/* * Copyright (c) 2000 Mike Corrigan * Copyright (c) 1999-2000 Grant Erickson * * Module name: iSeries_setup.c * * Description: * Architecture- / platform-specific boot-time initialization code for * the IBM iSeries LPAR. Adapted from original code by Grant Erickson and * code by Gary Thomas, Cort Dougan , and Dan Malek * . * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "iSeries_setup.h" #include #include #include #include #include #include #include #include #include #include #include #include #include /* Function Prototypes */ extern void abort(void); extern void ppcdbg_initialize(void); extern void iSeries_pcibios_init(void); extern void tce_init_iSeries(void); static void build_iSeries_Memory_Map(void); static void setup_iSeries_cache_sizes(void); static void iSeries_bolt_kernel(unsigned long saddr, unsigned long eaddr); extern void build_valid_hpte(unsigned long vsid, unsigned long ea, unsigned long pa, pte_t *ptep, unsigned hpteflags, unsigned bolted); static void iSeries_setup_dprofile(void); extern void iSeries_setup_arch(void); extern void iSeries_pci_final_fixup(void); /* Global Variables */ static unsigned long procFreqHz; static unsigned long procFreqMhz; static unsigned long procFreqMhzHundreths; static unsigned long tbFreqHz; static unsigned long tbFreqMhz; static unsigned long tbFreqMhzHundreths; unsigned long dprof_shift; unsigned long dprof_len; unsigned int *dprof_buffer; int piranha_simulator; int boot_cpuid; extern char _end[]; extern int rd_size; /* Defined in drivers/block/rd.c */ extern unsigned long klimit; extern unsigned long embedded_sysmap_start; extern unsigned long embedded_sysmap_end; extern unsigned long iSeries_recal_tb; extern unsigned long iSeries_recal_titan; static int mf_initialized; struct MemoryBlock { unsigned long absStart; unsigned long absEnd; unsigned long logicalStart; unsigned long logicalEnd; }; /* * Process the main store vpd to determine where the holes in memory are * and return the number of physical blocks and fill in the array of * block data. */ unsigned long iSeries_process_Condor_mainstore_vpd(struct MemoryBlock *mb_array, unsigned long max_entries) { unsigned long holeFirstChunk, holeSizeChunks; unsigned long numMemoryBlocks = 1; struct IoHriMainStoreSegment4 *msVpd = (struct IoHriMainStoreSegment4 *)xMsVpd; unsigned long holeStart = msVpd->nonInterleavedBlocksStartAdr; unsigned long holeEnd = msVpd->nonInterleavedBlocksEndAdr; unsigned long holeSize = holeEnd - holeStart; printk("Mainstore_VPD: Condor\n"); /* * Determine if absolute memory has any * holes so that we can interpret the * access map we get back from the hypervisor * correctly. */ mb_array[0].logicalStart = 0; mb_array[0].logicalEnd = 0x100000000; mb_array[0].absStart = 0; mb_array[0].absEnd = 0x100000000; if (holeSize) { numMemoryBlocks = 2; holeStart = holeStart & 0x000fffffffffffff; holeStart = addr_to_chunk(holeStart); holeFirstChunk = holeStart; holeSize = addr_to_chunk(holeSize); holeSizeChunks = holeSize; printk( "Main store hole: start chunk = %0lx, size = %0lx chunks\n", holeFirstChunk, holeSizeChunks ); mb_array[0].logicalEnd = holeFirstChunk; mb_array[0].absEnd = holeFirstChunk; mb_array[1].logicalStart = holeFirstChunk; mb_array[1].logicalEnd = 0x100000000 - holeSizeChunks; mb_array[1].absStart = holeFirstChunk + holeSizeChunks; mb_array[1].absEnd = 0x100000000; } return numMemoryBlocks; } #define MaxSegmentAreas 32 #define MaxSegmentAdrRangeBlocks 128 #define MaxAreaRangeBlocks 4 unsigned long iSeries_process_Regatta_mainstore_vpd( struct MemoryBlock *mb_array, unsigned long max_entries) { struct IoHriMainStoreSegment5 *msVpdP = (struct IoHriMainStoreSegment5 *)xMsVpd; unsigned long numSegmentBlocks = 0; u32 existsBits = msVpdP->msAreaExists; unsigned long area_num; printk("Mainstore_VPD: Regatta\n"); for (area_num = 0; area_num < MaxSegmentAreas; ++area_num ) { unsigned long numAreaBlocks; struct IoHriMainStoreArea4 *currentArea; if (existsBits & 0x80000000) { unsigned long block_num; currentArea = &msVpdP->msAreaArray[area_num]; numAreaBlocks = currentArea->numAdrRangeBlocks; printk("ms_vpd: processing area %2ld blocks=%ld", area_num, numAreaBlocks); for (block_num = 0; block_num < numAreaBlocks; ++block_num ) { /* Process an address range block */ struct MemoryBlock tempBlock; unsigned long i; tempBlock.absStart = (unsigned long)currentArea->xAdrRangeBlock[block_num].blockStart; tempBlock.absEnd = (unsigned long)currentArea->xAdrRangeBlock[block_num].blockEnd; tempBlock.logicalStart = 0; tempBlock.logicalEnd = 0; printk("\n block %ld absStart=%016lx absEnd=%016lx", block_num, tempBlock.absStart, tempBlock.absEnd); for (i = 0; i < numSegmentBlocks; ++i) { if (mb_array[i].absStart == tempBlock.absStart) break; } if (i == numSegmentBlocks) { if (numSegmentBlocks == max_entries) panic("iSeries_process_mainstore_vpd: too many memory blocks"); mb_array[numSegmentBlocks] = tempBlock; ++numSegmentBlocks; } else printk(" (duplicate)"); } printk("\n"); } existsBits <<= 1; } /* Now sort the blocks found into ascending sequence */ if (numSegmentBlocks > 1) { unsigned long m, n; for (m = 0; m < numSegmentBlocks - 1; ++m) { for (n = numSegmentBlocks - 1; m < n; --n) { if (mb_array[n].absStart < mb_array[n-1].absStart) { struct MemoryBlock tempBlock; tempBlock = mb_array[n]; mb_array[n] = mb_array[n-1]; mb_array[n-1] = tempBlock; } } } } /* * Assign "logical" addresses to each block. These * addresses correspond to the hypervisor "bitmap" space. * Convert all addresses into units of 256K chunks. */ { unsigned long i, nextBitmapAddress; printk("ms_vpd: %ld sorted memory blocks\n", numSegmentBlocks); nextBitmapAddress = 0; for (i = 0; i < numSegmentBlocks; ++i) { unsigned long length = mb_array[i].absEnd - mb_array[i].absStart; mb_array[i].logicalStart = nextBitmapAddress; mb_array[i].logicalEnd = nextBitmapAddress + length; nextBitmapAddress += length; printk(" Bitmap range: %016lx - %016lx\n" " Absolute range: %016lx - %016lx\n", mb_array[i].logicalStart, mb_array[i].logicalEnd, mb_array[i].absStart, mb_array[i].absEnd); mb_array[i].absStart = addr_to_chunk(mb_array[i].absStart & 0x000fffffffffffff); mb_array[i].absEnd = addr_to_chunk(mb_array[i].absEnd & 0x000fffffffffffff); mb_array[i].logicalStart = addr_to_chunk(mb_array[i].logicalStart); mb_array[i].logicalEnd = addr_to_chunk(mb_array[i].logicalEnd); } } return numSegmentBlocks; } unsigned long iSeries_process_mainstore_vpd(struct MemoryBlock *mb_array, unsigned long max_entries) { unsigned long i; unsigned long mem_blocks = 0; if (cur_cpu_spec->cpu_features & CPU_FTR_SLB) mem_blocks = iSeries_process_Regatta_mainstore_vpd(mb_array, max_entries); else mem_blocks = iSeries_process_Condor_mainstore_vpd(mb_array, max_entries); printk("Mainstore_VPD: numMemoryBlocks = %ld \n", mem_blocks); for (i = 0; i < mem_blocks; ++i) { printk("Mainstore_VPD: block %3ld logical chunks %016lx - %016lx\n" " abs chunks %016lx - %016lx\n", i, mb_array[i].logicalStart, mb_array[i].logicalEnd, mb_array[i].absStart, mb_array[i].absEnd); } return mem_blocks; } void __init iSeries_init_early(void) { ppcdbg_initialize(); #if defined(CONFIG_BLK_DEV_INITRD) /* * If the init RAM disk has been configured and there is * a non-zero starting address for it, set it up */ if (naca->xRamDisk) { initrd_start = (unsigned long)__va(naca->xRamDisk); initrd_end = initrd_start + naca->xRamDiskSize * PAGE_SIZE; initrd_below_start_ok = 1; // ramdisk in kernel space ROOT_DEV = Root_RAM0; if (((rd_size * 1024) / PAGE_SIZE) < naca->xRamDiskSize) rd_size = (naca->xRamDiskSize * PAGE_SIZE) / 1024; } else #endif /* CONFIG_BLK_DEV_INITRD */ { /* ROOT_DEV = MKDEV(VIODASD_MAJOR, 1); */ } iSeries_recal_tb = get_tb(); iSeries_recal_titan = HvCallXm_loadTod(); ppc_md.setup_arch = iSeries_setup_arch; ppc_md.get_cpuinfo = iSeries_get_cpuinfo; ppc_md.init_IRQ = iSeries_init_IRQ; ppc_md.get_irq = iSeries_get_irq; ppc_md.init = NULL; ppc_md.pcibios_fixup = iSeries_pci_final_fixup; ppc_md.restart = iSeries_restart; ppc_md.power_off = iSeries_power_off; ppc_md.halt = iSeries_halt; ppc_md.get_boot_time = iSeries_get_boot_time; ppc_md.set_rtc_time = iSeries_set_rtc_time; ppc_md.get_rtc_time = iSeries_get_rtc_time; ppc_md.calibrate_decr = iSeries_calibrate_decr; ppc_md.progress = iSeries_progress; hpte_init_iSeries(); tce_init_iSeries(); /* * Initialize the table which translate Linux physical addresses to * AS/400 absolute addresses */ build_iSeries_Memory_Map(); setup_iSeries_cache_sizes(); /* Initialize machine-dependency vectors */ #ifdef CONFIG_SMP smp_init_iSeries(); #endif if (itLpNaca.xPirEnvironMode == 0) piranha_simulator = 1; } void __init iSeries_init(unsigned long r3, unsigned long r4, unsigned long r5, unsigned long r6, unsigned long r7) { char *p, *q; /* Associate Lp Event Queue 0 with processor 0 */ HvCallEvent_setLpEventQueueInterruptProc(0, 0); /* copy the command line parameter from the primary VSP */ HvCallEvent_dmaToSp(cmd_line, 2 * 64* 1024, 256, HvLpDma_Direction_RemoteToLocal); p = q = cmd_line + 255; while (p > cmd_line) { if ((*p == 0) || (*p == ' ') || (*p == '\n')) --p; else break; } if (p < q) *(p + 1) = 0; if (strstr(cmd_line, "dprofile=")) { for (q = cmd_line; (p = strstr(q, "dprofile=")) != 0; ) { unsigned long size, new_klimit; q = p + 9; if ((p > cmd_line) && (p[-1] != ' ')) continue; dprof_shift = simple_strtoul(q, &q, 0); dprof_len = (unsigned long)_etext - (unsigned long)_stext; dprof_len >>= dprof_shift; size = ((dprof_len * sizeof(unsigned int)) + (PAGE_SIZE-1)) & PAGE_MASK; dprof_buffer = (unsigned int *)((klimit + (PAGE_SIZE-1)) & PAGE_MASK); new_klimit = ((unsigned long)dprof_buffer) + size; lmb_reserve(__pa(klimit), (new_klimit-klimit)); klimit = new_klimit; memset(dprof_buffer, 0, size); } } iSeries_setup_dprofile(); mf_init(); mf_initialized = 1; mb(); } /* * The iSeries may have very large memories ( > 128 GB ) and a partition * may get memory in "chunks" that may be anywhere in the 2**52 real * address space. The chunks are 256K in size. To map this to the * memory model Linux expects, the AS/400 specific code builds a * translation table to translate what Linux thinks are "physical" * addresses to the actual real addresses. This allows us to make * it appear to Linux that we have contiguous memory starting at * physical address zero while in fact this could be far from the truth. * To avoid confusion, I'll let the words physical and/or real address * apply to the Linux addresses while I'll use "absolute address" to * refer to the actual hardware real address. * * build_iSeries_Memory_Map gets information from the Hypervisor and * looks at the Main Store VPD to determine the absolute addresses * of the memory that has been assigned to our partition and builds * a table used to translate Linux's physical addresses to these * absolute addresses. Absolute addresses are needed when * communicating with the hypervisor (e.g. to build HPT entries) */ static void __init build_iSeries_Memory_Map(void) { u32 