/* * pci.c - Low-Level PCI Access in IA-64 * * Derived from bios32.c of i386 tree. * * Copyright (C) 2002 Hewlett-Packard Co * David Mosberger-Tang * Bjorn Helgaas * * Note: Above list of copyright holders is incomplete... */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_SMP # include #endif #include #include #undef DEBUG #define DEBUG #ifdef DEBUG #define DBG(x...) printk(x) #else #define DBG(x...) #endif struct pci_fixup pcibios_fixups[1]; /* * Low-level SAL-based PCI configuration access functions. Note that SAL * calls are already serialized (via sal_lock), so we don't need another * synchronization mechanism here. */ #define PCI_SAL_ADDRESS(seg, bus, devfn, reg) \ ((u64)(seg << 24) | (u64)(bus << 16) | \ (u64)(devfn << 8) | (u64)(reg)) /* SAL 3.2 adds support for extended config space. */ #define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg) \ ((u64)(seg << 28) | (u64)(bus << 20) | \ (u64)(devfn << 12) | (u64)(reg)) static int pci_sal_read (int seg, int bus, int devfn, int reg, int len, u32 *value) { u64 addr, mode, data = 0; int result = 0; if ((seg > 255) || (bus > 255) || (devfn > 255) || (reg > 4095)) return -EINVAL; if ((seg | reg) <= 255) { addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg); mode = 0; } else { addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg); mode = 1; } result = ia64_sal_pci_config_read(addr, mode, len, &data); *value = (u32) data; return result; } static int pci_sal_write (int seg, int bus, int devfn, int reg, int len, u32 value) { u64 addr, mode; if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095)) return -EINVAL; if ((seg | reg) <= 255) { addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg); mode = 0; } else { addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg); mode = 1; } return ia64_sal_pci_config_write(addr, mode, len, value); } static struct pci_raw_ops pci_sal_ops = { .read = pci_sal_read, .write = pci_sal_write }; struct pci_raw_ops *raw_pci_ops = &pci_sal_ops; static int pci_read (struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *value) { return raw_pci_ops->read(pci_domain_nr(bus), bus->number, devfn, where, size, value); } static int pci_write (struct pci_bus *bus, unsigned int devfn, int where, int size, u32 value) { return raw_pci_ops->write(pci_domain_nr(bus), bus->number, devfn, where, size, value); } static struct pci_ops pci_root_ops = { .read = pci_read, .write = pci_write, }; static int __init pci_acpi_init (void) { if (!acpi_pci_irq_init()) printk(KERN_INFO "PCI: Using ACPI for IRQ routing\n"); else printk(KERN_WARNING "PCI: Invalid ACPI-PCI IRQ routing table\n"); return 0; } subsys_initcall(pci_acpi_init); /* Called by ACPI when it finds a new root bus. */ static struct pci_controller * __devinit alloc_pci_controller (int seg) { struct pci_controller *controller; controller = kmalloc(sizeof(*controller), GFP_KERNEL); if (!controller) return NULL; memset(controller, 0, sizeof(*controller)); controller->segment = seg; return controller; } static int __devinit alloc_resource (char *name, struct resource *root, unsigned long start, unsigned long end, unsigned long flags) { struct resource *res; res = kmalloc(sizeof(*res), GFP_KERNEL); if (!res) return -ENOMEM; memset(res, 0, sizeof(*res)); res->name = name; res->start = start; res->end = end; res->flags = flags; if (insert_resource(root, res)) { kfree(res); return -EBUSY; } return 0; } static u64 __devinit add_io_space (struct acpi_resource_address64 *addr) { u64 offset; int sparse = 0; int i; if (addr->address_translation_offset == 0) return IO_SPACE_BASE(0); /* part of legacy IO space */ if (addr->attribute.io.translation_attribute == ACPI_SPARSE_TRANSLATION) sparse = 1; offset = (u64) ioremap(addr->address_translation_offset, 0); for (i = 0; i < num_io_spaces; i++) if (io_space[i].mmio_base == offset && io_space[i].sparse == sparse) return IO_SPACE_BASE(i); if (num_io_spaces == MAX_IO_SPACES) { printk("Too many IO port spaces\n"); return ~0; } i = num_io_spaces++; io_space[i].mmio_base = offset; io_space[i].sparse = sparse; return IO_SPACE_BASE(i); } static acpi_status __devinit count_window (struct acpi_resource *resource, void *data) { unsigned int *windows = (unsigned int *) data; struct acpi_resource_address64 addr; acpi_status status; status = acpi_resource_to_address64(resource, &addr); if (ACPI_SUCCESS(status)) if (addr.resource_type == ACPI_MEMORY_RANGE || addr.resource_type == ACPI_IO_RANGE) (*windows)++; return AE_OK; } struct pci_root_info { struct pci_controller *controller; char *name; }; static acpi_status __devinit add_window (struct acpi_resource *res, void *data) { struct pci_root_info *info = (struct pci_root_info *) data; struct pci_window *window; struct acpi_resource_address64 addr; acpi_status status; unsigned long flags, offset = 0; struct resource *root; status = acpi_resource_to_address64(res, &addr); if (ACPI_SUCCESS(status)) { if (!addr.address_length) return AE_OK; if (addr.resource_type == ACPI_MEMORY_RANGE) { flags = IORESOURCE_MEM; root = &iomem_resource; offset = addr.address_translation_offset; } else if (addr.resource_type == ACPI_IO_RANGE) { flags = IORESOURCE_IO; root = &ioport_resource; offset = add_io_space(&addr); if (offset == ~0) return AE_OK; } else return AE_OK; window = &info->controller->window[info->controller->windows++]; window->resource.flags |= flags; window->resource.start = addr.min_address_range; window->resource.end = addr.max_address_range; window->offset = offset; if (alloc_resource(info->name, root, addr.min_address_range + offset, addr.max_address_range + offset, flags)) printk(KERN_ERR "alloc 0x%lx-0x%lx from %s for %s failed\n", addr.min_address_range + offset, addr.max_address_range + offset, root->name, info->name); } return AE_OK; } struct pci_bus * __devinit pci_acpi_scan_root (struct acpi_device *device, int domain, int bus) { struct pci_root_info info; struct pci_controller *controller; unsigned int windows = 0; char *name; controller = alloc_pci_controller(domain); if (!controller) goto out1; controller->acpi_handle = device->handle; acpi_walk_resources(device->handle, METHOD_NAME__CRS, count_window, &windows); controller->window = kmalloc(sizeof(*controller->window) * windows, GFP_KERNEL); if (!controller->window) goto out2; name = kmalloc(16, GFP_KERNEL); if (!name) goto out3; sprintf(name, "PCI Bus %04x:%02x", domain, bus); info.controller = controller; info.name = name; acpi_walk_resources(device->handle, METHOD_NAME__CRS, add_window, &info); return pci_scan_bus(bus, &pci_root_ops, controller); out3: kfree(controller->window); out2: kfree(controller); out1: return NULL; } void __init pcibios_fixup_device_resources (struct pci_dev *dev, struct pci_bus *bus) { struct pci_controller *controller = PCI_CONTROLLER(dev); struct pci_window *window; int i, j; for (i = 0; i < PCI_NUM_RESOURCES; i++) { if (!dev->resource[i].start) continue; #define contains(win, res) ((res)->start >= (win)->start && \ (res)->end <= (win)->end) for (j = 0; j < controller->windows; j++) { window = &controller->window[j]; if (((dev->resource[i].flags & IORESOURCE_MEM && window->resource.flags & IORESOURCE_MEM) || (dev->resource[i].flags & IORESOURCE_IO && window->resource.flags & IORESOURCE_IO)) && contains(&window->resource, &dev->resource[i])) { dev->resource[i].start += window->offset; dev->resource[i].end += window->offset; } } pci_claim_resource(dev, i); } } /* * Called after each bus is probed, but before its children are examined. */ void __devinit pcibios_fixup_bus (struct pci_bus *b) { struct list_head *ln; for (ln = b->devices.next; ln != &b->devices; ln = ln->next) pcibios_fixup_device_resources(pci_dev_b(ln), b); return; } void __devinit pcibios_update_irq (struct pci_dev *dev, int irq) { pci_write_config_byte(dev, PCI_INTERRUPT_LINE, irq); /* ??? FIXME -- record old value for shutdown. */ } static inline int pcibios_enable_resources (struct pci_dev *dev, int mask) { u16 cmd, old_cmd; int idx; struct resource *r; if (!dev) return -EINVAL; pci_read_config_word(dev, PCI_COMMAND, &cmd); old_cmd = cmd; for (idx=0; idx<6; idx++) { /* Only set up the desired resources. */ if (!