on_page_writeback(page);
709                 lock_page(page);
710                 wait_on_page_writeback(page);
711
712                 /*
713                  * Remove all references to entry, without blocking.
714                  * Whenever we reach init_mm, there's no address space
715                  * to search, but use it as a reminder to search shmem.
716                  */
717                 shmem = 0;
718                 swcount = *swap_map;
719                 if (swcount > 1) {
720                         if (start_mm == &init_mm)
721                                 shmem = shmem_unuse(entry, page);
722                         else
723                                 retval = unuse_process(start_mm, entry, page);
724                 }
725                 if (*swap_map > 1) {
726                         int set_start_mm = (*swap_map >= swcount);
727                         struct list_head *p = &start_mm->mmlist;
728                         struct mm_struct *new_start_mm = start_mm;
729                         struct mm_struct *prev_mm = start_mm;
730                         struct mm_struct *mm;
731
732                         atomic_inc(&new_start_mm->mm_users);
733                         atomic_inc(&prev_mm->mm_users);
734                         spin_lock(&mmlist_lock);
735                         while (*swap_map > 1 && !retval &&
736                                         (p = p->next) != &start_mm->mmlist) {
737                                 mm = list_entry(p, struct mm_struct, mmlist);
738                                 atomic_inc(&mm->mm_users);
739                                 spin_unlock(&mmlist_lock);
740                                 mmput(prev_mm);
741                                 prev_mm = mm;
742
743                                 cond_resched();
744
745                                 swcount = *swap_map;
746                                 if (swcount <= 1)
747                                         ;
748                                 else if (mm == &init_mm) {
749                                         set_start_mm = 1;
750                                         shmem = shmem_unuse(entry, page);
751                                 } else
752                                         retval = unuse_process(mm, entry, page);
753                                 if (set_start_mm && *swap_map < swcount) {
754                                         mmput(new_start_mm);
755                                         atomic_inc(&mm->mm_users);
756                                         new_start_mm = mm;
757                                         set_start_mm = 0;
758                                 }
759                                 spin_lock(&mmlist_lock);
760                         }
761                         spin_unlock(&mmlist_lock);
762                         mmput(prev_mm);
763                         mmput(start_mm);
764                         start_mm = new_start_mm;
765                 }
766                 if (retval) {
767                         unlock_page(page);
768                         page_cache_release(page);
769                         break;
770                 }
771
772                 /*
773                  * How could swap count reach 0x7fff when the maximum
774                  * pid is 0x7fff, and there's no way to repeat a swap
775                  * page within an mm (except in shmem, where it's the
776                  * shared object which takes the reference count)?
777                  * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
778                  *
779                  * If that's wrong, then we should worry more about
780                  * exit_mmap() and do_munmap() cases described above:
781                  * we might be resetting SWAP_MAP_MAX too early here.
782                  * We know "Undead"s can happen, they're okay, so don't
783                  * report them; but do report if we reset SWAP_MAP_MAX.
784                  */
785                 if (*swap_map == SWAP_MAP_MAX) {
786                         swap_device_lock(si);
787                         *swap_map = 1;
788                         swap_device_unlock(si);
789                         reset_overflow = 1;
790                 }
791
792                 /*
793                  * If a reference remains (rare), we would like to leave
794                  * the page in the swap cache; but try_to_unmap could
795                  * then re-duplicate the entry once we drop page lock,
796                  * so we might loop indefinitely; also, that page could
797                  * not be swapped out to other storage meanwhile.  So:
798                  * delete from cache even if there's another reference,
799                  * after ensuring that the data has been saved to disk -
800                  * since if the reference remains (rarer), it will be
801                  * read from disk into another page.  Splitting into two
802                  * pages would be incorrect if swap supported "shared
803                  * private" pages, but they are handled by tmpfs files.
804                  *
805                  * Note shmem_unuse already deleted a swappage from
806                  * the swap cache, unless the move to filepage failed:
807                  * in which case it left swappage in cache, lowered its
808                  * swap count to pass quickly through the loops above,
809                  * and now we must reincrement count to try again later.
