/* * mf.c * Copyright (C) 2001 Troy D. Armstrong IBM Corporation * * This modules exists as an interface between a Linux secondary partition * running on an iSeries and the primary partition's Virtual Service * Processor (VSP) object. The VSP has final authority over powering on/off * all partitions in the iSeries. It also provides miscellaneous low-level * machine facility type operations. * * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * This is the structure layout for the Machine Facilites LPAR event * flows. */ union safe_cast { u64 ptr_as_u64; void *ptr; }; struct VspCmdData { union safe_cast token; u16 cmd; HvLpIndex lp_index; u8 result_code; u32 reserved; union { u64 state; /* GetStateOut */ u64 ipl_type; /* GetIplTypeOut, Function02SelectIplTypeIn */ u64 ipl_mode; /* GetIplModeOut, Function02SelectIplModeIn */ u64 page[4]; /* GetSrcHistoryIn */ u64 flag; /* GetAutoIplWhenPrimaryIplsOut, SetAutoIplWhenPrimaryIplsIn, WhiteButtonPowerOffIn, Function08FastPowerOffIn, IsSpcnRackPowerIncompleteOut */ struct { u64 token; u64 address_type; u64 side; u32 length; u32 offset; } kern; /* SetKernelImageIn, GetKernelImageIn, SetKernelCmdLineIn, GetKernelCmdLineIn */ u32 length_out; /* GetKernelImageOut, GetKernelCmdLineOut */ u8 reserved[80]; } sub_data; }; struct VspRspData { struct completion com; struct VspCmdData *response; }; struct AllocData { u16 size; u16 type; u32 count; u16 reserved1; u8 reserved2; HvLpIndex target_lp; }; struct CeMsgData; typedef void (*CeMsgCompleteHandler)(void *token, struct CeMsgData *vspCmdRsp); struct CeMsgCompleteData { CeMsgCompleteHandler handler; void *token; }; struct CeMsgData { u8 ce_msg[12]; char reserved[4]; struct CeMsgCompleteData *completion; }; struct IoMFLpEvent { struct HvLpEvent hp_lp_event; u16 subtype_result_code; u16 reserved1; u32 reserved2; union { struct AllocData alloc; struct CeMsgData ce_msg; struct VspCmdData vsp_cmd; } data; }; #define subtype_data(a, b, c, d) \ (((a) << 24) + ((b) << 16) + ((c) << 8) + (d)) /* * All outgoing event traffic is kept on a FIFO queue. The first * pointer points to the one that is outstanding, and all new * requests get stuck on the end. Also, we keep a certain number of * preallocated pending events so that we can operate very early in * the boot up sequence (before kmalloc is ready). */ struct pending_event { struct pending_event *next; struct IoMFLpEvent event; MFCompleteHandler hdlr; char dma_data[72]; unsigned dma_data_length; unsigned remote_address; }; static spinlock_t pending_event_spinlock; static struct pending_event *pending_event_head; static struct pending_event *pending_event_tail; static struct pending_event *pending_event_avail; static struct pending_event pending_event_prealloc[16]; /* * Put a pending event onto the available queue, so it can get reused. * Attention! You must have the pending_event_spinlock before calling! */ static void free_pending_event(struct pending_event *ev) { if (ev != NULL) { ev->next = pending_event_avail; pending_event_avail = ev; } } /* * Enqueue the outbound event onto the stack. If the queue was * empty to begin with, we must also issue it