/* * * Procedures for interfacing to the RTAS on CHRP machines. * * Peter Bergner, IBM March 2001. * Copyright (C) 2001 IBM. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct flash_block_list_header rtas_firmware_flash_list = {0, 0}; /* * prom_init() is called very early on, before the kernel text * and data have been mapped to KERNELBASE. At this point the code * is running at whatever address it has been loaded at, so * references to extern and static variables must be relocated * explicitly. The procedure reloc_offset() returns the address * we're currently running at minus the address we were linked at. * (Note that strings count as static variables.) * * Because OF may have mapped I/O devices into the area starting at * KERNELBASE, particularly on CHRP machines, we can't safely call * OF once the kernel has been mapped to KERNELBASE. Therefore all * OF calls should be done within prom_init(), and prom_init() * and all routines called within it must be careful to relocate * references as necessary. * * Note that the bss is cleared *after* prom_init runs, so we have * to make sure that any static or extern variables it accesses * are put in the data segment. */ struct rtas_t rtas = { .lock = SPIN_LOCK_UNLOCKED }; char rtas_err_buf[RTAS_ERROR_LOG_MAX]; extern unsigned long reloc_offset(void); spinlock_t rtas_data_buf_lock = SPIN_LOCK_UNLOCKED; char rtas_data_buf[RTAS_DATA_BUF_SIZE]__page_aligned; void call_rtas_display_status(char c) { struct rtas_args *args = &(get_paca()->xRtas); unsigned long s; spin_lock_irqsave(&rtas.lock, s); args->token = 10; args->nargs = 1; args->nret = 1; args->rets = (rtas_arg_t *)&(args->args[1]); args->args[0] = (int)c; enter_rtas((void *)__pa((unsigned long)args)); spin_unlock_irqrestore(&rtas.lock, s); } int rtas_token(const char *service) { int *tokp; if (rtas.dev == NULL) { PPCDBG(PPCDBG_RTAS,"\tNo rtas device in device-tree...\n"); return RTAS_UNKNOWN_SERVICE; } tokp = (int *) get_property(rtas.dev, service, NULL); return tokp ? *tokp : RTAS_UNKNOWN_SERVICE; } static int __log_rtas_error(struct rtas_args *rtas_args) { struct rtas_args err_args, temp_args; err_args.token = rtas_token("rtas-last-error"); err_args.nargs = 2; err_args.nret = 1; err_args.rets = (rtas_arg_t *)&(err_args.args[2]); err_args.args[0] = (rtas_arg_t)__pa(rtas_err_buf); err_args.args[1] = RTAS_ERROR_LOG_MAX; err_args.args[2] = 0; temp_args = *rtas_args; get_paca()->xRtas = err_args; PPCDBG(PPCDBG_RTAS, "\tentering rtas with 0x%lx\n", (void *)__pa((unsigned long)&err_args)); enter_rtas((void *)__pa((unsigned long)&get_paca()->xRtas)); PPCDBG(PPCDBG_RTAS, "\treturned from rtas ...\n"); err_args = get_paca()->xRtas; get_paca()->xRtas = temp_args; return err_args.rets[0]; } void log_rtas_error(struct rtas_args *rtas_args) { unsigned long s; int rc; spin_lock_irqsave(&rtas.lock, s); rc = __log_rtas_error(rtas_args); spin_unlock_irqrestore(&rtas.lock, s); if (rc == 0) log_error(rtas_err_buf, ERR_TYPE_RTAS_LOG, 0); } long rtas_call(int token, int nargs, int nret, unsigned long *outputs, ...) { va_list list; int i, logit = 0; unsigned long s; struct rtas_args *rtas_args = &(get_paca()->xRtas); long ret; PPCDBG(PPCDBG_RTAS, "Entering rtas_call\n"); PPCDBG(PPCDBG_RTAS, "\ttoken = 0x%x\n", token); PPCDBG(PPCDBG_RTAS, "\tnargs = %d\n", nargs); PPCDBG(PPCDBG_RTAS, "\tnret = %d\n", nret); PPCDBG(PPCDBG_RTAS, "\t&outputs = 0x%lx\n", outputs); if (token == RTAS_UNKNOWN_SERVICE) return -1; /* Gotta do something different here, use global lock for now... */ spin_lock_irqsave(&rtas.lock, s); rtas_args->token = token; rtas_args->nargs = nargs; rtas_args->nret = nret; rtas_args->rets = (rtas_arg_t *)&(rtas_args->args[nargs]); va_start(list, outputs); for (i = 0; i < nargs; ++i) { rtas_args->args[i] = (rtas_arg_t)LONG_LSW(va_arg(list, ulong)); PPCDBG(PPCDBG_RTAS, "\tnarg[%d] = 0x%lx\n", i, rtas_args->args[i]); } va_end(list); for (i = 0; i < nret; ++i) rtas_args->rets[i] = 0; PPCDBG(PPCDBG_RTAS, "\tentering rtas with 0x%lx\n", (void *)__pa((unsigned long)rtas_args)); enter_rtas((void *)__pa((unsigned long)rtas_args)); PPCDBG(PPCDBG_RTAS, "\treturned from rtas ...