810                  */
811                 if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) {
812                         struct writeback_control wbc = {
813                                 .sync_mode = WB_SYNC_NONE,
814                         };
815
816                         swap_writepage(page, &wbc);
817                         lock_page(page);
818                         wait_on_page_writeback(page);
819                 }
820                 if (PageSwapCache(page)) {
821                         if (shmem)
822                                 swap_duplicate(entry);
823                         else
824                                 delete_from_swap_cache(page);
825                 }
826
827                 /*
828                  * So we could skip searching mms once swap count went
829                  * to 1, we did not mark any present ptes as dirty: must
830                  * mark page dirty so shrink_list will preserve it.
831                  */
832                 SetPageDirty(page);
833                 unlock_page(page);
834                 page_cache_release(page);
835
836                 /*
837                  * Make sure that we aren't completely killing
838                  * interactive performance.
839                  */
840                 cond_resched();
841         }
842
843         mmput(start_mm);
844         if (reset_overflow) {
845                 printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
846                 swap_overflow = 0;
847         }
848         return retval;
849 }
850
851 /*
852  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
853  * corresponds to page offset `offset'.
854  */
855 sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
856 {
857         struct swap_extent *se = sis->curr_swap_extent;
858         struct swap_extent *start_se = se;
859
860         for ( ; ; ) {
861                 struct list_head *lh;
862
863                 if (se->start_page <= offset &&
864                                 offset < (se->start_page + se->nr_pages)) {
865                         return se->start_block + (offset - se->start_page);
866                 }
867                 lh = se->list.prev;
868                 if (lh == &sis->extent_list)
869                         lh = lh->prev;
870                 se = list_entry(lh, struct swap_extent, list);
871                 sis->curr_swap_extent = se;
872                 BUG_ON(se == start_se);         /* It *must* be present */
873         }
874 }
875
876 /*
877  * Free all of a swapdev's extent information
878  */
879 static void destroy_swap_extents(struct swap_info_struct *sis)
880 {
881         while (!list_empty(&sis->extent_list)) {
882                 struct swap_extent *se;
883
884                 se = list_entry(sis->extent_list.next,
885                                 struct swap_extent, list);
886                 list_del(&se->list);
887                 kfree(se);
888         }
889         sis->nr_extents = 0;
890 }
891
892 /*
893  * Add a block range (and the corresponding page range) into this swapdev's
894  * extent list.  The extent list is kept sorted in block order.
895  *
896  * This function rather assumes that it is called in ascending sector_t order.
897  * It doesn't look for extent coalescing opportunities.
898  */
899 static int
900 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
901                 unsigned long nr_pages, sector_t start_block)
902 {
903         struct swap_extent *se;
904         struct swap_extent *new_se;
905         struct list_head *lh;
906
907         lh = sis->extent_list.next;     /* The highest-addressed block */
908         while (lh != &sis->extent_list) {
909                 se = list_entry(lh, struct swap_extent, list);
910                 if (se->start_block + se->nr_pages == start_block &&
911                     se->start_page  + se->nr_pages == start_page) {
912                         /* Merge it */
913                         se->nr_pages += nr_pages;
914                         return 0;
915                 }
916                 lh = lh->next;
917         }
918
919         /*
920          * No merge.  Insert a new extent, preserving ordering.
921          */
922         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
923         if (new_se == NULL)
924                 return -ENOMEM;
925         new_se->start_page = start_page;
926         new_se->nr_pages = nr_pages;
927         new_se->start_block = start_block;
928
929         lh = sis->extent_list.prev;     /* The lowest block */
930         while (lh != &sis->extent_list) {
931                 se = list_entry(lh, struct swap_extent, list);
932                 if (se->start_block > start_block)
933                         break;
934                 lh = lh->prev;
935         }
936         list_add_tail(&new_se->list, lh);
937         sis->nr_extents++;
938         return 0;
939 }
940
941 /*
942  * A `swap extent' is a simple thing which maps a contiguous range of pages
943  * onto a contiguous range of disk blocks.  An ordered list of swap extents
944  * is built at swapon time and is then used at swap_writepage/swap_readpage
945  * time for locating where on disk a page belongs.
946  *
947  * If the swapfile is an S_ISBLK block device, a single extent is installed.
948  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
949  * swap files identically.
950  *
951  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
952  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
953  * swapfiles are handled *identically* after swapon time.
