/* * Some of the code in this file has been gleaned from the 64 bit * discontigmem support code base. * * Copyright (C) 2002, IBM Corp. * * All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * Send feedback to Pat Gaughen */ #include #include #include #include #include #include /* * proximity macros and definitions */ #define NODE_ARRAY_INDEX(x) ((x) / 8) /* 8 bits/char */ #define NODE_ARRAY_OFFSET(x) ((x) % 8) /* 8 bits/char */ #define BMAP_SET(bmap, bit) ((bmap)[NODE_ARRAY_INDEX(bit)] |= 1 << NODE_ARRAY_OFFSET(bit)) #define BMAP_TEST(bmap, bit) ((bmap)[NODE_ARRAY_INDEX(bit)] & (1 << NODE_ARRAY_OFFSET(bit))) #define MAX_PXM_DOMAINS 256 /* 1 byte and no promises about values */ /* bitmap length; _PXM is at most 255 */ #define PXM_BITMAP_LEN (MAX_PXM_DOMAINS / 8) static u8 pxm_bitmap[PXM_BITMAP_LEN]; /* bitmap of proximity domains */ #define MAX_CHUNKS_PER_NODE 4 #define MAXCHUNKS (MAX_CHUNKS_PER_NODE * MAX_NUMNODES) struct node_memory_chunk_s { unsigned long start_pfn; unsigned long end_pfn; u8 pxm; // proximity domain of node u8 nid; // which cnode contains this chunk? u8 bank; // which mem bank on this node }; static struct node_memory_chunk_s node_memory_chunk[MAXCHUNKS]; static int num_memory_chunks; /* total number of memory chunks */ static int zholes_size_init; static unsigned long zholes_size[MAX_NUMNODES * MAX_NR_ZONES]; extern unsigned long node_start_pfn[], node_end_pfn[]; extern void * boot_ioremap(unsigned long, unsigned long); /* Identify CPU proximity domains */ static void __init parse_cpu_affinity_structure(char *p) { struct acpi_table_processor_affinity *cpu_affinity = (struct acpi_table_processor_affinity *) p; if (!cpu_affinity->flags.enabled) return; /* empty entry */ /* mark this node as "seen" in node bitmap */ BMAP_SET(pxm_bitmap, cpu_affinity->proximity_domain); printk("CPU 0x%02X in proximity domain 0x%02X\n", cpu_affinity->apic_id, cpu_affinity->proximity_domain); } /* * Identify memory proximity domains and hot-remove capabilities. * Fill node memory chunk list structure. */ static void __init parse_memory_affinity_structure (char *sratp) { unsigned long long paddr, size; unsigned long start_pfn, end_pfn; u8 pxm; struct node_memory_chunk_s *p, *q, *pend; struct acpi_table_memory_affinity *memory_affinity = (struct acpi_table_memory_affinity *) sratp; if (!memory_affinity->flags.enabled) return; /* empty entry */ /* mark this node as "seen" in node bitmap */ BMAP_SET(pxm_bitmap, memory_affinity->proximity_domain); /* calculate info for memory chunk structure */ paddr = memory_affinity->base_addr_hi; paddr = (paddr << 32) | memory_affinity->base_addr_lo; size = memory_affinity->length_hi; size = (size << 32) | memory_affinity->length_lo; start_pfn = paddr >> PAGE_SHIFT; end_pfn = (paddr + size) >> PAGE_SHIFT; pxm = memory_affinity->proximity_domain; if (num_memory_chunks >= MAXCHUNKS) { printk("Too many mem chunks in SRAT. Ignoring %lld MBytes at %llx\n", size/(1024*1024), paddr); return; } /* Insertion sort based on base address */ pend = &node_memory_chunk[num_memory_chunks]; for (p = &node_memory_chunk[0]; p < pend; p++) { if (start_pfn < p->start_pfn) break; } if (p < pend) { for (q = pend; q >= p; q--) *(q + 1) = *q; } p->start_pfn = start_pfn; p->end_pfn = end_pfn; p->pxm = pxm; num_memory_chunks++; printk("Memory range 0x%lX to 0x%lX (type 0x%X) in proximity domain 0x%02X %s\n", start_pfn, end_pfn, memory_affinity->memory_type, memory_affinity->proximity_domain, (memory_affinity->flags.hot_pluggable ? "enabled and removable" : "enabled" ) ); } #if MAX_NR_ZONES != 3 #error "MAX_NR_ZONES != 3, chunk_to_zone requires review" #endif /* Take a chunk of pages from page frame cstart to cend and count