via the Hypervisor * interface. There is a section of code below that will touch * the first stack pointer without the protection of the pending_event_spinlock. * This is OK, because we know that nobody else will be modifying * the first pointer when we do this. */ static int signal_event(struct pending_event *ev) { int rc = 0; unsigned long flags; int go = 1; struct pending_event *ev1; HvLpEvent_Rc hvRc; /* enqueue the event */ if (ev != NULL) { ev->next = NULL; spin_lock_irqsave(&pending_event_spinlock, flags); if (pending_event_head == NULL) pending_event_head = ev; else { go = 0; pending_event_tail->next = ev; } pending_event_tail = ev; spin_unlock_irqrestore(&pending_event_spinlock, flags); } /* send the event */ while (go) { go = 0; /* any DMA data to send beforehand? */ if (pending_event_head->dma_data_length > 0) HvCallEvent_dmaToSp(pending_event_head->dma_data, pending_event_head->remote_address, pending_event_head->dma_data_length, HvLpDma_Direction_LocalToRemote); hvRc = HvCallEvent_signalLpEvent( &pending_event_head->event.hp_lp_event); if (hvRc != HvLpEvent_Rc_Good) { printk(KERN_ERR "mf.c: HvCallEvent_signalLpEvent() failed with %d\n", (int)hvRc); spin_lock_irqsave(&pending_event_spinlock, flags); ev1 = pending_event_head; pending_event_head = pending_event_head->next; if (pending_event_head != NULL) go = 1; spin_unlock_irqrestore(&pending_event_spinlock, flags); if (ev1 == ev) rc = -EIO; else if (ev1->hdlr != NULL) { union safe_cast mySafeCast; mySafeCast.ptr_as_u64 = ev1->event.hp_lp_event.xCorrelationToken; (*ev1->hdlr)(mySafeCast.ptr, -EIO); } spin_lock_irqsave(&pending_event_spinlock, flags); free_pending_event(ev1); spin_unlock_irqrestore(&pending_event_spinlock, flags); } } return rc; } /* * Allocate a new pending_event structure, and initialize it. */ static struct pending_event *new_pending_event(void) { struct pending_event *ev = NULL; HvLpIndex primaryLp = HvLpConfig_getPrimaryLpIndex(); unsigned long flags; struct HvLpEvent *hev; spin_lock_irqsave(&pending_event_spinlock, flags); if (pending_event_avail != NULL) { ev = pending_event_avail; pending_event_avail = pending_event_avail->next; } spin_unlock_irqrestore(&pending_event_spinlock, flags); if (ev == NULL) ev = kmalloc(sizeof(struct pending_event),GFP_ATOMIC); if (ev == NULL) { printk(KERN_ERR "mf.c: unable to kmalloc %ld bytes\n", sizeof(struct pending_event)); return NULL; } memset(ev, 0, sizeof(struct pending_event)); hev = &ev->event.hp_lp_event; hev->xFlags.xValid = 1; hev->xFlags.xAckType = HvLpEvent_AckType_ImmediateAck; hev->xFlags.xAckInd = HvLpEvent_AckInd_DoAck; hev->xFlags.xFunction = HvLpEvent_Function_Int; hev->xType = HvLpEvent_Type_MachineFac; hev->xSourceLp = HvLpConfig_getLpIndex(); hev->xTargetLp = primaryLp; hev->xSizeMinus1 = sizeof(ev->event)-1; hev->xRc = HvLpEvent_Rc_Good; hev->xSourceInstanceId = HvCallEvent_getSourceLpInstanceId(primaryLp, HvLpEvent_Type_MachineFac); hev->xTargetInstanceId = HvCallEvent_getTargetLpInstanceId(primaryLp, HvLpEvent_Type_MachineFac); return ev; } static int signal_vsp_instruction(struct VspCmdData *vspCmd) { struct pending_event *ev = new_pending_event(); int rc; struct VspRspData response; if (ev == NULL) return -ENOMEM; init_completion(&response.com); response.response = vspCmd; ev->event.hp_lp_event.xSubtype = 6; ev->event.hp_lp_event.x.xSubtypeData = subtype_data('M', 'F', 'V', 'I'); ev->event.data.vsp_cmd.token.ptr = &response; ev->event.data.vsp_cmd.cmd = vspCmd->cmd; ev->event.data.vsp_cmd.lp_index = HvLpConfig_getLpIndex(); ev->event.data.vsp_cmd.result_code = 0xFF; ev->event.data.vsp_cmd.reserved = 0; memcpy(&(ev->event.data.vsp_cmd.sub_data), &(vspCmd->sub_data), sizeof(vspCmd->sub_data)); mb(); rc = signal_event(ev); if (rc == 0) wait_for_completion(&response.com); return rc; } /* * Send a 12-byte CE message to the primary partition VSP object */ static int signal_ce_msg(char *ce_msg, struct CeMsgCompleteData *completion) { struct pending_event *ev = new_pending_event(); if (ev == NULL) return -ENOMEM; ev->event.hp_lp_event.xSubtype = 0; ev->event.hp_lp_event.x.xSubtypeData = subtype_data('M', 'F', 'C', 'E'); memcpy(ev->event.data.ce_msg.ce_msg, ce_msg, 12); ev->event.data.ce_msg.completion = completion; return signal_event(ev); } /* * Send a 12-byte CE message and DMA data to the primary partition VSP object */ static int dma_and_signal_ce_msg(char *ce_msg, struct CeMsgCompleteData *completion, void *dma_data, unsigned dma_data_length, unsigned remote_address) { struct pending_event *ev = new_pending_event(); if (ev == NULL) return -ENOMEM; ev->event.hp_lp_event.xSubtype = 0; ev->event.hp_lp_event.x.xSubtypeData = subtype_data('M', 'F', 'C', 'E'); memcpy(ev->event.data.ce_msg.ce_msg, ce_msg, 12); ev->event.data.ce_msg.completion = completion; memcpy(ev->dma_data, dma_data, dma_data_length); ev->dma_data_length = dma_data_length; ev->remote_address = remote_address; return signal_event(ev); } /* * Initiate a nice (hopefully) shutdown of Linux. We simply are * going to try and send the init process a SIGINT signal. If * this fails (why?), we'll simply force it off in a not-so-nice * manner. */ static int shutdown(void) { int rc = kill_proc(1, SIGINT, 1); if (rc) { printk(KERN_ALERT "mf.c: SIGINT to init failed (%d), " "hard shutdown commencing\n", rc); mf_powerOff(); } else printk(KERN_INFO "mf.c: init has been successfully notified " "to proceed with shutdown\n"); return rc; } /* * The primary partition VSP object is sending us a new * event flow. Handle it... */ static void intReceived(struct IoMFLpEvent *event) { int freeIt = 0; struct pending_event *two = NULL; /* ack the interrupt */ event->hp_lp_event.xRc = HvLpEvent_Rc_Good; HvCallEvent_ackLpEvent(&event->hp_lp_event); /* process interrupt */ switch (event->hp_lp_event.xSubtype) { case 0: /* CE message */ switch (event->data.ce_msg.ce_msg[3]) { case 0x5B: /* power control notification */ if ((event->data.ce_msg.ce_msg[5] & 0x20) != 0) { printk(KERN_INFO "mf.c: Commencing partition shutdown\n"); if (shutdown() == 0) signal_ce_msg("\x00\x00\x00\xDB\x00\x00\x00\x00\x00\x00\x00\x00", NULL); } break; case 0xC0: /* get time */ if ((pending_event_head == NULL) || (pending_event_head->event.data.ce_msg.ce_msg[3] != 0x40)) break; freeIt = 1; if (pending_event_head->event.data.ce_msg.completion != 0) { CeMsgCompleteHandler handler = pending_event_head->event.data.ce_msg.completion->handler; void *token = pending_event_head->event.data.ce_msg.completion->token; if (handler != NULL) (*handler)(token, &(event->data.ce_msg)); } break; } /* remove from queue */ if (freeIt == 1) { unsigned long flags; spin_lock_irqsave(&pending_event_spinlock, flags); if (pending_event_head != NULL) { struct pending_event *oldHead = pending_event_head; pending_event_head = pending_event_head->next; two = pending_event_head; free_pending_event(oldHead); } spin_unlock_irqrestore(&pending_event_spinlock, flags); } /* send next waiting event */ if (two != NULL) signal_event(NULL); break; case 1: /* IT sys shutdown */ printk(KERN_INFO "mf.c: Commencing system shutdown\n"); shutdown(); break; } } /* * The primary partition VSP object is acknowledging the receipt * of a flow we sent to them. If there are other flows queued * up, we must send another one now... */ static void ackReceived(struct IoMFLpEvent *event) { unsigned long flags; struct pending_event * two = NULL; unsigned long freeIt = 0; /* handle current event */ if (pending_event_head != NULL) { switch (event->hp_lp_event.xSubtype) { case 0: /* CE msg */ if (event->data.ce_msg.ce_msg[3] == 0x40) { if (event->data.ce_msg.ce_msg[2] != 0) { freeIt = 1; if (pending_event_head->event.data.ce_msg.completion != 0) { CeMsgCompleteHandler handler = pending_event_head->event.data.ce_msg.completion->handler; void *token = pending_event_head->event.data.ce_msg.completion->token; if (handler != NULL) (*handler)(token, &(event->data.ce_msg)); } } } else freeIt = 1; break; case 4: /* allocate */ case 5: /* deallocate */ if (pending_event_head->hdlr != NULL) { union safe_cast mySafeCast; mySafeCast.ptr_as_u64 = event->hp_lp_event.xCorrelationToken; (*pending_event_head->hdlr)(mySafeCast.ptr, event->data.alloc.count); } freeIt = 1; break; case 6: { struct VspRspData *rsp = (struct VspRspData *)event->data.vsp_cmd.token.ptr; if (rsp != NULL) { if (rsp->response != NULL) memcpy(rsp->response, &(event->data.vsp_cmd), sizeof(event->data.vsp_cmd)); complete(&rsp->com); } else printk(KERN_ERR "mf.c: no rsp\n"); freeIt = 1; } break; } } else printk(KERN_ERR "mf.c: stack empty for receiving ack\n"); /* remove from queue */ spin_lock_irqsave(&pending_event_spinlock, flags); if ((pending_event_head != NULL) && (freeIt == 1)) { struct pending_event *oldHead = pending_event_head; pending_event_head = pending_event_head->next; two = pending_event_head; free_pending_event(oldHead); } spin_unlock_irqrestore(&pending_event_spinlock, flags); /* send next waiting event */ if (two != NULL) signal_event(NULL); } /* * This is the generic event handler we are registering with * the Hypervisor. Ensure the flows are for us, and then * parse it enough to know if it is an interrupt or an * acknowledge. */ static void hvHandler(struct HvLpEvent *event, struct pt_regs *regs) { if ((event != NULL) && (event->xType == HvLpEvent_Type_MachineFac)) { switch(event->xFlags.xFunction) { case HvLpEvent_Function_Ack: ackReceived((struct IoMFLpEvent *)event); break; case