954  *
955  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
956  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
957  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
958  * requirements, they are simply tossed out - we will never use those blocks
959  * for swapping.
960  *
961  * For S_ISREG swapfiles we hold i_sem across the life of the swapon.  This
962  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
963  * which will scribble on the fs.
964  *
965  * The amount of disk space which a single swap extent represents varies.
966  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
967  * extents in the list.  To avoid much list walking, we cache the previous
968  * search location in `curr_swap_extent', and start new searches from there.
969  * This is extremely effective.  The average number of iterations in
970  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
971  */
972 static int setup_swap_extents(struct swap_info_struct *sis)
973 {
974         struct inode *inode;
975         unsigned blocks_per_page;
976         unsigned long page_no;
977         unsigned blkbits;
978         sector_t probe_block;
979         sector_t last_block;
980         int ret;
981
982         inode = sis->swap_file->f_mapping->host;
983         if (S_ISBLK(inode->i_mode)) {
984                 ret = add_swap_extent(sis, 0, sis->max, 0);
985                 goto done;
986         }
987
988         blkbits = inode->i_blkbits;
989         blocks_per_page = PAGE_SIZE >> blkbits;
990
991         /*
992          * Map all the blocks into the extent list.  This code doesn't try
993          * to be very smart.
994          */
995         probe_block = 0;
996         page_no = 0;
997         last_block = i_size_read(inode) >> blkbits;
998         while ((probe_block + blocks_per_page) <= last_block &&
999                         page_no < sis->max) {
1000                 unsigned block_in_page;
1001                 sector_t first_block;
1002
1003                 first_block = bmap(inode, probe_block);
1004                 if (first_block == 0)
1005                         goto bad_bmap;
1006
1007                 /*
1008                  * It must be PAGE_SIZE aligned on-disk
1009                  */
1010                 if (first_block & (blocks_per_page - 1)) {
1011                         probe_block++;
1012                         goto reprobe;
1013                 }
1014
1015                 for (block_in_page = 1; block_in_page < blocks_per_page;
1016                                         block_in_page++) {
1017                         sector_t block;
1018
1019                         block = bmap(inode, probe_block + block_in_page);
1020                         if (block == 0)
1021                                 goto bad_bmap;
1022                         if (block != first_block + block_in_page) {
1023                                 /* Discontiguity */
1024                                 probe_block++;
1025                                 goto reprobe;
1026                         }
1027                 }
1028
1029                 /*
1030                  * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1031                  */
1032                 ret = add_swap_extent(sis, page_no, 1,
1033                                 first_block >> (PAGE_SHIFT - blkbits));
1034                 if (ret)
1035                         goto out;
1036                 page_no++;
1037                 probe_block += blocks_per_page;
1038 reprobe:
1039                 continue;
1040         }
1041         ret = 0;
1042         if (page_no == 0)
1043                 ret = -EINVAL;
1044         sis->max = page_no;
1045         sis->highest_bit = page_no - 1;
1046 done:
1047         sis->curr_swap_extent = list_entry(sis->extent_list.prev,
1048                                         struct swap_extent, list);
1049         goto out;
1050 bad_bmap:
1051         printk(KERN_ERR "swapon: swapfile has holes\n");
1052         ret = -EINVAL;
1053 out:
1054         return ret;
1055 }
1056
1057 #if 0   /* We don't need this yet */
1058 #include <linux/backing-dev.h>
1059 int page_queue_congested(struct page *page)
1060 {
1061         struct backing_dev_info *bdi;
1062
1063         BUG_ON(!PageLocked(page));      /* It pins the swap_info_struct */
1064
1065         if (PageSwapCache(page)) {
1066                 swp_entry_t entry = { .val = page->private };
1067                 struct swap_info_struct *sis;
1068
1069                 sis = get_swap_info_struct(swp_type(entry));
1070                 bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info;
1071         } else
1072                 bdi = page->mapping->backing_dev_info;
1073         return bdi_write_congested(bdi);
1074 }
1075 #endif
1076
1077 asmlinkage long sys_swapoff(const char __user * specialfile)
1078 {
1079         struct swap_info_struct * p = NULL;
1080         unsigned short *swap_map;
1081         struct file *swap_file, *victim;
1082         struct address_space *mapping;
1083         struct inode *inode;
1084         char * pathname;
1085         int i, type, prev;
1086         int err;
1087         
1088         if (!capable(CAP_SYS_ADMIN))
1089                 return -EPERM;
1090
1091         pathname = getname(specialfile);
1092         err = PTR_ERR(pathname);
