/* * PPC64 (POWER4) Huge TLB Page Support for Kernel. * * Copyright (C) 2003 David Gibson, IBM Corporation. * * Based on the IA-32 version: * Copyright (C) 2002, Rohit Seth */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* HugePTE layout: * * 31 30 ... 15 14 13 12 10 9 8 7 6 5 4 3 2 1 0 * PFN>>12..... - - - - - - HASH_IX.... 2ND HASH RW - HG=1 */ #define HUGEPTE_SHIFT 15 #define _HUGEPAGE_PFN 0xffff8000 #define _HUGEPAGE_BAD 0x00007f00 #define _HUGEPAGE_HASHPTE 0x00000008 #define _HUGEPAGE_SECONDARY 0x00000010 #define _HUGEPAGE_GROUP_IX 0x000000e0 #define _HUGEPAGE_HPTEFLAGS (_HUGEPAGE_HASHPTE | _HUGEPAGE_SECONDARY | \ _HUGEPAGE_GROUP_IX) #define _HUGEPAGE_RW 0x00000004 typedef struct {unsigned int val;} hugepte_t; #define hugepte_val(hugepte) ((hugepte).val) #define __hugepte(x) ((hugepte_t) { (x) } ) #define hugepte_pfn(x) \ ((unsigned long)(hugepte_val(x)>>HUGEPTE_SHIFT) << HUGETLB_PAGE_ORDER) #define mk_hugepte(page,wr) __hugepte( \ ((page_to_pfn(page)>>HUGETLB_PAGE_ORDER) << HUGEPTE_SHIFT ) \ | (!!(wr) * _HUGEPAGE_RW) | _PMD_HUGEPAGE ) #define hugepte_bad(x) ( !(hugepte_val(x) & _PMD_HUGEPAGE) || \ (hugepte_val(x) & _HUGEPAGE_BAD) ) #define hugepte_page(x) pfn_to_page(hugepte_pfn(x)) #define hugepte_none(x) (!(hugepte_val(x) & _HUGEPAGE_PFN)) static void flush_hash_hugepage(mm_context_t context, unsigned long ea, hugepte_t pte, int local); static inline unsigned int hugepte_update(hugepte_t *p, unsigned int clr, unsigned int set) { unsigned int old, tmp; __asm__ __volatile__( "1: lwarx %0,0,%3 # pte_update\n\ andc %1,%0,%4 \n\ or %1,%1,%5 \n\ stwcx. %1,0,%3 \n\ bne- 1b" : "=&r" (old), "=&r" (tmp), "=m" (*p) : "r" (p), "r" (clr), "r" (set), "m" (*p) : "cc" ); return old; } static inline void set_hugepte(hugepte_t *ptep, hugepte_t pte) { hugepte_update(ptep, ~_HUGEPAGE_HPTEFLAGS, hugepte_val(pte) & ~_HUGEPAGE_HPTEFLAGS); } static hugepte_t *hugepte_alloc(struct mm_struct *mm, unsigned long addr) { pgd_t *pgd; pmd_t *pmd = NULL; BUG_ON(!in_hugepage_area(mm->context, addr)); pgd = pgd_offset(mm, addr); pmd = pmd_alloc(mm, pgd, addr); /* We shouldn't find a (normal) PTE page pointer here */ BUG_ON(!pmd_none(*pmd) && !pmd_hugepage(*pmd)); return (hugepte_t *)pmd; } static hugepte_t *hugepte_offset(struct mm_struct *mm, unsigned long addr) { pgd_t *pgd; pmd_t *pmd = NULL; BUG_ON(!in_hugepage_area(mm->context, addr)); pgd = pgd_offset(mm, addr); if (pgd_none(*pgd)) return NULL; pmd = pmd_offset(pgd, addr); /* We shouldn't find a (normal) PTE page pointer here */ BUG_ON(!pmd_none(*pmd) && !pmd_hugepage(*pmd)); return (hugepte_t *)pmd; } static void setup_huge_pte(struct mm_struct *mm, struct page *page, hugepte_t *ptep, int write_access) { hugepte_t entry; int i; // mm->rss += (HPAGE_SIZE / PAGE_SIZE); vx_rsspages_sub(mm, HPAGE_SIZE / PAGE_SIZE); entry = mk_hugepte(page, write_access); for (i = 0; i < HUGEPTE_BATCH_SIZE; i++) set_hugepte(ptep+i, entry); } static void teardown_huge_pte(hugepte_t *ptep) { int i; for (i = 0; i < HUGEPTE_BATCH_SIZE; i++) pmd_clear((pmd_t *)(ptep+i)); } /* * This function checks for proper alignment of input addr and len parameters. */ int is_aligned_hugepage_range(unsigned long addr, unsigned long len) { if (len & ~HPAGE_MASK) return -EINVAL; if (addr & ~HPAGE_MASK) return -EINVAL; if (! (within_hugepage_low_range(addr, len) || within_hugepage_high_range(addr, len)) ) return -EINVAL; return 