loadAreaFirstChunk, loadAreaLastChunk, loadAreaSize; u32 nextPhysChunk; u32 hptFirstChunk, hptLastChunk, hptSizeChunks, hptSizePages; u32 num_ptegs; u32 totalChunks,moreChunks; u32 currChunk, thisChunk, absChunk; u32 currDword; u32 chunkBit; u64 map; struct MemoryBlock mb[32]; unsigned long numMemoryBlocks, curBlock; /* Chunk size on iSeries is 256K bytes */ totalChunks = (u32)HvLpConfig_getMsChunks(); klimit = msChunks_alloc(klimit, totalChunks, 1UL << 18); /* * Get absolute address of our load area * and map it to physical address 0 * This guarantees that the loadarea ends up at physical 0 * otherwise, it might not be returned by PLIC as the first * chunks */ loadAreaFirstChunk = (u32)addr_to_chunk(itLpNaca.xLoadAreaAddr); loadAreaSize = itLpNaca.xLoadAreaChunks; /* * Only add the pages already mapped here. * Otherwise we might add the hpt pages * The rest of the pages of the load area * aren't in the HPT yet and can still * be assigned an arbitrary physical address */ if ((loadAreaSize * 64) > HvPagesToMap) loadAreaSize = HvPagesToMap / 64; loadAreaLastChunk = loadAreaFirstChunk + loadAreaSize - 1; /* * TODO Do we need to do something if the HPT is in the 64MB load area? * This would be required if the itLpNaca.xLoadAreaChunks includes * the HPT size */ printk("Mapping load area - physical addr = 0000000000000000\n" " absolute addr = %016lx\n", chunk_to_addr(loadAreaFirstChunk)); printk("Load area size %dK\n", loadAreaSize * 256); for (nextPhysChunk = 0; nextPhysChunk < loadAreaSize; ++nextPhysChunk) msChunks.abs[nextPhysChunk] = loadAreaFirstChunk + nextPhysChunk; /* * Get absolute address of our HPT and remember it so * we won't map it to any physical address */ hptFirstChunk = (u32)addr_to_chunk(HvCallHpt_getHptAddress()); hptSizePages = (u32)HvCallHpt_getHptPages(); hptSizeChunks = hptSizePages >> (msChunks.chunk_shift - PAGE_SHIFT); hptLastChunk = hptFirstChunk + hptSizeChunks - 1; printk("HPT absolute addr = %016lx, size = %dK\n", chunk_to_addr(hptFirstChunk), hptSizeChunks * 256); /* Fill in the htab_data structure */ /* Fill in size of hashed page table */ num_ptegs = hptSizePages * (PAGE_SIZE / (sizeof(HPTE) * HPTES_PER_GROUP)); htab_data.htab_num_ptegs = num_ptegs; htab_data.htab_hash_mask = num_ptegs - 1; /* * The actual hashed page table is in the hypervisor, * we have no direct access */ htab_data.htab = NULL; /* * Determine if absolute memory has any * holes so that we can interpret the * access map we get back from the hypervisor * correctly. */ numMemoryBlocks = iSeries_process_mainstore_vpd(mb, 32); /* * Process the main store access map from the hypervisor * to build up our physical -> absolute translation table */ curBlock = 0; currChunk = 0; currDword = 0; moreChunks = totalChunks; while (moreChunks) { map = HvCallSm_get64BitsOfAccessMap(itLpNaca.xLpIndex, currDword); thisChunk = currChunk; while (map) { chunkBit = map >> 63; map <<= 1; if (chunkBit) { --moreChunks; while (thisChunk >= mb[curBlock].logicalEnd) { ++curBlock; if (curBlock >= numMemoryBlocks) panic("out of memory blocks"); } if (thisChunk < mb[curBlock].logicalStart) panic("memory block error"); absChunk = mb[curBlock].absStart + (thisChunk - mb[curBlock].logicalStart); if (((absChunk < hptFirstChunk) || (absChunk > hptLastChunk)) && ((absChunk < loadAreaFirstChunk) || (absChunk > loadAreaLastChunk))) { msChunks.abs[nextPhysChunk] = absChunk; ++nextPhysChunk; } } ++thisChunk; } ++currDword; currChunk += 64; } /* * main store size (in chunks) is * totalChunks - hptSizeChunks * which should be equal to * nextPhysChunk */ systemcfg->physicalMemorySize = chunk_to_addr(nextPhysChunk); /* Bolt kernel mappings for all of memory */ iSeries_bolt_kernel(0, systemcfg->physicalMemorySize); lmb_init(); lmb_add(0, systemcfg->physicalMemorySize); lmb_analyze(); /* ?? */ lmb_reserve(0, __pa(klimit)); /* * Hardcode to GP size. I am not sure where to get this info. DRENG */ naca->slb_size = 64; } /* * Set up the variables that describe the cache line sizes * for this machine. */ static void __init setup_iSeries_cache_sizes(void) { unsigned int i, n; unsigned int procIx = get_paca()->xLpPaca.xDynHvPhysicalProcIndex; systemcfg->iCacheL1Size = xIoHriProcessorVpd[procIx].xInstCacheSize * 1024; systemcfg->iCacheL1LineSize = xIoHriProcessorVpd[procIx].xInstCacheOperandSize; systemcfg->dCacheL1Size = xIoHriProcessorVpd[procIx].xDataL1CacheSizeKB * 1024; systemcfg->dCacheL1LineSize = xIoHriProcessorVpd[procIx].xDataCacheOperandSize; naca->iCacheL1LinesPerPage = PAGE_SIZE / systemcfg->iCacheL1LineSize; naca->dCacheL1LinesPerPage = PAGE_SIZE / systemcfg->dCacheL1LineSize; i = systemcfg->iCacheL1LineSize; n = 0; while ((i = (i / 2))) ++n; naca->iCacheL1LogLineSize = n; i = systemcfg->dCacheL1LineSize; n = 0; while ((i = (i / 2))) ++n; naca->dCacheL1LogLineSize = n; printk("D-cache line size = %d\n", (unsigned int)systemcfg->dCacheL1LineSize); printk("I-cache line size = %d\n", (unsigned int)systemcfg->iCacheL1LineSize); } /* * Create a pte. Used during initialization only. */ static void iSeries_make_pte(unsigned long va, unsigned long pa, int mode) { HPTE local_hpte, rhpte; unsigned long hash, vpn; long slot; vpn = va >> PAGE_SHIFT; hash = hpt_hash(vpn, 0); local_hpte.dw1.dword1 = pa | mode; local_hpte.dw0.dword0 = 0; local_hpte.dw0.dw0.avpn = va >> 23; local_hpte.dw0.dw0.bolted = 1; /* bolted */ local_hpte.dw0.dw0.v = 1; slot = HvCallHpt_findValid(&rhpte, vpn); if (slot < 0) { /* Must find space in primary group */ panic("hash_page: hpte already exists\n"); } HvCallHpt_addValidate(slot, 0, (HPTE *)&local_hpte ); } /* * Bolt the kernel addr space into the HPT */ static void __init iSeries_bolt_kernel(unsigned long saddr, unsigned long eaddr) { unsigned long pa; unsigned long mode_rw = _PAGE_ACCESSED | _PAGE_COHERENT | PP_RWXX; HPTE hpte; for (pa = saddr; pa < eaddr ;pa += PAGE_SIZE) { unsigned long ea = (unsigned long)__va(pa); unsigned long vsid = get_kernel_vsid(ea); unsigned long va = (vsid << 28) | (pa & 0xfffffff); unsigned long vpn = va >> PAGE_SHIFT; unsigned long slot = HvCallHpt_findValid(&hpte, vpn); if (hpte.dw0.dw0.v) { /* HPTE exists, so just bolt it */ HvCallHpt_setSwBits(slot, 0x10, 0); /* And make sure the pp bits are correct */ HvCallHpt_setPp(slot, PP_RWXX); } else /* No HPTE exists, so create a new bolted one */ iSeries_make_pte(va, phys_to_abs(pa), mode_rw); } } extern unsigned long ppc_proc_freq; extern unsigned long ppc_tb_freq; /* * Document me. */ void __init iSeries_setup_arch(void) { void *eventStack; unsigned procIx = get_paca()->xLpPaca.xDynHvPhysicalProcIndex; /* Add an eye catcher and the systemcfg layout version number */ strcpy(systemcfg->eye_catcher, "SYSTEMCFG:PPC64"); systemcfg->version.major = SYSTEMCFG_MAJOR; systemcfg->version.minor = SYSTEMCFG_MINOR; /* Setup the Lp Event Queue */ /* Allocate a page for the Event Stack * The hypervisor wants the absolute real address, so * we subtract out the KERNELBASE and add in the * absolute real address of the kernel load area */ eventStack = alloc_bootmem_pages(LpEventStackSize); memset(eventStack, 0, LpEventStackSize); /* Invoke the hypervisor to initialize the event stack */ HvCallEvent_setLpEventStack(0, eventStack, LpEventStackSize); /* Initialize fields in our Lp Event Queue */ xItLpQueue.xSlicEventStackPtr = (char *)eventStack; xItLpQueue.xSlicCurEventPtr = (char *)eventStack; xItLpQueue.xSlicLastValidEventPtr = (char *)eventStack + (LpEventStackSize - LpEventMaxSize); xItLpQueue.xIndex = 0; /* Compute processor frequency */ procFreqHz = ((1UL << 34) * 1000000) / xIoHriProcessorVpd[procIx].xProcFreq; procFreqMhz = procFreqHz / 1000000; procFreqMhzHundreths = (procFreqHz / 10000) - (procFreqMhz * 100); ppc_proc_freq = procFreqHz; /* Compute time base frequency */ tbFreqHz = ((1UL << 32) * 1000000) / xIoHriProcessorVpd[procIx].xTimeBaseFreq; tbFreqMhz = tbFreqHz / 1000000; tbFreqMhzHundreths = (tbFreqHz / 10000) - (tbFreqMhz * 100); ppc_tb_freq = tbFreqHz; printk("Max logical processors = %d\n", itVpdAreas.xSlicMaxLogicalProcs); printk("Max physical processors = %d\n", itVpdAreas.xSlicMaxPhysicalProcs); printk("Processor frequency = %lu.%02lu\n", procFreqMhz, procFreqMhzHundreths); printk("Time base frequency = %lu.%02lu\n", tbFreqMhz, tbFreqMhzHundreths); systemcfg->processor = xIoHriProcessorVpd[procIx].xPVR; printk("Processor version = %x\n", systemcfg->processor); } void iSeries_get_cpuinfo(struct seq_file *m) { seq_printf(m, "machine\t\t: 64-bit iSeries Logical Partition\n"); } /* * Document me. * and Implement me. */ int iSeries_get_irq(struct pt_regs *regs) { /* -2 means ignore this interrupt */ return -2; } /* * Document me. */ void iSeries_restart(char *cmd) { mf_reboot(); } /* * Document me. */ void iSeries_power_off(void) { mf_powerOff(); } /* * Document me. */ void iSeries_halt(void) { mf_powerOff(); } /* JDH Hack */ unsigned long jdh_time = 0; extern void setup_default_decr(void); /* * void __init iSeries_calibrate_decr() * * Description: * This routine retrieves the internal processor frequency from the VPD, * and sets up the kernel timer decrementer based on that value. * */ void __init iSeries_calibrate_decr(void) { unsigned long cyclesPerUsec; struct div_result divres; /* Compute decrementer (and TB) frequency in cycles/sec */ cyclesPerUsec = ppc_tb_freq / 1000000; /* * Set the amount to refresh the decrementer by. This * is the number of decrementer ticks it takes for * 1/HZ seconds. */ tb_ticks_per_jiffy = ppc_tb_freq / HZ; #if 0 /* TEST CODE FOR ADJTIME */ tb_ticks_per_jiffy += tb_ticks_per_jiffy / 5000; /* END OF TEST CODE */ #endif /* * tb_ticks_per_sec = freq; would give better accuracy * but tb_ticks_per_sec = tb_ticks_per_jiffy*HZ; assures * that jiffies (and xtime) will match the time returned * by do_gettimeofday. */ tb_ticks_per_sec = tb_ticks_per_jiffy * HZ; tb_ticks_per_usec = cyclesPerUsec; tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000); div128_by_32(1024 * 1024, 0, tb_ticks_per_sec, &divres); tb_to_xs = divres.result_low; setup_default_decr(); } void __init iSeries_progress(char * st, unsigned short code) { printk("Progress: [%04x] - %s\n", (unsigned)code, st); if (!piranha_simulator && mf_initialized) { if (code != 0xffff) mf_displayProgress(code); else mf_clearSrc(); } } void iSeries_fixup_klimit(void) { /* * Change klimit to take into account any ram disk * that may be included */ if (naca->xRamDisk) klimit = KERNELBASE + (u64)naca->xRamDisk + (naca->xRamDiskSize * PAGE_SIZE); else { /* * No ram disk was included - check and see if there * was an embedded system map. Change klimit to take * into account any embedded system map */ if (embedded_sysmap_end) klimit = KERNELBASE + ((embedded_sysmap_end + 4095) & 0xfffffffffffff000); } } static void iSeries_setup_dprofile(void) { if (dprof_buffer) { unsigned i; for (i = 0; i < NR_CPUS; ++i) { paca[i].prof_shift = dprof_shift; paca[i].prof_len = dprof_len - 1; paca[i].prof_buffer = dprof_buffer; paca[i].prof_stext = (unsigned *)_stext; mb(); paca[i].prof_enabled = 1; } } }