1093         if (IS_ERR(pathname))
1094                 goto out;
1095
1096         victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1097         putname(pathname);
1098         err = PTR_ERR(victim);
1099         if (IS_ERR(victim))
1100                 goto out;
1101
1102         mapping = victim->f_mapping;
1103         prev = -1;
1104         swap_list_lock();
1105         for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
1106                 p = swap_info + type;
1107                 if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) {
1108                         if (p->swap_file->f_mapping == mapping)
1109                                 break;
1110                 }
1111                 prev = type;
1112         }
1113         if (type < 0) {
1114                 err = -EINVAL;
1115                 swap_list_unlock();
1116                 goto out_dput;
1117         }
1118         if (!security_vm_enough_memory(p->pages))
1119                 vm_unacct_memory(p->pages);
1120         else {
1121                 err = -ENOMEM;
1122                 swap_list_unlock();
1123                 goto out_dput;
1124         }
1125         if (prev < 0) {
1126                 swap_list.head = p->next;
1127         } else {
1128                 swap_info[prev].next = p->next;
1129         }
1130         if (type == swap_list.next) {
1131                 /* just pick something that's safe... */
1132                 swap_list.next = swap_list.head;
1133         }
1134         nr_swap_pages -= p->pages;
1135         total_swap_pages -= p->pages;
1136         p->flags &= ~SWP_WRITEOK;
1137         swap_list_unlock();
1138         current->flags |= PF_SWAPOFF;
1139         err = try_to_unuse(type);
1140         current->flags &= ~PF_SWAPOFF;
1141
1142         /* wait for any unplug function to finish */
1143         down_write(&swap_unplug_sem);
1144         up_write(&swap_unplug_sem);
1145
1146         if (err) {
1147                 /* re-insert swap space back into swap_list */
1148                 swap_list_lock();
1149                 for (prev = -1, i = swap_list.head; i >= 0; prev = i, i = swap_info[i].next)
1150                         if (p->prio >= swap_info[i].prio)
1151                                 break;
1152                 p->next = i;
1153                 if (prev < 0)
1154                         swap_list.head = swap_list.next = p - swap_info;
1155                 else
1156                         swap_info[prev].next = p - swap_info;
1157                 nr_swap_pages += p->pages;
1158                 total_swap_pages += p->pages;
1159                 p->flags |= SWP_WRITEOK;
1160                 swap_list_unlock();
1161                 goto out_dput;
1162         }
1163         down(&swapon_sem);
1164         swap_list_lock();
1165         swap_device_lock(p);
1166         swap_file = p->swap_file;
1167         p->swap_file = NULL;
1168         p->max = 0;
1169         swap_map = p->swap_map;
1170         p->swap_map = NULL;
1171         p->flags = 0;
1172         destroy_swap_extents(p);
1173         swap_device_unlock(p);
1174         swap_list_unlock();
1175         up(&swapon_sem);
1176         vfree(swap_map);
1177         inode = mapping->host;
1178         if (S_ISBLK(inode->i_mode)) {
1179                 struct block_device *bdev = I_BDEV(inode);
1180                 set_blocksize(bdev, p->old_block_size);
1181                 bd_release(bdev);
1182         } else {
1183                 down(&inode->i_sem);
1184                 inode->i_flags &= ~S_SWAPFILE;
1185                 up(&inode->i_sem);
1186         }
1187         filp_close(swap_file, NULL);
1188         err = 0;
1189
1190 out_dput:
1191         filp_close(victim, NULL);
1192 out:
1193         return err;
1194 }
1195
1196 #ifdef CONFIG_PROC_FS
1197 /* iterator */
1198 static void *swap_start(struct seq_file *swap, loff_t *pos)
1199 {
1200         struct swap_info_struct *ptr = swap_info;
1201         int i;
1202         loff_t l = *pos;
1203
1204         down(&swapon_sem);
1205
1206         for (i = 0; i < nr_swapfiles; i++, ptr++) {
1207                 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1208                         continue;
1209                 if (!l--)
1210                         return ptr;
1211         }
1212
1213         return NULL;
1214 }
1215
1216 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1217 {
1218         struct swap_info_struct *ptr = v;
1219         struct swap_info_struct *endptr = swap_info + nr_swapfiles;
1220
1221         for (++ptr; ptr < endptr; ptr++) {
1222                 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1223                         continue;
1224                 ++*pos;
1225                 return ptr;
1226         }
1227
1228         return NULL;
1229 }
1230
1231 static void swap_stop(struct seq_file *swap, void *v)
1232 {
1233         up(&swapon_sem);
1234 }
1235
1236 static int swap_show(struct seq_file *swap, void *v)
1237 {
1238         struct swap_info_struct *ptr = v;
1239         struct file *file;
1240         int len;
1241
1242         if (v == swap_info)
1243                 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1244
1245         file = ptr->swap_file;
1246         len = seq_path(swap, file->f_vfsmnt, file->f_dentry, " \t\n\\");