(mask & (1 << idx))) continue; r = &dev->resource[idx]; if (!r->start && r->end) { printk(KERN_ERR "PCI: Device %s not available because of resource collisions\n", pci_name(dev)); return -EINVAL; } if (r->flags & IORESOURCE_IO) cmd |= PCI_COMMAND_IO; if (r->flags & IORESOURCE_MEM) cmd |= PCI_COMMAND_MEMORY; } if (dev->resource[PCI_ROM_RESOURCE].start) cmd |= PCI_COMMAND_MEMORY; if (cmd != old_cmd) { printk("PCI: Enabling device %s (%04x -> %04x)\n", pci_name(dev), old_cmd, cmd); pci_write_config_word(dev, PCI_COMMAND, cmd); } return 0; } int pcibios_enable_device (struct pci_dev *dev, int mask) { int ret; ret = pcibios_enable_resources(dev, mask); if (ret < 0) return ret; return acpi_pci_irq_enable(dev); } void pcibios_align_resource (void *data, struct resource *res, unsigned long size, unsigned long align) { } /* * PCI BIOS setup, always defaults to SAL interface */ char * __init pcibios_setup (char *str) { return NULL; } int pci_mmap_page_range (struct pci_dev *dev, struct vm_area_struct *vma, enum pci_mmap_state mmap_state, int write_combine) { /* * I/O space cannot be accessed via normal processor loads and stores on this * platform. */ if (mmap_state == pci_mmap_io) /* * XXX we could relax this for I/O spaces for which ACPI indicates that * the space is 1-to-1 mapped. But at the moment, we don't support * multiple PCI address spaces and the legacy I/O space is not 1-to-1 * mapped, so this is moot. */ return -EINVAL; /* * Leave vm_pgoff as-is, the PCI space address is the physical address on this * platform. */ vma->vm_flags |= (VM_SHM | VM_LOCKED | VM_IO); if (write_combine) vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); else vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); if (remap_page_range(vma, vma->vm_start, vma->vm_pgoff << PAGE_SHIFT, vma->vm_end - vma->vm_start, vma->vm_page_prot)) return -EAGAIN; return 0; } /** * pci_cacheline_size - determine cacheline size for PCI devices * @dev: void * * We want to use the line-size of the outer-most cache. We assume * that this line-size is the same for all CPUs. * * Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info(). * * RETURNS: An appropriate -ERRNO error value on eror, or zero for success. */ static unsigned long pci_cacheline_size (void) { u64 levels, unique_caches; s64 status; pal_cache_config_info_t cci; static u8 cacheline_size; if (cacheline_size) return cacheline_size; status = ia64_pal_cache_summary(&levels, &unique_caches); if (status != 0) { printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n", __FUNCTION__, status); return SMP_CACHE_BYTES; } status = ia64_pal_cache_config_info(levels - 1, /* cache_type (data_or_unified)= */ 2, &cci); if (status != 0) { printk(KERN_ERR "%s: ia64_pal_cache_config_info() failed (status=%ld)\n", __FUNCTION__, status); return SMP_CACHE_BYTES; } cacheline_size = 1 << cci.pcci_line_size; return cacheline_size; } /** * pcibios_prep_mwi - helper function for drivers/pci/pci.c:pci_set_mwi() * @dev: the PCI device for which MWI is enabled * * For ia64, we can get the cacheline sizes from PAL. * * RETURNS: An appropriate -ERRNO error value on eror, or zero for success. */ int pcibios_prep_mwi (struct pci_dev *dev) { unsigned long desired_linesize, current_linesize; int rc = 0; u8 pci_linesize; desired_linesize = pci_cacheline_size(); pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &pci_linesize); current_linesize = 4 * pci_linesize; if (desired_linesize != current_linesize) { printk(KERN_WARNING "PCI: slot %s has incorrect PCI cache line size of %lu bytes,", pci_name(dev), current_linesize); if (current_linesize > desired_linesize) { printk(" expected %lu bytes instead\n", desired_linesize); rc = -EINVAL; } else { printk(" correcting to %lu\n", desired_linesize); pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, desired_linesize / 4); } } return rc; } int pci_vector_resources(int last, int nr_released) { int count = nr_released; count += (IA64_LAST_DEVICE_VECTOR - last); return count; }