HvLpEvent_Function_Int: intReceived((struct IoMFLpEvent *)event); break; default: printk(KERN_ERR "mf.c: non ack/int event received\n"); break; } } else printk(KERN_ERR "mf.c: alien event received\n"); } /* * Global kernel interface to allocate and seed events into the * Hypervisor. */ void mf_allocateLpEvents(HvLpIndex targetLp, HvLpEvent_Type type, unsigned size, unsigned count, MFCompleteHandler hdlr, void *userToken) { struct pending_event *ev = new_pending_event(); int rc; if (ev == NULL) { rc = -ENOMEM; } else { union safe_cast mine; mine.ptr = userToken; ev->event.hp_lp_event.xSubtype = 4; ev->event.hp_lp_event.xCorrelationToken = mine.ptr_as_u64; ev->event.hp_lp_event.x.xSubtypeData = subtype_data('M', 'F', 'M', 'A'); ev->event.data.alloc.target_lp = targetLp; ev->event.data.alloc.type = type; ev->event.data.alloc.size = size; ev->event.data.alloc.count = count; ev->hdlr = hdlr; rc = signal_event(ev); } if ((rc != 0) && (hdlr != NULL)) (*hdlr)(userToken, rc); } EXPORT_SYMBOL(mf_allocateLpEvents); /* * Global kernel interface to unseed and deallocate events already in * Hypervisor. */ void mf_deallocateLpEvents(HvLpIndex targetLp, HvLpEvent_Type type, unsigned count, MFCompleteHandler hdlr, void *userToken) { struct pending_event *ev = new_pending_event(); int rc; if (ev == NULL) rc = -ENOMEM; else { union safe_cast mine; mine.ptr = userToken; ev->event.hp_lp_event.xSubtype = 5; ev->event.hp_lp_event.xCorrelationToken = mine.ptr_as_u64; ev->event.hp_lp_event.x.xSubtypeData = subtype_data('M', 'F', 'M', 'D'); ev->event.data.alloc.target_lp = targetLp; ev->event.data.alloc.type = type; ev->event.data.alloc.count = count; ev->hdlr = hdlr; rc = signal_event(ev); } if ((rc != 0) && (hdlr != NULL)) (*hdlr)(userToken, rc); } EXPORT_SYMBOL(mf_deallocateLpEvents); /* * Global kernel interface to tell the VSP object in the primary * partition to power this partition off. */ void mf_powerOff(void) { printk(KERN_INFO "mf.c: Down it goes...\n"); signal_ce_msg("\x00\x00\x00\x4D\x00\x00\x00\x00\x00\x00\x00\x00", NULL); for (;;); } /* * Global kernel interface to tell the VSP object in the primary * partition to reboot this partition. */ void mf_reboot(void) { printk(KERN_INFO "mf.c: Preparing to bounce...\n"); signal_ce_msg("\x00\x00\x00\x4E\x00\x00\x00\x00\x00\x00\x00\x00", NULL); for (;;); } /* * Display a single word SRC onto the VSP control panel. */ void mf_displaySrc(u32 word) { u8 ce[12]; memcpy(ce, "\x00\x00\x00\x4A\x00\x00\x00\x01\x00\x00\x00\x00", 12); ce[8] = word >> 24; ce[9] = word >> 16; ce[10] = word >> 8; ce[11] = word; signal_ce_msg(ce, NULL); } /* * Display a single word SRC of the form "PROGXXXX" on the VSP control panel. */ void mf_displayProgress(u16 value) { u8 ce[12]; u8 src[72]; memcpy(ce, "\x00\x00\x04\x4A\x00\x00\x00\x48\x00\x00\x00\x00", 12); memcpy(src, "\x01\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00PROGxxxx ", 72); src[6] = value >> 8; src[7] = value & 255; src[44] = "0123456789ABCDEF"[(value >> 12) & 15]; src[45] = "0123456789ABCDEF"[(value >> 8) & 15]; src[46] = "0123456789ABCDEF"[(value >> 4) & 15]; src[47] = "0123456789ABCDEF"[value & 15]; dma_and_signal_ce_msg(ce, NULL, src, sizeof(src), 9 * 64 * 1024); } /* * Clear the VSP control panel. Used to "erase" an SRC that was * previously displayed. */ void mf_clearSrc(void) { signal_ce_msg("\x00\x00\x00\x4B\x00\x00\x00\x00\x00\x00\x00\x00", NULL); } /* * Initialization code here. */ void mf_init(void) { int i; /* initialize */ spin_lock_init(&pending_event_spinlock); for (i = 0; i < sizeof(pending_event_prealloc) / sizeof(*pending_event_prealloc); ++i) free_pending_event(&pending_event_prealloc[i]); HvLpEvent_registerHandler(HvLpEvent_Type_MachineFac, &hvHandler); /* virtual continue ack */ signal_ce_msg("\x00\x00\x00\x57\x00\x00\x00\x00\x00\x00\x00\x00", NULL); /* initialization complete */ printk(KERN_NOTICE "mf.c: iSeries Linux LPAR Machine Facilities initialized\n"); } void mf_setSide(char side) { u64 newSide; struct VspCmdData myVspCmd; memset(&myVspCmd, 0, sizeof(myVspCmd)); switch (side) { case 'A': newSide = 0; break; case 'B': newSide = 1; break; case 'C': newSide = 2; break; default: newSide = 3; break; } myVspCmd.sub_data.ipl_type = newSide; myVspCmd.cmd = 10; (void)signal_vsp_instruction(&myVspCmd); } char mf_getSide(void) { char returnValue = ' '; int rc = 0; struct VspCmdData myVspCmd; memset(&myVspCmd, 0, sizeof(myVspCmd)); myVspCmd.cmd = 2; myVspCmd.sub_data.ipl_type = 0; mb(); rc = signal_vsp_instruction(&myVspCmd); if (rc != 0) return returnValue; if (myVspCmd.result_code == 0) { switch (myVspCmd.sub_data.ipl_type) { case 0: returnValue = 'A'; break; case 1: returnValue = 'B'; break; case 2: returnValue = 'C'; break; default: returnValue = 'D'; break; } } return returnValue; } void mf_getSrcHistory(char *buffer, int size) { #if 0 struct IplTypeReturnStuff returnStuff; struct pending_event *ev = new_pending_event(); int rc = 0; char *pages[4]; pages[0] = kmalloc(4096, GFP_ATOMIC); pages[1] = kmalloc(4096, GFP_ATOMIC); pages[2] = kmalloc(4096, GFP_ATOMIC); pages[3] = kmalloc(4096, GFP_ATOMIC); if ((ev == NULL) || (pages[0] == NULL) || (pages[1] == NULL) || (pages[2] == NULL) || (pages[3] == NULL)) return -ENOMEM; returnStuff.xType = 0; returnStuff.xRc = 0; returnStuff.xDone = 0; ev->event.hp_lp_event.xSubtype = 6; ev->event.hp_lp_event.x.xSubtypeData = subtype_data('M', 'F', 'V', 'I'); ev->event.data.vsp_cmd.xEvent = &returnStuff; ev->event.data.vsp_cmd.cmd = 4; ev->event.data.vsp_cmd.lp_index = HvLpConfig_getLpIndex(); ev->event.data.vsp_cmd.result_code = 0xFF; ev->event.data.vsp_cmd.reserved = 0; ev->event.data.vsp_cmd.sub_data.page[0] = ISERIES_HV_ADDR(pages[0]); ev->event.data.vsp_cmd.sub_data.page[1] = ISERIES_HV_ADDR(pages[1]); ev->event.data.vsp_cmd.sub_data.page[2] = ISERIES_HV_ADDR(pages[2]); ev->event.data.vsp_cmd.sub_data.page[3] = ISERIES_HV_ADDR(pages[3]); mb(); if (signal_event(ev) != 0) return; while (returnStuff.xDone != 1) udelay(10); if (returnStuff.xRc == 0) memcpy(buffer, pages[0], size); kfree(pages[0]); kfree(pages[1]); kfree(pages[2]); kfree(pages[3]); #endif } void mf_setCmdLine(const char *cmdline, int size, u64 side) { struct VspCmdData myVspCmd; dma_addr_t dma_addr = 0; char *page = dma_alloc_coherent(iSeries_vio_dev, size, &dma_addr, GFP_ATOMIC); if (page == NULL) { printk(KERN_ERR "mf.c: couldn't allocate memory to set command line\n"); return; } copy_from_user(page, cmdline, size); memset(&myVspCmd, 0, sizeof(myVspCmd)); myVspCmd.cmd = 31; myVspCmd.sub_data.kern.token = dma_addr; myVspCmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex; myVspCmd.sub_data.kern.side = side; myVspCmd.sub_data.kern.length = size; mb(); (void)signal_vsp_instruction(&myVspCmd); dma_free_coherent(iSeries_vio_dev, size, page, dma_addr); } int mf_getCmdLine(char *cmdline, int *size, u64 side) { struct VspCmdData myVspCmd; int rc; int len = *size; dma_addr_t dma_addr; dma_addr = dma_map_single(iSeries_vio_dev, cmdline, len, DMA_FROM_DEVICE); memset(cmdline, 0, len); memset(&myVspCmd, 0, sizeof(myVspCmd)); myVspCmd.cmd = 33; myVspCmd.sub_data.kern.token = dma_addr; myVspCmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex; myVspCmd.sub_data.kern.side = side; myVspCmd.sub_data.kern.length = len; mb(); rc = signal_vsp_instruction(&myVspCmd); if (rc == 0) { if (myVspCmd.result_code == 0) len = myVspCmd.sub_data.length_out; #if 0 else memcpy(cmdline, "Bad cmdline", 11); #endif } dma_unmap_single(iSeries_vio_dev, dma_addr, *size, DMA_FROM_DEVICE); return len; } int mf_setVmlinuxChunk(const char *buffer, int size, int offset, u64 side) { struct VspCmdData myVspCmd; int rc; dma_addr_t dma_addr = 0; char *page = dma_alloc_coherent(iSeries_vio_dev, size, &dma_addr, GFP_ATOMIC); if (page == NULL) { printk(KERN_ERR "mf.c: couldn't allocate memory to set vmlinux chunk\n"); return -ENOMEM; } copy_from_user(page, buffer, size); memset(&myVspCmd, 0, sizeof(myVspCmd)); myVspCmd.cmd = 30; myVspCmd.sub_data.kern.token = dma_addr; myVspCmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex; myVspCmd.sub_data.kern.side = side; myVspCmd.sub_data.kern.offset = offset; myVspCmd.sub_data.kern.length = size; mb(); rc = signal_vsp_instruction(&myVspCmd); if (rc == 0) { if (myVspCmd.result_code == 0) rc = 0; else rc = -ENOMEM; } dma_free_coherent(iSeries_vio_dev, size, page, dma_addr); return rc; } int mf_getVmlinuxChunk(char *buffer, int *size, int offset, u64 side) { struct VspCmdData myVspCmd; int rc; int len = *size; dma_addr_t dma_addr; dma_addr = dma_map_single(iSeries_vio_dev, buffer, len, DMA_FROM_DEVICE); memset(buffer, 0, len); memset(&myVspCmd, 0, sizeof(myVspCmd)); myVspCmd.cmd = 32; myVspCmd.sub_data.kern.token = dma_addr; myVspCmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex; myVspCmd.sub_data.kern.side = side; myVspCmd.sub_data.kern.offset = offset; myVspCmd.sub_data.kern.length = len; mb(); rc = signal_vsp_instruction(&myVspCmd); if (rc == 0) { if (myVspCmd.result_code == 0) *size = myVspCmd.sub_data.length_out; else rc = -ENOMEM; } dma_unmap_single(iSeries_vio_dev, dma_addr, len, DMA_FROM_DEVICE); return rc; } int mf_setRtcTime(unsigned long time) { struct rtc_time tm; to_tm(time, &tm); return mf_setRtc(&tm); } struct RtcTimeData { struct completion com; struct CeMsgData xCeMsg; int xRc; }; void getRtcTimeComplete(void * token, struct CeMsgData *ceMsg) { struct RtcTimeData *rtc = (struct RtcTimeData *)token; memcpy(&(rtc->xCeMsg), ceMsg, sizeof(rtc->xCeMsg)); rtc->xRc = 0; complete(&rtc->com); } static unsigned long lastsec = 1; int mf_getRtcTime(unsigned long *time) { u32 dataWord1 = *((u32 *)(&xSpCommArea.xBcdTimeAtIplStart)); u32 dataWord2 = *(((u32 *)&(xSpCommArea.xBcdTimeAtIplStart)) + 1); int year = 1970; int year1 = (dataWord1 >> 24) & 0x000000FF; int year2 = (dataWord1 >> 16) & 0x000000FF; int sec = (dataWord1 >> 8) & 0x000000FF; int min = dataWord1 & 0x000000FF; int hour = (dataWord2 >> 24) & 0x000000FF; int day = (dataWord2 >> 8) & 0x000000FF; int mon = dataWord2 & 0x000000FF; BCD_TO_BIN(sec); BCD_TO_BIN(min); BCD_TO_BIN(hour); BCD_TO_BIN(day); BCD_TO_BIN(mon); BCD_TO_BIN(year1); BCD_TO_BIN(year2); year = year1 * 100 + year2; *time = mktime(year, mon, day, hour, min, sec); *time += (jiffies / HZ); /* * Now THIS is a nasty hack! * It ensures that the first two calls to mf_getRtcTime get different * answers. That way the loop in init_time (time.c) will not think * the clock is stuck. */ if (lastsec) { *time -= lastsec; --lastsec; } return 0; } int mf_getRtc(struct rtc_time *tm) { struct CeMsgCompleteData ceComplete; struct RtcTimeData rtcData; int rc; memset(&ceComplete, 0, sizeof(ceComplete)); memset(&rtcData, 0, sizeof(rtcData)); init_completion(&rtcData.com); ceComplete.handler = &getRtcTimeComplete; ceComplete.token = (void *)&rtcData; rc = signal_ce_msg("\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00", &ceComplete); if (rc == 0) { wait_for_completion(&rtcData.com); if (rtcData.xRc == 0) { if ((rtcData.xCeMsg.ce_msg[2] == 0xa9) || (rtcData.xCeMsg.ce_msg[2] == 0xaf)) { /* TOD clock is not set */ tm->tm_sec = 1; tm->tm_min = 1; tm->tm_hour = 1; tm->tm_mday = 10; tm->tm_mon = 8; tm->tm_year = 71; mf_setRtc(tm); } { u32 dataWord1 = *((u32 *)(rtcData.xCeMsg.ce_msg+4)); u32 dataWord2 = *((u32 *)(rtcData.xCeMsg.ce_msg+8)); u8 year = (dataWord1 >> 16) & 0x000000FF; u8 sec = (dataWord1 >> 8) & 0x000000FF; u8 min = dataWord1 & 0x000000FF; u8 hour = (dataWord2 >> 24) & 0x000000FF; u8 day = (dataWord2 >> 8) & 0x000000FF; u8 mon = dataWord2 & 0x000000FF; BCD_TO_BIN(sec); BCD_TO_BIN(min); BCD_TO_BIN(hour); BCD_TO_BIN(day); BCD_TO_BIN(mon); BCD_TO_BIN(year); if (year <= 69) year += 100; tm->tm_sec = sec; tm->tm_min = min; tm->tm_hour = hour; tm->tm_mday = day; tm->tm_mon = mon; tm->tm_year = year; } } else { rc = rtcData.xRc; tm->tm_sec = 0; tm->tm_min = 0; tm->tm_hour = 0; tm->tm_mday = 15; tm->tm_mon = 5; tm->tm_year = 52; } tm->tm_wday = 0; tm->tm_yday = 0; tm->tm_isdst = 0; } return rc; } int mf_setRtc(struct rtc_time * tm) { char ceTime[12] = "\x00\x00\x00\x41\x00\x00\x00\x00\x00\x00\x00\x00"; u8 day, mon, hour, min, sec, y1, y2; unsigned year; year = 1900 + tm->tm_year; y1 = year / 100; y2 = year % 100; sec = tm->tm_sec; min = tm->tm_min; hour = tm->tm_hour; day = tm->tm_mday; mon = tm->tm_mon + 1; BIN_TO_BCD(sec); BIN_TO_BCD(min); BIN_TO_BCD(hour); BIN_TO_BCD(mon); BIN_TO_BCD(day); BIN_TO_BCD(y1); BIN_TO_BCD(y2); ceTime[4] = y1; ceTime[5] = y2; ceTime[6] = sec; ceTime[7] = min; ceTime[8] = hour; ceTime[10] = day; ceTime[11] = mon; return signal_ce_msg(ceTime, NULL); }