1247         seq_printf(swap, "%*s%s\t%d\t%ld\t%d\n",
1248                        len < 40 ? 40 - len : 1, " ",
1249                        S_ISBLK(file->f_dentry->d_inode->i_mode) ?
1250                                 "partition" : "file\t",
1251                        ptr->pages << (PAGE_SHIFT - 10),
1252                        ptr->inuse_pages << (PAGE_SHIFT - 10),
1253                        ptr->prio);
1254         return 0;
1255 }
1256
1257 static struct seq_operations swaps_op = {
1258         .start =        swap_start,
1259         .next =         swap_next,
1260         .stop =         swap_stop,
1261         .show =         swap_show
1262 };
1263
1264 static int swaps_open(struct inode *inode, struct file *file)
1265 {
1266         return seq_open(file, &swaps_op);
1267 }
1268
1269 static struct file_operations proc_swaps_operations = {
1270         .open           = swaps_open,
1271         .read           = seq_read,
1272         .llseek         = seq_lseek,
1273         .release        = seq_release,
1274 };
1275
1276 static int __init procswaps_init(void)
1277 {
1278         struct proc_dir_entry *entry;
1279
1280         entry = create_proc_entry("swaps", 0, NULL);
1281         if (entry)
1282                 entry->proc_fops = &proc_swaps_operations;
1283         return 0;
1284 }
1285 __initcall(procswaps_init);
1286 #endif /* CONFIG_PROC_FS */
1287
1288 /*
1289  * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1290  *
1291  * The swapon system call
1292  */
1293 asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
1294 {
1295         struct swap_info_struct * p;
1296         char *name = NULL;
1297         struct block_device *bdev = NULL;
1298         struct file *swap_file = NULL;
1299         struct address_space *mapping;
1300         unsigned int type;
1301         int i, prev;
1302         int error;
1303         static int least_priority;
1304         union swap_header *swap_header = NULL;
1305         int swap_header_version;
1306         int nr_good_pages = 0;
1307         unsigned long maxpages = 1;
1308         int swapfilesize;
1309         unsigned short *swap_map;
1310         struct page *page = NULL;
1311         struct inode *inode = NULL;
1312         int did_down = 0;
1313
1314         if (!capable(CAP_SYS_ADMIN))
1315                 return -EPERM;
1316         swap_list_lock();
1317         p = swap_info;
1318         for (type = 0 ; type < nr_swapfiles ; type++,p++)
1319                 if (!(p->flags & SWP_USED))
1320                         break;
1321         error = -EPERM;
1322         /*
1323          * Test if adding another swap device is possible. There are
1324          * two limiting factors: 1) the number of bits for the swap
1325          * type swp_entry_t definition and 2) the number of bits for
1326          * the swap type in the swap ptes as defined by the different
1327          * architectures. To honor both limitations a swap entry
1328          * with swap offset 0 and swap type ~0UL is created, encoded
1329          * to a swap pte, decoded to a swp_entry_t again and finally
1330          * the swap type part is extracted. This will mask all bits
1331          * from the initial ~0UL that can't be encoded in either the
1332          * swp_entry_t or the architecture definition of a swap pte.