0; } static void flush_segments(void *parm) { u16 segs = (unsigned long) parm; unsigned long i; asm volatile("isync" : : : "memory"); for (i = 0; i < 16; i++) { if (! (segs & (1U << i))) continue; asm volatile("slbie %0" : : "r" (i << SID_SHIFT)); } asm volatile("isync" : : : "memory"); } static int prepare_low_seg_for_htlb(struct mm_struct *mm, unsigned long seg) { unsigned long start = seg << SID_SHIFT; unsigned long end = (seg+1) << SID_SHIFT; struct vm_area_struct *vma; unsigned long addr; struct mmu_gather *tlb; BUG_ON(seg >= 16); /* Check no VMAs are in the region */ vma = find_vma(mm, start); if (vma && (vma->vm_start < end)) return -EBUSY; /* Clean up any leftover PTE pages in the region */ spin_lock(&mm->page_table_lock); tlb = tlb_gather_mmu(mm, 0); for (addr = start; addr < end; addr += PMD_SIZE) { pgd_t *pgd = pgd_offset(mm, addr); pmd_t *pmd; struct page *page; pte_t *pte; int i; if (pgd_none(*pgd)) continue; pmd = pmd_offset(pgd, addr); if (!pmd || pmd_none(*pmd)) continue; if (pmd_bad(*pmd)) { pmd_ERROR(*pmd); pmd_clear(pmd); continue; } pte = (pte_t *)pmd_page_kernel(*pmd); /* No VMAs, so there should be no PTEs, check just in case. */ for (i = 0; i < PTRS_PER_PTE; i++) { BUG_ON(!pte_none(*pte)); pte++; } page = pmd_page(*pmd); pmd_clear(pmd); dec_page_state(nr_page_table_pages); pte_free_tlb(tlb, page); } tlb_finish_mmu(tlb, start, end); spin_unlock(&mm->page_table_lock); return 0; } static int open_low_hpage_segs(struct mm_struct *mm, u16 newsegs) { unsigned long i; newsegs &= ~(mm->context.htlb_segs); if (! newsegs) return 0; /* The segments we want are already open */ for (i = 0; i < 16; i++) if ((1 << i) & newsegs) if (prepare_low_seg_for_htlb(mm, i) != 0) return -EBUSY; mm->context.htlb_segs |= newsegs; /* the context change must make it to memory before the flush, * so that further SLB misses do the right thing. */ mb(); on_each_cpu(flush_segments, (void *)(unsigned long)newsegs, 0, 1); return 0; } int prepare_hugepage_range(unsigned long addr, unsigned long len) { if (within_hugepage_high_range(addr, len)) return 0; else if ((addr < 0x100000000) && ((addr+len) < 0x100000000)) { int err; /* Yes, we need both tests, in case addr+len overflows * 64-bit arithmetic */ err = open_low_hpage_segs(current->mm, LOW_ESID_MASK(addr, len)); if (err) printk(KERN_DEBUG "prepare_hugepage_range(%lx, %lx)" " failed (segs: 0x%04hx)\n", addr, len, LOW_ESID_MASK(addr, len)); return err; } return -EINVAL; } int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, struct vm_area_struct *vma) { hugepte_t *src_pte, *dst_pte, entry; struct page *ptepage; unsigned long addr = vma->vm_start; unsigned long end = vma->vm_end; while (addr < end) { BUG_ON(! in_hugepage_area(src->context, addr)); BUG_ON(! in_hugepage_area(dst->context, addr)); dst_pte = hugepte_alloc(dst, addr); if (!dst_pte) return -ENOMEM; src_pte = hugepte_offset(src, addr); entry = *src_pte; if ((addr % HPAGE_SIZE) == 0) { /* This is the first hugepte in a batch */ ptepage = hugepte_page(entry); get_page(ptepage); // dst->rss += (HPAGE_SIZE / PAGE_SIZE); vx_rsspages_add(dst, HPAGE_SIZE / PAGE_SIZE); } set_hugepte(dst_pte, entry); addr += PMD_SIZE; } return 0; } int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, struct page **pages, struct vm_area_struct **vmas, unsigned long *position, int *length, int i) { unsigned long vpfn, vaddr = *position; int