/* * arch/ppc/mm/fault.c * * PowerPC version * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) * * Derived from "arch/i386/mm/fault.c" * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds * * Modified by Cort Dougan and Paul Mackerras. * * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Check whether the instruction at regs->nip is a store using * an update addressing form which will update r1. */ static int store_updates_sp(struct pt_regs *regs) { unsigned int inst; if (get_user(inst, (unsigned int __user *)regs->nip)) return 0; /* check for 1 in the rA field */ if (((inst >> 16) & 0x1f) != 1) return 0; /* check major opcode */ switch (inst >> 26) { case 37: /* stwu */ case 39: /* stbu */ case 45: /* sthu */ case 53: /* stfsu */ case 55: /* stfdu */ return 1; case 62: /* std or stdu */ return (inst & 3) == 1; case 31: /* check minor opcode */ switch ((inst >> 1) & 0x3ff) { case 181: /* stdux */ case 183: /* stwux */ case 247: /* stbux */ case 439: /* sthux */ case 695: /* stfsux */ case 759: /* stfdux */ return 1; } } return 0; } /* * The error_code parameter is * - DSISR for a non-SLB data access fault, * - SRR1 & 0x08000000 for a non-SLB instruction access fault * - 0 any SLB fault. * The return value is 0 if the fault was handled, or the signal * number if this is a kernel fault that can't be handled here. */ int do_page_fault(struct pt_regs *regs, unsigned long address, unsigned long error_code) { struct vm_area_struct * vma; struct mm_struct *mm = current->mm; siginfo_t info; unsigned long code = SEGV_MAPERR; unsigned long is_write = error_code & DSISR_ISSTORE; unsigned long trap = TRAP(regs); unsigned long is_exec = trap == 0x400; BUG_ON((trap == 0x380) || (trap == 0x480)); if (notify_die(DIE_PAGE_FAULT, "page_fault", regs, error_code, 11, SIGSEGV) == NOTIFY_STOP) return 0; if (trap == 0x300) { if (debugger_fault_handler(regs)) return 0; } /* On a kernel SLB miss we can only check for a valid exception entry */ if (!user_mode(regs) && (address >= TASK_SIZE)) return SIGSEGV; if (error_code & DSISR_DABRMATCH) { if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 11, SIGSEGV) == NOTIFY_STOP) return 0; if (debugger_dabr_match(regs)) return 0; } if (in_atomic() || mm == NULL) { if (!user_mode(regs)) return SIGSEGV; /* in_atomic() in user mode is really bad, as is current->mm == NULL. */ printk(KERN_EMERG "Page fault in user mode with" "in_atomic() = %d mm = %p\n", in_atomic(), mm); printk(KERN_EMERG "NIP = %lx MSR = %lx\n", regs->nip, regs->msr); die("Weird page fault", regs, SIGSEGV); } /* When running in the kernel we expect faults to occur only to * addresses in user space. All other faults represent errors in the * kernel and should generate an OOPS. Unfortunatly, in the case of an * erroneous fault occuring in a code path which already holds mmap_sem * we will deadlock attempting to validate the fault against the * address space. Luckily the kernel only validly references user * space from well defined areas of code, which are listed in the * exceptions table. * * As the vast majority of faults will be valid we will only perform * the source reference check when there is a possibilty of a deadlock. * Attempt to lock the address space, if we cannot we then validate the * source. If this is invalid we can skip the address space check, * thus avoiding the deadlock. */ if (!down_read_trylock(&mm->mmap_sem)) { if (!user_mode(regs) && !search_exception_tables(regs->nip)) goto bad_area_nosemaphore; down_read(&mm->mmap_sem); } vma = find_vma(mm, address); if (!vma) goto bad_area; if (vma->vm_start <= address) { goto good_area; } if (!(vma->vm_flags & VM_GROWSDOWN)) goto bad_area; /* * N.B. The POWER/Open ABI allows programs to access up to * 288 bytes below the stack pointer. * The kernel signal delivery code writes up to about 1.5kB * below the stack pointer (r1) before decrementing it. * The exec code can write slightly over 640kB to the stack * before setting the user r1. Thus we allow the stack to * expand to 1MB without further checks. */ if (address + 0x100000 < vma->vm_end) { /* get user regs even if this fault is in kernel mode */ struct pt_regs *uregs = current->thread.regs; if (uregs == NULL) goto bad_area; /* * A user-mode access to an address a long way below * the stack pointer is only valid if the instruction * is one which would update the stack pointer to the * address accessed if the instruction completed, * i.e. either stwu rs,n(r1) or stwux rs,r1,rb * (or the byte, halfword, float or double forms). * * If we don't check this then any write to the area * between the last mapped region and the stack will * expand the stack rather than segfaulting. */ if (address + 2048 < uregs->gpr[1] && (!user_mode(regs) || !store_updates_sp(regs))) goto bad_area; } if (expand_stack(vma, address)) goto bad_area; good_area: code = SEGV_ACCERR; if (is_exec) { /* protection fault */ if (error_code & DSISR_PROTFAULT) goto bad_area; if (!(vma->vm_flags & VM_EXEC)) goto bad_area; /* a write */ } else if (is_write) { if (!(vma->vm_flags & VM_WRITE)) goto bad_area; /* a read */ } else { if (!(vma->vm_flags & VM_READ)) goto bad_area; } survive: /* * If for any reason at all we couldn't handle the fault, * make sure we exit gracefully rather than endlessly redo * the fault. */ switch (handle_mm_fault(mm, vma, address, is_write)) { case VM_FAULT_MINOR: current->min_flt++; break; case VM_FAULT_MAJOR: current->maj_flt++; break; case VM_FAULT_SIGBUS: goto do_sigbus; case VM_FAULT_OOM: goto out_of_memory; default: BUG(); } up_read(&mm->mmap_sem); return 0; bad_area: up_read(&mm->mmap_sem); bad_area_nosemaphore: /* User mode accesses cause a SIGSEGV */ if (user_mode(regs)) { info.si_signo = SIGSEGV; info.si_errno = 0; info.si_code = code; info.si_addr = (void __user *) address; force_sig_info(SIGSEGV, &info, current); return 0; } if (trap == 0x400 && (error_code & DSISR_PROTFAULT) && printk_ratelimit()) printk(KERN_CRIT "kernel tried to execute NX-protected" " page (%lx) - exploit attempt? (uid: %d)\n", address, current->uid); return SIGSEGV; /* * We ran out of memory, or some other thing happened to us that made * us unable to handle the page fault gracefully. */ out_of_memory: up_read(&mm->mmap_sem); if (current->pid == 1) { yield(); down_read(&mm->mmap_sem); goto survive; } printk("VM: killing process %s\n", current->comm); if (user_mode(regs)) do_exit(SIGKILL); return SIGKILL; do_sigbus: up_read(&mm->mmap_sem); if (user_mode(regs)) { info.si_signo = SIGBUS; info.si_errno = 0; info.si_code = BUS_ADRERR; info.si_addr = (void __user *)address; force_sig_info(SIGBUS, &info, current); return 0; } return SIGBUS; } /* * bad_page_fault is called when we have a bad access from the kernel. * It is called from do_page_fault above and from some of the procedures * in traps.c. */ void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig) { const struct exception_table_entry *entry; /* Are we prepared to handle this fault? */ if ((entry = search_exception_tables(regs->nip)) != NULL) { regs->nip = entry->fixup; return; } /* kernel has accessed a bad area */ die("Kernel access of bad area", regs, sig); }