1333          */
1334         if (type > swp_type(pte_to_swp_entry(swp_entry_to_pte(swp_entry(~0UL,0))))) {
1335                 swap_list_unlock();
1336                 goto out;
1337         }
1338         if (type >= nr_swapfiles)
1339                 nr_swapfiles = type+1;
1340         INIT_LIST_HEAD(&p->extent_list);
1341         p->flags = SWP_USED;
1342         p->nr_extents = 0;
1343         p->swap_file = NULL;
1344         p->old_block_size = 0;
1345         p->swap_map = NULL;
1346         p->lowest_bit = 0;
1347         p->highest_bit = 0;
1348         p->cluster_nr = 0;
1349         p->inuse_pages = 0;
1350         p->sdev_lock = SPIN_LOCK_UNLOCKED;
1351         p->next = -1;
1352         if (swap_flags & SWAP_FLAG_PREFER) {
1353                 p->prio =
1354                   (swap_flags & SWAP_FLAG_PRIO_MASK)>>SWAP_FLAG_PRIO_SHIFT;
1355         } else {
1356                 p->prio = --least_priority;
1357         }
1358         swap_list_unlock();
1359         name = getname(specialfile);
1360         error = PTR_ERR(name);
1361         if (IS_ERR(name)) {
1362                 name = NULL;
1363                 goto bad_swap_2;
1364         }
1365         swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1366         error = PTR_ERR(swap_file);
1367         if (IS_ERR(swap_file)) {
1368                 swap_file = NULL;
1369                 goto bad_swap_2;
1370         }
1371
1372         p->swap_file = swap_file;
1373         mapping = swap_file->f_mapping;
1374         inode = mapping->host;
1375
1376         error = -EBUSY;
1377         for (i = 0; i < nr_swapfiles; i++) {
1378                 struct swap_info_struct *q = &swap_info[i];
1379
1380                 if (i == type || !q->swap_file)
1381                         continue;
1382                 if (mapping == q->swap_file->f_mapping)
1383                         goto bad_swap;
1384         }
1385
1386         error = -EINVAL;
1387         if (S_ISBLK(inode->i_mode)) {
1388                 bdev = I_BDEV(inode);
1389                 error = bd_claim(bdev, sys_swapon);
1390                 if (error < 0) {
1391                         bdev = NULL;
1392                         goto bad_swap;
1393                 }
1394                 p->old_block_size = block_size(bdev);
1395                 error = set_blocksize(bdev, PAGE_SIZE);
1396                 if (error < 0)
1397                         goto bad_swap;
1398                 p->bdev = bdev;
1399         } else if (S_ISREG(inode->i_mode)) {
1400                 p->bdev = inode->i_sb->s_bdev;
1401                 down(&inode->i_sem);
1402                 did_down = 1;
1403                 if (IS_SWAPFILE(inode)) {
1404                         error = -EBUSY;
1405                         goto bad_swap;
1406                 }
1407         } else {
1408                 goto bad_swap;
1409         }
1410
1411         swapfilesize = i_size_read(inode) >> PAGE_SHIFT;
1412
1413         /*
1414          * Read the swap header.
1415          */
1416         if (!mapping->a_ops->readpage) {
1417                 error = -EINVAL;
1418                 goto bad_swap;
1419         }
1420         page = read_cache_page(mapping, 0,
1421                         (filler_t *)mapping->a_ops->readpage, swap_file);
1422         if (IS_ERR(page)) {
1423                 error = PTR_ERR(page);
1424                 goto bad_swap;
1425         }
1426         wait_on_page_locked(page);
1427         if (!PageUptodate(page))
1428                 goto bad_swap;
1429         kmap(page);
1430         swap_header = page_address(page);
1431
1432         if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10))
1433                 swap_header_version = 1;
1434         else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10))
1435                 swap_header_version = 2;
1436         else {
1437                 printk("Unable to find swap-space signature\n");
1438                 error = -EINVAL;
1439                 goto bad_swap;
1440         }
1441         
1442         switch (swap_header_version) {
1443         case 1:
1444                 printk(KERN_ERR "version 0 swap is no longer supported. "
1445                         "Use mkswap -v1 %s\n", name);
1446                 error = -EINVAL;
1447                 goto bad_swap;
1448         case 2:
1449                 /* Check the swap header's sub-version and the size of
1450                    the swap file and bad block lists */
1451                 if (swap_header->info.version != 1) {
1452                         printk(KERN_WARNING
1453                                "Unable to handle swap header version %d\n",
1454                                swap_header->info.version);
1455                         error = -EINVAL;
1456                         goto bad_swap;
1457                 }
1458
1459                 p->lowest_bit  = 1;
1460                 /*
1461                  * Find out how many pages are allowed for a single swap
1462                  * device. There are two limiting factors: 1) the number of
1463                  * bits for the swap offset in the swp_entry_t type and
1464                  * 2) the number of bits in the a swap pte as defined by
1465                  * the different architectures. In order to find the
1466                  * largest possible bit mask a swap entry with swap type 0
1467                  * and swap offset ~0UL is created, encoded to a swap pte,
1468                  * decoded to a swp_entry_t again and finally the swap
1469                  * offset is extracted. This will mask all the bits from
1470                  * the initial ~0UL mask that can't be encoded in either
1471                  * the swp_entry_t or the architecture definition of a
1472                  * swap pte.