\n"); if (rtas_args->rets[0] == -1) logit = (__log_rtas_error(rtas_args) == 0); ifppcdebug(PPCDBG_RTAS) { for(i=0; i < nret ;i++) udbg_printf("\tnret[%d] = 0x%lx\n", i, (ulong)rtas_args->rets[i]); } if (nret > 1 && outputs != NULL) for (i = 0; i < nret-1; ++i) outputs[i] = rtas_args->rets[i+1]; ret = (ulong)((nret > 0) ? rtas_args->rets[0] : 0); /* Gotta do something different here, use global lock for now... */ spin_unlock_irqrestore(&rtas.lock, s); if (logit) log_error(rtas_err_buf, ERR_TYPE_RTAS_LOG, 0); return ret; } /* Given an RTAS status code of 990n compute the hinted delay of 10^n * (last digit) milliseconds. For now we bound at n=5 (100 sec). */ unsigned int rtas_extended_busy_delay_time(int status) { int order = status - 9900; unsigned long ms; if (order < 0) order = 0; /* RTC depends on this for -2 clock busy */ else if (order > 5) order = 5; /* bound */ /* Use microseconds for reasonable accuracy */ for (ms=1; order > 0; order--) ms *= 10; return ms; } int rtas_get_power_level(int powerdomain, int *level) { int token = rtas_token("get-power-level"); long powerlevel; int rc; if (token == RTAS_UNKNOWN_SERVICE) return RTAS_UNKNOWN_OP; while(1) { rc = (int) rtas_call(token, 1, 2, &powerlevel, powerdomain); if (rc == RTAS_BUSY) udelay(1); else break; } *level = (int) powerlevel; return rc; } int rtas_set_power_level(int powerdomain, int level, int *setlevel) { int token = rtas_token("set-power-level"); unsigned int wait_time; long returned_level; int rc; if (token == RTAS_UNKNOWN_SERVICE) return RTAS_UNKNOWN_OP; while (1) { rc = (int) rtas_call(token, 2, 2, &returned_level, powerdomain, level); if (rc == RTAS_BUSY) udelay(1); else if (rtas_is_extended_busy(rc)) { wait_time = rtas_extended_busy_delay_time(rc); udelay(wait_time * 1000); } else break; } *setlevel = (int) returned_level; return rc; } int rtas_get_sensor(int sensor, int index, int *state) { int token = rtas_token("get-sensor-state"); unsigned int wait_time; long returned_state; int rc; if (token == RTAS_UNKNOWN_SERVICE) return RTAS_UNKNOWN_OP; while (1) { rc = (int) rtas_call(token, 2, 2, &returned_state, sensor, index); if (rc == RTAS_BUSY) udelay(1); else if (rtas_is_extended_busy(rc)) { wait_time = rtas_extended_busy_delay_time(rc); udelay(wait_time * 1000); } else break; } *state = (int) returned_state; return rc; } int rtas_set_indicator(int indicator, int index, int new_value) { int token = rtas_token("set-indicator"); unsigned int wait_time; int rc; if (token == RTAS_UNKNOWN_SERVICE) return RTAS_UNKNOWN_OP; while (1) { rc = (int) rtas_call(token, 3, 1, NULL, indicator, index, new_value); if (rc == RTAS_BUSY) udelay(1); else if (rtas_is_extended_busy(rc)) { wait_time = rtas_extended_busy_delay_time(rc); udelay(wait_time * 1000); } else break; } return rc; } #define FLASH_BLOCK_LIST_VERSION (1UL) static void rtas_flash_firmware(void) { unsigned long image_size; struct flash_block_list *f, *next, *flist; unsigned long rtas_block_list; int i, status, update_token; update_token = rtas_token("ibm,update-flash-64-and-reboot"); if (update_token == RTAS_UNKNOWN_SERVICE) { printk(KERN_ALERT "FLASH: ibm,update-flash-64-and-reboot is not available -- not a service partition?\n"); printk(KERN_ALERT "FLASH: firmware will not be flashed\n"); return; } /* NOTE: the "first" block list is a global var with no data * blocks in the kernel data segment. We do this because * we want to ensure this block_list addr is under 4GB. */ rtas_firmware_flash_list.num_blocks = 0; flist = (struct flash_block_list *)&rtas_firmware_flash_list; rtas_block_list = virt_to_abs(flist); if (rtas_block_list >= (4UL << 20)) { printk(KERN_ALERT "FLASH: kernel bug...flash list header addr above 4GB\n"); return; } printk(KERN_ALERT "FLASH: preparing saved firmware image for flash\n"); /* Update the block_list in place. */ image_size = 0; for (f = flist; f; f = next) { /* Translate data addrs to absolute */ for (i = 0; i < f->num_blocks; i++) { f->blocks[i].data = (char *)virt_to_abs(f->blocks[i].data); image_size += f->blocks[i].length; } next = f->next; /* Don't translate NULL pointer for last entry */ if (f->next) f->next = (struct flash_block_list *)virt_to_abs(f->next); else f->next = 0LL; /* make num_blocks into the version/length field */ f->num_blocks = (FLASH_BLOCK_LIST_VERSION << 56) | ((f->num_blocks+1)*16); } printk(KERN_ALERT "FLASH: flash image is %ld bytes\n", image_size); printk(KERN_ALERT "FLASH: performing flash and reboot\n"); ppc_md.progress("Flashing \n", 0x0); ppc_md.progress("Please Wait... ", 0x0); printk(KERN_ALERT "FLASH: this will take several minutes. Do not power off!