remainder = *length; WARN_ON(!is_vm_hugetlb_page(vma)); vpfn = vaddr/PAGE_SIZE; while (vaddr < vma->vm_end && remainder) { BUG_ON(!in_hugepage_area(mm->context, vaddr)); if (pages) { hugepte_t *pte; struct page *page; pte = hugepte_offset(mm, vaddr); /* hugetlb should be locked, and hence, prefaulted */ WARN_ON(!pte || hugepte_none(*pte)); page = &hugepte_page(*pte)[vpfn % (HPAGE_SIZE/PAGE_SIZE)]; WARN_ON(!PageCompound(page)); get_page(page); pages[i] = page; } if (vmas) vmas[i] = vma; vaddr += PAGE_SIZE; ++vpfn; --remainder; ++i; } *length = remainder; *position = vaddr; return i; } struct page * follow_huge_addr(struct mm_struct *mm, unsigned long address, int write) { return ERR_PTR(-EINVAL); } int pmd_huge(pmd_t pmd) { return pmd_hugepage(pmd); } struct page * follow_huge_pmd(struct mm_struct *mm, unsigned long address, pmd_t *pmd, int write) { struct page *page; BUG_ON(! pmd_hugepage(*pmd)); page = hugepte_page(*(hugepte_t *)pmd); if (page) page += ((address & ~HPAGE_MASK) >> PAGE_SHIFT); return page; } void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) { struct mm_struct *mm = vma->vm_mm; unsigned long addr; hugepte_t *ptep; struct page *page; int local = 0; cpumask_t tmp; WARN_ON(!is_vm_hugetlb_page(vma)); BUG_ON((start % HPAGE_SIZE) != 0); BUG_ON((end % HPAGE_SIZE) != 0); /* XXX are there races with checking cpu_vm_mask? - Anton */ tmp = cpumask_of_cpu(smp_processor_id()); if (cpus_equal(vma->vm_mm->cpu_vm_mask, tmp)) local = 1; for (addr = start; addr < end; addr += HPAGE_SIZE) { hugepte_t pte; BUG_ON(!in_hugepage_area(mm->context, addr)); ptep = hugepte_offset(mm, addr); if (!ptep || hugepte_none(*ptep)) continue; pte = *ptep; page = hugepte_page(pte); teardown_huge_pte(ptep); if (hugepte_val(pte) & _HUGEPAGE_HASHPTE) flush_hash_hugepage(mm->context, addr, pte, local); put_page(page); } // mm->rss -= (end - start) >> PAGE_SHIFT; vx_rsspages_sub(mm, (end - start) >> PAGE_SHIFT); } int hugetlb_prefault(struct address_space *mapping, struct vm_area_struct *vma) { struct mm_struct *mm = current->mm; unsigned long addr; int ret = 0; WARN_ON(!is_vm_hugetlb_page(vma)); BUG_ON((vma->vm_start % HPAGE_SIZE) != 0); BUG_ON((vma->vm_end % HPAGE_SIZE) != 0); spin_lock(&mm->page_table_lock); for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) { unsigned long idx; hugepte_t *pte = hugepte_alloc(mm, addr); struct page *page; BUG_ON(!in_hugepage_area(mm->context, addr)); if (!pte) { ret = -ENOMEM; goto out; } if (!hugepte_none(*pte)) continue; idx = ((addr - vma->vm_start) >> HPAGE_SHIFT) + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT)); page = find_get_page(mapping, idx); if (!page) { /* charge the fs quota first */ if (hugetlb_get_quota(mapping)) { ret = -ENOMEM; goto out; } page = alloc_huge_page(); if (!page) { hugetlb_put_quota(mapping); ret = -ENOMEM; goto out; } ret = add_to_page_cache(page, mapping, idx, GFP_ATOMIC); if (! ret) { unlock_page(page); } else { hugetlb_put_quota(mapping); free_huge_page(page); goto out; } } setup_huge_pte(mm, page, pte, vma->vm_flags & VM_WRITE); } out: spin_unlock(&mm->page_table_lock); return ret; } /* Because we have an exclusive hugepage region which lies within the * normal user address space, we have to take special measures to make * non-huge mmap()s evade the hugepage reserved regions. */ unsigned long arch_get_unmapped_area(struct file *filp, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags) { struct mm_struct *mm = current->mm; struct vm_area_struct *vma; unsigned long start_addr; if (len > TASK_SIZE) return -ENOMEM; if (addr) { addr = PAGE_ALIGN(addr); vma = find_vma(mm, addr); if (((TASK_SIZE - len) >= addr) && (!vma || (addr+len) <= vma->vm_start) && !is_hugepage_only_range(addr,len)) return addr; } start_addr = addr = mm->free_area_cache; full_search: vma = find_vma(mm, addr); while (TASK_SIZE - len >= addr) { BUG_ON(vma && (addr >= vma->vm_end)); if (touches_hugepage_low_range(addr, len)) { addr = ALIGN(addr+1, 1<vm_start) { /* * Remember the place where we stopped the search: */ mm->free_area_cache = addr + len; return addr; } addr = vma->vm_end; vma = vma->vm_next; } /* Make sure we didn't miss any holes */ if (start_addr != TASK_UNMAPPED_BASE) { start_addr = addr = TASK_UNMAPPED_BASE; goto full_search; } return -ENOMEM; } static unsigned long htlb_get_low_area(unsigned long len, u16 segmask) { unsigned long addr = 0; struct vm_area_struct *vma; vma = find_vma(current->mm, addr); while (addr + len <= 0x100000000UL) { BUG_ON(vma && (addr >= vma->vm_end)); /* invariant */ if (! __within_hugepage_low_range(addr, len, segmask)) { addr = ALIGN(addr+1, 1<mm, addr); continue; } if (!vma || (addr + len) <= vma->vm_start) return addr; addr = ALIGN(vma->vm_end, HPAGE_SIZE); /* Depending on segmask this might not be a confirmed * hugepage region, so the ALIGN could have skipped * some VMAs */ vma = find_vma(current->mm, addr); } return -ENOMEM; } static unsigned long htlb_get_high_area(unsigned long len) { unsigned long addr = TASK_HPAGE_BASE; struct vm_area_struct *vma; vma = find_vma(current->mm, addr); for (vma = find_vma(current->mm, addr); addr + len <= TASK_HPAGE_END; vma = vma->vm_next) { BUG_ON(vma && (addr >= vma->vm_end)); /* invariant */ BUG_ON(! within_hugepage_high_range(addr, len)); if (!vma || (addr + len) <= vma->vm_start) return addr; addr = ALIGN(vma->vm_end, HPAGE_SIZE); /* Because we're in a hugepage region, this alignment * should not skip us over any VMAs */ } return -ENOMEM; } unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags) { if (len & ~HPAGE_MASK) return -EINVAL; if (!(cur_cpu_spec->cpu_features & CPU_FTR_16M_PAGE)) return -EINVAL; if (test_thread_flag(TIF_32BIT)) { int lastshift = 0; u16 segmask, cursegs = current->mm->context.htlb_segs; /* First see if we can do the mapping in the existing * low hpage segments */ addr = htlb_get_low_area(len, cursegs); if (addr != -ENOMEM) return addr; for (segmask = LOW_ESID_MASK(0x100000000UL-len, len); ! lastshift; segmask >>=1) { if (segmask & 1) lastshift = 1; addr = htlb_get_low_area(len, cursegs | segmask); if ((addr != -ENOMEM) && open_low_hpage_segs(current->mm, segmask) == 0) return addr; } printk(KERN_DEBUG "hugetlb_get_unmapped_area() unable to open" " enough segments\n"); return -ENOMEM; } else { return htlb_get_high_area(len); } } int hash_huge_page(struct mm_struct *mm, unsigned long access, unsigned long ea, unsigned long vsid, int local) { hugepte_t *ptep; unsigned long va, vpn; int is_write; hugepte_t old_pte, new_pte; unsigned long hpteflags, prpn, flags; long slot; /* We have to find the first hugepte in the batch, since * that's the one that will store the HPTE flags */ ea &= HPAGE_MASK; ptep = hugepte_offset(mm, ea); /* Search the Linux page table for a match with va */ va = (vsid << 28) | (ea & 0x0fffffff); vpn = va >> HPAGE_SHIFT; /* * If no pte found or not present, send the problem up to * do_page_fault */ if (unlikely(!ptep || hugepte_none(*ptep))) return 1; BUG_ON(hugepte_bad(*ptep)); /* * Check the user's access rights to the page. If access should be * prevented then send the problem up to do_page_fault. */ is_write = access & _PAGE_RW; if (unlikely(is_write && !