1473                  */
1474                 maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1;
1475                 if (maxpages > swap_header->info.last_page)
1476                         maxpages = swap_header->info.last_page;
1477                 p->highest_bit = maxpages - 1;
1478
1479                 error = -EINVAL;
1480                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1481                         goto bad_swap;
1482                 
1483                 /* OK, set up the swap map and apply the bad block list */
1484                 if (!(p->swap_map = vmalloc(maxpages * sizeof(short)))) {
1485                         error = -ENOMEM;
1486                         goto bad_swap;
1487                 }
1488
1489                 error = 0;
1490                 memset(p->swap_map, 0, maxpages * sizeof(short));
1491                 for (i=0; i<swap_header->info.nr_badpages; i++) {
1492                         int page = swap_header->info.badpages[i];
1493                         if (page <= 0 || page >= swap_header->info.last_page)
1494                                 error = -EINVAL;
1495                         else
1496                                 p->swap_map[page] = SWAP_MAP_BAD;
1497                 }
1498                 nr_good_pages = swap_header->info.last_page -
1499                                 swap_header->info.nr_badpages -
1500                                 1 /* header page */;
1501                 if (error) 
1502                         goto bad_swap;
1503         }
1504         
1505         if (swapfilesize && maxpages > swapfilesize) {
1506                 printk(KERN_WARNING
1507                        "Swap area shorter than signature indicates\n");
1508                 error = -EINVAL;
1509                 goto bad_swap;
1510         }
1511         if (!nr_good_pages) {
1512                 printk(KERN_WARNING "Empty swap-file\n");
1513                 error = -EINVAL;
1514                 goto bad_swap;
1515         }
1516         p->swap_map[0] = SWAP_MAP_BAD;
1517         p->max = maxpages;
1518         p->pages = nr_good_pages;
1519
1520         error = setup_swap_extents(p);
1521         if (error)
1522                 goto bad_swap;
1523
1524         down(&swapon_sem);
1525         swap_list_lock();
1526         swap_device_lock(p);
1527         p->flags = SWP_ACTIVE;
1528         nr_swap_pages += nr_good_pages;
1529         total_swap_pages += nr_good_pages;
1530         printk(KERN_INFO "Adding %dk swap on %s.  Priority:%d extents:%d\n",
1531                 nr_good_pages<<(PAGE_SHIFT-10), name,
1532                 p->prio, p->nr_extents);
1533
1534         /* insert swap space into swap_list: */
1535         prev = -1;
1536         for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1537                 if (p->prio >= swap_info[i].prio) {
1538                         break;
1539                 }
1540                 prev = i;
1541         }
1542         p->next = i;
1543         if (prev < 0) {
1544                 swap_list.head = swap_list.next = p - swap_info;
1545         } else {
1546                 swap_info[prev].next = p - swap_info;
1547         }
1548         swap_device_unlock(p);
1549         swap_list_unlock();
1550         up(&swapon_sem);
1551         error = 0;
1552         goto out;
1553 bad_swap:
1554         if (bdev) {
1555                 set_blocksize(bdev, p->old_block_size);
1556                 bd_release(bdev);
1557         }
1558 bad_swap_2:
1559         swap_list_lock();
1560         swap_map = p->swap_map;
1561         p->swap_file = NULL;
1562         p->swap_map = NULL;
1563         p->flags = 0;
1564         if (!(swap_flags & SWAP_FLAG_PREFER))
1565                 ++least_priority;
1566         swap_list_unlock();
1567         destroy_swap_extents(p);
1568         if (swap_map)
1569                 vfree(swap_map);
1570         if (swap_file)
