/* * acpi-cpufreq-io.c - ACPI Processor P-States Driver ($Revision: 1.3 $) * * Copyright (C) 2001, 2002 Andy Grover * Copyright (C) 2001, 2002 Paul Diefenbaugh * Copyright (C) 2002 - 2004 Dominik Brodowski * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ #include #include #include #include #include #include #include #include #include #include #include #include #define ACPI_PROCESSOR_COMPONENT 0x01000000 #define ACPI_PROCESSOR_CLASS "processor" #define ACPI_PROCESSOR_DRIVER_NAME "ACPI Processor P-States Driver" #define ACPI_PROCESSOR_DEVICE_NAME "Processor" #define _COMPONENT ACPI_PROCESSOR_COMPONENT ACPI_MODULE_NAME ("acpi_processor_perf") MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski"); MODULE_DESCRIPTION(ACPI_PROCESSOR_DRIVER_NAME); MODULE_LICENSE("GPL"); struct cpufreq_acpi_io { struct acpi_processor_performance acpi_data; struct cpufreq_frequency_table *freq_table; }; static struct cpufreq_acpi_io *acpi_io_data[NR_CPUS]; static int acpi_processor_write_port( u16 port, u8 bit_width, u32 value) { if (bit_width <= 8) { outb(value, port); } else if (bit_width <= 16) { outw(value, port); } else if (bit_width <= 32) { outl(value, port); } else { return -ENODEV; } return 0; } static int acpi_processor_read_port( u16 port, u8 bit_width, u32 *ret) { *ret = 0; if (bit_width <= 8) { *ret = inb(port); } else if (bit_width <= 16) { *ret = inw(port); } else if (bit_width <= 32) { *ret = inl(port); } else { return -ENODEV; } return 0; } static int acpi_processor_set_performance ( struct cpufreq_acpi_io *data, unsigned int cpu, int state) { u16 port = 0; u8 bit_width = 0; int ret = 0; u32 value = 0; int i = 0; struct cpufreq_freqs cpufreq_freqs; ACPI_FUNCTION_TRACE("acpi_processor_set_performance"); if (state == data->acpi_data.state) { ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Already at target state (P%d)\n", state)); return_VALUE(0); } ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Transitioning from P%d to P%d\n", data->acpi_data.state, state)); /* cpufreq frequency struct */ cpufreq_freqs.cpu = cpu; cpufreq_freqs.old = data->freq_table[data->acpi_data.state].frequency; cpufreq_freqs.new = data->freq_table[state].frequency; /* notify cpufreq */ cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_PRECHANGE); /* * First we write the target state's 'control' value to the * control_register. */ port = data->acpi_data.control_register.address; bit_width = data->acpi_data.control_register.bit_width; value = (u32) data->acpi_data.states[state].control; ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Writing 0x%08x to port 0x%04x\n", value, port)); ret = acpi_processor_write_port(port, bit_width, value); if (ret) { ACPI_DEBUG_PRINT((ACPI_DB_WARN, "Invalid port width 0x%04x\n", bit_width)); return_VALUE(ret); } /* * Then we read the 'status_register' and compare the value with the * target state's 'status' to make sure the transition was successful. * Note that we'll poll for up to 1ms (100 cycles of 10us) before * giving up. */ port = data->acpi_data.status_register.address; bit_width = data->acpi_data.status_register.bit_width; ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Looking for 0x%08x from port 0x%04x\n", (u32) data->acpi_data.states[state].status, port)); for (i=0; i<100; i++) { ret = acpi_processor_read_port(port, bit_width, &value); if (ret) { ACPI_DEBUG_PRINT((ACPI_DB_WARN, "Invalid port width 0x%04x\n", bit_width)); return_VALUE(ret); } if (value == (u32) data->acpi_data.states[state].status) break; udelay(10); } /* notify cpufreq */ cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_POSTCHANGE); if (value != (u32) data->acpi_data.states[state].status) { unsigned int tmp = cpufreq_freqs.new; cpufreq_freqs.new = cpufreq_freqs.old; cpufreq_freqs.old = tmp; cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_PRECHANGE); cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_POSTCHANGE); ACPI_DEBUG_PRINT((ACPI_DB_WARN, "Transition failed\n")); return_VALUE(-ENODEV); } ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Transition successful after %d microseconds\n", i * 10)); data->acpi_data.state = state; return_VALUE(0); } static int acpi_cpufreq_target ( struct cpufreq_policy *policy, unsigned int target_freq, unsigned int relation) { struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu]; unsigned int next_state = 0; unsigned int result = 0; ACPI_FUNCTION_TRACE("acpi_cpufreq_setpolicy"); result = cpufreq_frequency_table_target(policy, data->freq_table, target_freq, relation, &next_state); if (result) return_VALUE(result); result = acpi_processor_set_performance (data, policy->cpu, next_state); return_VALUE(result); } static int acpi_cpufreq_verify ( struct cpufreq_policy *policy) { unsigned int result = 0; struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu]; ACPI_FUNCTION_TRACE("acpi_cpufreq_verify"); result = cpufreq_frequency_table_verify(policy, data->freq_table); return_VALUE(result); } static unsigned long acpi_cpufreq_guess_freq ( struct cpufreq_acpi_io *data, unsigned int cpu) { if (cpu_khz) { /* search the closest match to cpu_khz */ unsigned int i; unsigned long freq; unsigned long freqn = data->acpi_data.states[0].core_frequency * 1000; for (i=0; i < (data->acpi_data.state_count - 1); i++) { freq = freqn; freqn = data->acpi_data.states[i+1].core_frequency * 1000; if ((2 * cpu_khz) > (freqn + freq)) { data->acpi_data.state = i; return (freq); } } data->acpi_data.state = data->acpi_data.state_count - 1; return (freqn); } else /* assume CPU is at P0... */ data->acpi_data.state = 0; return data->acpi_data.states[0].core_frequency * 1000; } static int acpi_cpufreq_cpu_init ( struct cpufreq_policy *policy) { unsigned int i; unsigned int cpu = policy->cpu; struct cpufreq_acpi_io *data; unsigned int result = 0; ACPI_FUNCTION_TRACE("acpi_cpufreq_cpu_init"); data = kmalloc(sizeof(struct cpufreq_acpi_io), GFP_KERNEL); if (!data) return_VALUE(-ENOMEM); memset(data, 0, sizeof(struct cpufreq_acpi_io)); acpi_io_data[cpu] = data; result = acpi_processor_register_performance(&data->acpi_data, cpu); if (result) goto err_free; /* capability check */ if (data->acpi_data.state_count <= 1) { ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "No P-States\n")); result = -ENODEV; goto err_unreg; } if ((data->acpi_data.control_register.space_id != ACPI_ADR_SPACE_SYSTEM_IO) || (data->acpi_data.status_register.space_id != ACPI_ADR_SPACE_SYSTEM_IO)) { ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Unsupported address space [%d, %d]\n", (u32) (data->acpi_data.control_register.space_id), (u32) (data->acpi_data.status_register.space_id))); result = -ENODEV; goto err_unreg; } /* alloc freq_table */ data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) * (data->acpi_data.state_count + 1), GFP_KERNEL); if (!data->freq_table) { result = -ENOMEM; goto err_unreg; } /* detect transition latency */ policy->cpuinfo.transition_latency = 0; for (i=0; iacpi_data.state_count; i++) { if ((data->acpi_data.states[i].transition_latency * 1000) > policy->cpuinfo.transition_latency) policy->cpuinfo.transition_latency = data->acpi_data.states[i].transition_latency * 1000; } policy->governor = CPUFREQ_DEFAULT_GOVERNOR; /* The current speed is unknown and not detectable by ACPI... */ policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu); /* table init */ for (i=0; i<=data->acpi_data.state_count; i++) { data->freq_table[i].index = i; if (iacpi_data.state_count) data->freq_table[i].frequency = data->acpi_data.states[i].core_frequency * 1000; else data->freq_table[i].frequency = CPUFREQ_TABLE_END; } result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table); if (result) { goto err_freqfree; } printk(KERN_INFO "cpufreq: CPU%u - ACPI performance management activated.\n", cpu); for (i = 0; i < data->acpi_data.state_count; i++) printk(KERN_INFO "cpufreq: %cP%d: %d MHz, %d mW, %d uS\n", (i == data->acpi_data.state?'*':' '), i, (u32) data->acpi_data.states[i].core_frequency, (u32) data->acpi_data.states[i].power, (u32) data->acpi_data.states[i].transition_latency); cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu); return_VALUE(result); err_freqfree: kfree(data->freq_table); err_unreg: acpi_processor_unregister_performance(&data->acpi_data, cpu); err_free: kfree(data); acpi_io_data[cpu] = NULL; return_VALUE(result); } static int acpi_cpufreq_cpu_exit ( struct cpufreq_policy *policy) { struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu]; ACPI_FUNCTION_TRACE("acpi_cpufreq_cpu_exit"); if (data) { cpufreq_frequency_table_put_attr(policy->cpu); acpi_io_data[policy->cpu] = NULL; acpi_processor_unregister_performance(&data->acpi_data, policy->cpu); kfree(data); } return_VALUE(0); } static struct freq_attr* acpi_cpufreq_attr[] = { &cpufreq_freq_attr_scaling_available_freqs, NULL, }; static struct cpufreq_driver acpi_cpufreq_driver = { .verify = acpi_cpufreq_verify, .target = acpi_cpufreq_target, .init = acpi_cpufreq_cpu_init, .exit = acpi_cpufreq_cpu_exit, .name = "acpi-cpufreq", .owner = THIS_MODULE, .attr = acpi_cpufreq_attr, }; static int __init acpi_cpufreq_init (void) { int result = 0; ACPI_FUNCTION_TRACE("acpi_cpufreq_init"); result = cpufreq_register_driver(&acpi_cpufreq_driver); return_VALUE(result); } static void __exit acpi_cpufreq_exit (void) { ACPI_FUNCTION_TRACE("acpi_cpufreq_exit"); cpufreq_unregister_driver(&acpi_cpufreq_driver); return_VOID; } late_initcall(acpi_cpufreq_init); module_exit(acpi_cpufreq_exit);