the number * of pages in each zone, returned via zones[]. */ static __init void chunk_to_zones(unsigned long cstart, unsigned long cend, unsigned long *zones) { unsigned long max_dma; extern unsigned long max_low_pfn; int z; unsigned long rend; /* FIXME: MAX_DMA_ADDRESS and max_low_pfn are trying to provide * similarly scoped information and should be handled in a consistant * manner. */ max_dma = virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT; /* Split the hole into the zones in which it falls. Repeatedly * take the segment in which the remaining hole starts, round it * to the end of that zone. */ memset(zones, 0, MAX_NR_ZONES * sizeof(long)); while (cstart < cend) { if (cstart < max_dma) { z = ZONE_DMA; rend = (cend < max_dma)? cend : max_dma; } else if (cstart < max_low_pfn) { z = ZONE_NORMAL; rend = (cend < max_low_pfn)? cend : max_low_pfn; } else { z = ZONE_HIGHMEM; rend = cend; } zones[z] += rend - cstart; cstart = rend; } } /* Parse the ACPI Static Resource Affinity Table */ static int __init acpi20_parse_srat(struct acpi_table_srat *sratp) { u8 *start, *end, *p; int i, j, nid; u8 pxm_to_nid_map[MAX_PXM_DOMAINS];/* _PXM to logical node ID map */ u8 nid_to_pxm_map[MAX_NUMNODES];/* logical node ID to _PXM map */ start = (u8 *)(&(sratp->reserved) + 1); /* skip header */ p = start; end = (u8 *)sratp + sratp->header.length; memset(pxm_bitmap, 0, sizeof(pxm_bitmap)); /* init proximity domain bitmap */ memset(node_memory_chunk, 0, sizeof(node_memory_chunk)); memset(zholes_size, 0, sizeof(zholes_size)); /* -1 in these maps means not available */ memset(pxm_to_nid_map, -1, sizeof(pxm_to_nid_map)); memset(nid_to_pxm_map, -1, sizeof(nid_to_pxm_map)); num_memory_chunks = 0; while (p < end) { switch (*p) { case ACPI_SRAT_PROCESSOR_AFFINITY: parse_cpu_affinity_structure(p); break; case ACPI_SRAT_MEMORY_AFFINITY: parse_memory_affinity_structure(p); break; default: printk("ACPI 2.0 SRAT: unknown entry skipped: type=0x%02X, len=%d\n", p[0], p[1]); break; } p += p[1]; if (p[1] == 0) { printk("acpi20_parse_srat: Entry length value is zero;" " can't parse any further!\n"); break; } } if (num_memory_chunks == 0) { printk("could not finy any ACPI SRAT memory areas.\n"); goto out_fail; } /* Calculate total number of nodes in system from PXM bitmap and create * a set of sequential node IDs starting at zero. (ACPI doesn't seem * to specify the range of _PXM values.) */ numnodes = 0; /* init total nodes in system */ for (i = 0; i < MAX_PXM_DOMAINS; i++) { if (BMAP_TEST(pxm_bitmap, i)) { pxm_to_nid_map[i] = numnodes; nid_to_pxm_map[numnodes] = i; node_set_online(numnodes); ++numnodes; } } if (numnodes == 0) BUG(); /* set cnode id in memory chunk structure */ for (i = 0; i < num_memory_chunks; i++) node_memory_chunk[i].nid = pxm_to_nid_map[node_memory_chunk[i].pxm]; printk("pxm bitmap: "); for (i = 0; i < sizeof(pxm_bitmap); i++) { printk("%02X ", pxm_bitmap[i]); } printk("\n"); printk("Number of logical nodes in system = %d\n", numnodes); printk("Number of memory chunks in system = %d\n", num_memory_chunks); for (j = 0; j < num_memory_chunks; j++){ printk("chunk %d nid %d start_pfn %08lx end_pfn %08lx\n", j, node_memory_chunk[j].nid, node_memory_chunk[j].start_pfn, node_memory_chunk[j].end_pfn); } /*calculate node_start_pfn/node_end_pfn arrays*/ for (nid = 0; nid < numnodes; nid++) { int been_here_before = 0; for (j = 0; j < num_memory_chunks; j++){ if (node_memory_chunk[j].nid == nid) { if (been_here_before == 0) { node_start_pfn[nid] = node_memory_chunk[j].start_pfn; node_end_pfn[nid] = node_memory_chunk[j].end_pfn; been_here_before = 1; } else { /* We've found another chunk of memory for the node */ if (node_start_pfn[nid] < node_memory_chunk[j].start_pfn) { node_end_pfn[nid] = node_memory_chunk[j].end_pfn; } } } } } return 1; out_fail: return 0; } int __init get_memcfg_from_srat(void) { struct acpi_table_header *header = NULL; struct acpi_table_rsdp *rsdp = NULL; struct acpi_table_rsdt *rsdt = NULL; struct acpi_pointer *rsdp_address = NULL; struct acpi_table_rsdt saved_rsdt; int tables = 0; int i = 0; acpi_find_root_pointer(ACPI_PHYSICAL_ADDRESSING, rsdp_address); if (rsdp_address->pointer_type == ACPI_PHYSICAL_POINTER) { printk("%s: assigning address to rsdp\n", __FUNCTION__); rsdp = (struct acpi_table_rsdp *) (u32)rsdp_address->pointer.physical; } else { printk("%s: rsdp_address is not a physical pointer\n", __FUNCTION__); goto out_err; } if (!rsdp) { printk("%s: Didn't find ACPI root!\n", __FUNCTION__); goto out_err; } printk(KERN_INFO "%.8s v%d [%.6s]\n", rsdp->signature, rsdp->revision, rsdp->oem_id); if (strncmp(rsdp->signature, RSDP_SIG,strlen(RSDP_SIG))) { printk(KERN_WARNING "%s: RSDP table signature incorrect\n", __FUNCTION__); goto out_err; } rsdt = (struct acpi_table_rsdt *) boot_ioremap(rsdp->rsdt_address, sizeof(struct acpi_table_rsdt)); if (!rsdt) { printk(KERN_WARNING "%s: ACPI: Invalid root system description tables (RSDT)\n", __FUNCTION__); goto out_err; } header = & rsdt->header; if (strncmp(header->signature, RSDT_SIG, strlen(RSDT_SIG))) { printk(KERN_WARNING "ACPI: RSDT signature incorrect\n"); goto out_err; } /* * The number of tables is computed by taking the * size of all entries (header size minus total * size of RSDT) divided by the size of each entry * (4-byte table pointers). */ tables = (header->length - sizeof(struct acpi_table_header)) / 4; if (!tables) goto out_err; memcpy(&saved_rsdt, rsdt, sizeof(saved_rsdt)); if (saved_rsdt.header.length > sizeof(saved_rsdt)) { printk(KERN_WARNING "ACPI: Too big length in RSDT: %d\n", saved_rsdt.header.length); goto out_err; } printk("Begin SRAT table scan....\n"); for (i = 0; i < tables; i++) { /* Map in header, then map in full table length. */ header = (struct acpi_table_header *) boot_ioremap(saved_rsdt.entry[i], sizeof(struct acpi_table_header)); if (!header) break; header = (struct acpi_table_header *) boot_ioremap(saved_rsdt.entry[i], header->length); if (!header) break; if (strncmp((char *) &header->signature, "SRAT", 4)) continue; /* we've found the srat table. don't need to look at any more tables */ return acpi20_parse_srat((struct acpi_table_srat *)header); } out_err: printk("failed to get NUMA memory information from SRAT table\n"); return 0; } /* For each node run the memory list to determine whether there are * any memory holes. For each hole determine which ZONE they fall * into. * * NOTE#1: this requires knowledge of the zone boundries and so * _cannot_ be performed before those are calculated in setup_memory. * * NOTE#2: we rely on the fact that the memory chunks are ordered by * start pfn number during setup. */ static void __init get_zholes_init(void) { int nid; int c; int first; unsigned long end = 0; for (nid = 0; nid < numnodes; nid++) { first = 1; for (c = 0; c < num_memory_chunks; c++){ if (node_memory_chunk[c].nid == nid) { if (first) { end = node_memory_chunk[c].end_pfn; first = 0; } else { /* Record any gap between this chunk * and the previous chunk on this node * against the zones it spans. */ chunk_to_zones(end, node_memory_chunk[c].start_pfn, &zholes_size[nid * MAX_NR_ZONES]); } } } } } unsigned long * __init get_zholes_size(int nid) { if (!zholes_size_init) { zholes_size_init++; get_zholes_init(); } if((nid >= numnodes) | (nid >= MAX_NUMNODES)) printk("%s: nid = %d is invalid. numnodes = %d", __FUNCTION__, nid, numnodes); return &zholes_size[nid * MAX_NR_ZONES]; }