1571                 filp_close(swap_file, NULL);
1572 out:
1573         if (page && !IS_ERR(page)) {
1574                 kunmap(page);
1575                 page_cache_release(page);
1576         }
1577         if (name)
1578                 putname(name);
1579         if (did_down) {
1580                 if (!error)
1581                         inode->i_flags |= S_SWAPFILE;
1582                 up(&inode->i_sem);
1583         }
1584         return error;
1585 }
1586
1587 void si_swapinfo(struct sysinfo *val)
1588 {
1589         unsigned int i;
1590         unsigned long nr_to_be_unused = 0;
1591
1592         swap_list_lock();
1593         for (i = 0; i < nr_swapfiles; i++) {
1594                 if (!(swap_info[i].flags & SWP_USED) ||
1595                      (swap_info[i].flags & SWP_WRITEOK))
1596                         continue;
1597                 nr_to_be_unused += swap_info[i].inuse_pages;
1598         }
1599         val->freeswap = nr_swap_pages + nr_to_be_unused;
1600         val->totalswap = total_swap_pages + nr_to_be_unused;
1601         swap_list_unlock();
1602 }
1603
1604 /*
1605  * Verify that a swap entry is valid and increment its swap map count.
1606  *
1607  * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
1608  * "permanent", but will be reclaimed by the next swapoff.
1609  */
1610 int swap_duplicate(swp_entry_t entry)
1611 {
1612         struct swap_info_struct * p;
1613         unsigned long offset, type;
1614         int result = 0;
1615
1616         type = swp_type(entry);
1617         if (type >= nr_swapfiles)
1618                 goto bad_file;
1619         p = type + swap_info;
1620         offset = swp_offset(entry);
1621
1622         swap_device_lock(p);
1623         if (offset < p->max && p->swap_map[offset]) {
1624                 if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {
1625                         p->swap_map[offset]++;
1626                         result = 1;
1627                 } else if (p->swap_map[offset] <= SWAP_MAP_MAX) {
1628                         if (swap_overflow++ < 5)
1629                                 printk(KERN_WARNING "swap_dup: swap entry overflow\n");
1630                         p->swap_map[offset] = SWAP_MAP_MAX;
1631                         result = 1;
1632                 }
1633         }
1634         swap_device_unlock(p);
1635 out:
1636         return result;
1637
1638 bad_file:
1639         printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
1640         goto out;
1641 }
1642
1643 struct swap_info_struct *
1644 get_swap_info_struct(unsigned type)
1645 {
1646         return &swap_info[type];
1647 }
1648
1649 /*
1650  * swap_device_lock prevents swap_map being freed. Don't grab an extra
1651  * reference on the swaphandle, it doesn't matter if it becomes unused.
1652  */
1653 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
1654 {
1655         int ret = 0, i = 1 << page_cluster;
1656         unsigned long toff;
1657         struct swap_info_struct *swapdev = swp_type(entry) + swap_info;
1658
1659         if (!page_cluster)      /* no readahead */
1660                 return 0;
1661         toff = (swp_offset(entry) >> page_cluster) << page_cluster;
1662         if (!toff)              /* first page is swap header */
1663                 toff++, i--;
1664         *offset = toff;
1665
1666         swap_device_lock(swapdev);
1667         do {
1668                 /* Don't read-ahead past the end of the swap area */
1669                 if (toff >= swapdev->max)
1670                         break;
1671                 /* Don't read in free or bad pages */
1672                 if (!swapdev->swap_map[toff])
1673                         break;
1674                 if (swapdev->swap_map[toff] == SWAP_MAP_BAD)
1675                         break;
1676                 toff++;
1677                 ret++;
1678         } while (--i);
1679         swap_device_unlock(swapdev);
1680         return ret;
1681 }