(hugepte_val(*ptep) & _HUGEPAGE_RW))) return 1; /* * At this point, we have a pte (old_pte) which can be used to build * or update an HPTE. There are 2 cases: * * 1. There is a valid (present) pte with no associated HPTE (this is * the most common case) * 2. There is a valid (present) pte with an associated HPTE. The * current values of the pp bits in the HPTE prevent access * because we are doing software DIRTY bit management and the * page is currently not DIRTY. */ spin_lock_irqsave(&mm->page_table_lock, flags); old_pte = *ptep; new_pte = old_pte; hpteflags = 0x2 | (! (hugepte_val(new_pte) & _HUGEPAGE_RW)); /* Check if pte already has an hpte (case 2) */ if (unlikely(hugepte_val(old_pte) & _HUGEPAGE_HASHPTE)) { /* There MIGHT be an HPTE for this pte */ unsigned long hash, slot; hash = hpt_hash(vpn, 1); if (hugepte_val(old_pte) & _HUGEPAGE_SECONDARY) hash = ~hash; slot = (hash & htab_data.htab_hash_mask) * HPTES_PER_GROUP; slot += (hugepte_val(old_pte) & _HUGEPAGE_GROUP_IX) >> 5; if (ppc_md.hpte_updatepp(slot, hpteflags, va, 1, local) == -1) hugepte_val(old_pte) &= ~_HUGEPAGE_HPTEFLAGS; } if (likely(!(hugepte_val(old_pte) & _HUGEPAGE_HASHPTE))) { unsigned long hash = hpt_hash(vpn, 1); unsigned long hpte_group; prpn = hugepte_pfn(old_pte); repeat: hpte_group = ((hash & htab_data.htab_hash_mask) * HPTES_PER_GROUP) & ~0x7UL; /* Update the linux pte with the HPTE slot */ hugepte_val(new_pte) &= ~_HUGEPAGE_HPTEFLAGS; hugepte_val(new_pte) |= _HUGEPAGE_HASHPTE; /* Add in WIMG bits */ /* XXX We should store these in the pte */ hpteflags |= _PAGE_COHERENT; slot = ppc_md.hpte_insert(hpte_group, va, prpn, 0, hpteflags, 0, 1); /* Primary is full, try the secondary */ if (unlikely(slot == -1)) { hugepte_val(new_pte) |= _HUGEPAGE_SECONDARY; hpte_group = ((~hash & htab_data.htab_hash_mask) * HPTES_PER_GROUP) & ~0x7UL; slot = ppc_md.hpte_insert(hpte_group, va, prpn, 1, hpteflags, 0, 1); if (slot == -1) { if (mftb() & 0x1) hpte_group = ((hash & htab_data.htab_hash_mask) * HPTES_PER_GROUP) & ~0x7UL; ppc_md.hpte_remove(hpte_group); goto repeat; } } if (unlikely(slot == -2)) panic("hash_huge_page: pte_insert failed\n"); hugepte_val(new_pte) |= (slot<<5) & _HUGEPAGE_GROUP_IX; /* * No need to use ldarx/stdcx here because all who * might be updating the pte will hold the * page_table_lock or the hash_table_lock * (we hold both) */ *ptep = new_pte; } spin_unlock_irqrestore(&mm->page_table_lock, flags); return 0; } static void flush_hash_hugepage(mm_context_t context, unsigned long ea, hugepte_t pte, int local) { unsigned long vsid, vpn, va, hash, slot; BUG_ON(hugepte_bad(pte)); BUG_ON(!in_hugepage_area(context, ea)); vsid = get_vsid(context.id, ea); va = (vsid << 28) | (ea & 0x0fffffff); vpn = va >> LARGE_PAGE_SHIFT; hash = hpt_hash(vpn, 1); if (hugepte_val(pte) & _HUGEPAGE_SECONDARY) hash = ~hash; slot = (hash & htab_data.htab_hash_mask) * HPTES_PER_GROUP; slot += (hugepte_val(pte) & _HUGEPAGE_GROUP_IX) >> 5; ppc_md.hpte_invalidate(slot, va, 1, local); }