\n"); status = rtas_call(update_token, 1, 1, NULL, rtas_block_list); switch (status) { /* should only get "bad" status */ case 0: printk(KERN_ALERT "FLASH: success\n"); break; case -1: printk(KERN_ALERT "FLASH: hardware error. Firmware may not be not flashed\n"); break; case -3: printk(KERN_ALERT "FLASH: image is corrupt or not correct for this platform. Firmware not flashed\n"); break; case -4: printk(KERN_ALERT "FLASH: flash failed when partially complete. System may not reboot\n"); break; default: printk(KERN_ALERT "FLASH: unknown flash return code %d\n", status); break; } } void rtas_flash_bypass_warning(void) { printk(KERN_ALERT "FLASH: firmware flash requires a reboot\n"); printk(KERN_ALERT "FLASH: the firmware image will NOT be flashed\n"); } void rtas_restart(char *cmd) { if (rtas_firmware_flash_list.next) rtas_flash_firmware(); printk("RTAS system-reboot returned %ld\n", rtas_call(rtas_token("system-reboot"), 0, 1, NULL)); for (;;); } void rtas_power_off(void) { if (rtas_firmware_flash_list.next) rtas_flash_bypass_warning(); /* allow power on only with power button press */ printk("RTAS power-off returned %ld\n", rtas_call(rtas_token("power-off"), 2, 1, NULL,0xffffffff,0xffffffff)); for (;;); } void rtas_halt(void) { if (rtas_firmware_flash_list.next) rtas_flash_bypass_warning(); rtas_power_off(); } /* Must be in the RMO region, so we place it here */ static char rtas_os_term_buf[2048]; void rtas_os_term(char *str) { long status; snprintf(rtas_os_term_buf, 2048, "OS panic: %s", str); do { status = rtas_call(rtas_token("ibm,os-term"), 1, 1, NULL, __pa(rtas_os_term_buf)); if (status == RTAS_BUSY) udelay(1); else if (status != 0) printk(KERN_EMERG "ibm,os-term call failed %ld\n", status); } while (status == RTAS_BUSY); } unsigned long rtas_rmo_buf = 0; asmlinkage int ppc_rtas(struct rtas_args __user *uargs) { struct rtas_args args; unsigned long flags; int nargs; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (copy_from_user(&args, uargs, 3 * sizeof(u32)) != 0) return -EFAULT; nargs = args.nargs; if (nargs > ARRAY_SIZE(args.args) || args.nret > ARRAY_SIZE(args.args) || nargs + args.nret > ARRAY_SIZE(args.args)) return -EINVAL; /* Copy in args. */ if (copy_from_user(args.args, uargs->args, nargs * sizeof(rtas_arg_t)) != 0) return -EFAULT; spin_lock_irqsave(&rtas.lock, flags); get_paca()->xRtas = args; enter_rtas((void *)__pa((unsigned long)&get_paca()->xRtas)); args = get_paca()->xRtas; spin_unlock_irqrestore(&rtas.lock, flags); args.rets = (rtas_arg_t *)&(args.args[nargs]); if (args.rets[0] == -1) log_rtas_error(&args); /* Copy out args. */ if (copy_to_user(uargs->args + nargs, args.args + nargs, args.nret * sizeof(rtas_arg_t)) != 0) return -EFAULT; return 0; } #ifdef CONFIG_HOTPLUG_CPU /* This version can't take the spinlock. */ void rtas_stop_self(void) { struct rtas_args *rtas_args = &(get_paca()->xRtas); local_irq_disable(); rtas_args->token = rtas_token("stop-self"); BUG_ON(rtas_args->token == RTAS_UNKNOWN_SERVICE); rtas_args->nargs = 0; rtas_args->nret = 1; rtas_args->rets = &(rtas_args->args[0]); printk("%u %u Ready to die...\n", smp_processor_id(), hard_smp_processor_id()); enter_rtas((void *)__pa(rtas_args)); panic("Alas, I survived.\n"); } #endif /* CONFIG_HOTPLUG_CPU */ EXPORT_SYMBOL(rtas_firmware_flash_list); EXPORT_SYMBOL(rtas_token); EXPORT_SYMBOL(rtas_call); EXPORT_SYMBOL(rtas_data_buf); EXPORT_SYMBOL(rtas_data_buf_lock); EXPORT_SYMBOL(rtas_extended_busy_delay_time); EXPORT_SYMBOL(rtas_get_sensor); EXPORT_SYMBOL(rtas_get_power_level); EXPORT_SYMBOL(rtas_set_power_level); EXPORT_SYMBOL(rtas_set_indicator);