/* * pSeries NUMA support * * Copyright (C) 2002 Anton Blanchard , IBM * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include #include #include #include #include #include #include #include #include static int numa_enabled = 1; static int numa_debug; #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); } #ifdef DEBUG_NUMA #define ARRAY_INITIALISER -1 #else #define ARRAY_INITIALISER 0 #endif int numa_cpu_lookup_table[NR_CPUS] = { [ 0 ... (NR_CPUS - 1)] = ARRAY_INITIALISER}; char *numa_memory_lookup_table; cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES]; int nr_cpus_in_node[MAX_NUMNODES] = { [0 ... (MAX_NUMNODES -1)] = 0}; struct pglist_data *node_data[MAX_NUMNODES]; bootmem_data_t __initdata plat_node_bdata[MAX_NUMNODES]; static unsigned long node0_io_hole_size; /* * We need somewhere to store start/span for each node until we have * allocated the real node_data structures. */ static struct { unsigned long node_start_pfn; unsigned long node_spanned_pages; } init_node_data[MAX_NUMNODES] __initdata; EXPORT_SYMBOL(node_data); EXPORT_SYMBOL(numa_cpu_lookup_table); EXPORT_SYMBOL(numa_memory_lookup_table); EXPORT_SYMBOL(numa_cpumask_lookup_table); EXPORT_SYMBOL(nr_cpus_in_node); static inline void map_cpu_to_node(int cpu, int node) { numa_cpu_lookup_table[cpu] = node; if (!(cpu_isset(cpu, numa_cpumask_lookup_table[node]))) { cpu_set(cpu, numa_cpumask_lookup_table[node]); nr_cpus_in_node[node]++; } } static struct device_node * __init find_cpu_node(unsigned int cpu) { unsigned int hw_cpuid = get_hard_smp_processor_id(cpu); struct device_node *cpu_node = NULL; unsigned int *interrupt_server, *reg; int len; while ((cpu_node = of_find_node_by_type(cpu_node, "cpu")) != NULL) { /* Try interrupt server first */ interrupt_server = (unsigned int *)get_property(cpu_node, "ibm,ppc-interrupt-server#s", &len); if (interrupt_server && (len > 0)) { while (len--) { if (interrupt_server[len-1] == hw_cpuid) return cpu_node; } } else { reg = (unsigned int *)get_property(cpu_node, "reg", &len); if (reg && (len > 0) && (reg[0] == hw_cpuid)) return cpu_node; } } return NULL; } /* must hold reference to node during call */ static int *of_get_associativity(struct device_node *dev) { unsigned int *result; int len; result = (unsigned int *)get_property(dev, "ibm,associativity", &len); if (len <= 0) return NULL; return result; } static int of_node_numa_domain(struct device_node *device, int depth) { int numa_domain; unsigned int *tmp; tmp = of_get_associativity(device); if (tmp && (tmp[0] >= depth)) { numa_domain = tmp[depth]; } else { dbg("WARNING: no NUMA information for %s\n", device->full_name); numa_domain = 0; } return numa_domain; } /* * In theory, the "ibm,associativity" property may contain multiple * associativity lists because a resource may be multiply connected * into the machine. This resource then has different associativity * characteristics relative to its multiple connections. We ignore * this for now. We also assume that all cpu and memory sets have * their distances represented at a common level. This won't be * true for heirarchical NUMA. * * In any case the ibm,associativity-reference-points should give * the correct depth for a normal NUMA system. * * - Dave Hansen */ static int find_min_common_depth(void) { int depth; unsigned int *ref_points; struct device_node *rtas_root; unsigned int len; rtas_root = of_find_node_by_path("/rtas"); if (!rtas_root) return -1; /* * this property is 2 32-bit integers, each representing a level of * depth in the associativity nodes. The first is for an SMP * configuration (should be all 0's) and the second is for a normal * NUMA configuration. */ ref_points = (unsigned int *)get_property(rtas_root, "ibm,associativity-reference-points", &len); if ((len >= 1) && ref_points) { depth = ref_points[1]; } else { dbg("WARNING: could not find NUMA " "associativity reference point\n"); depth = -1; } of_node_put(rtas_root); return depth; } static unsigned long read_cell_ul(struct device_node *device, unsigned int **buf) { int i; unsigned long result = 0; i = prom_n_size_cells(device); /* bug on i>2 ?? */ while (i--) { result = (result << 32) | **buf; (*buf)++; } return result; } static int __init parse_numa_properties(void) { struct device_node *cpu = NULL; struct device_node *memory = NULL; int depth; int max_domain = 0; long entries = lmb_end_of_DRAM() >> MEMORY_INCREMENT_SHIFT; unsigned long i; if (numa_enabled == 0) { printk(KERN_WARNING "NUMA disabled by user\n"); return -1; } numa_memory_lookup_table = (char *)abs_to_virt(lmb_alloc(entries * sizeof(char), 1)); memset(numa_memory_lookup_table, 0, entries * sizeof(char)); for (i = 0; i < entries ; i++) numa_memory_lookup_table[i] = ARRAY_INITIALISER; depth = find_min_common_depth(); dbg("NUMA associativity depth for CPU/Memory: %d\n", depth); if (depth < 0) return depth; for_each_cpu(i) { int numa_domain; cpu = find_cpu_node(i); if (cpu) { numa_domain = of_node_numa_domain(cpu, depth); of_node_put(cpu); if (numa_domain >= MAX_NUMNODES) { /* * POWER4 LPAR uses 0xffff as invalid node, * dont warn in this case. */ if (numa_domain != 0xffff) printk(KERN_ERR "WARNING: cpu %ld " "maps to invalid NUMA node %d\n", i, numa_domain); numa_domain = 0; } } else { dbg("WARNING: no NUMA information for cpu %ld\n", i); numa_domain = 0; } node_set_online(numa_domain); if (max_domain < numa_domain) max_domain = numa_domain; map_cpu_to_node(i, numa_domain); } memory = NULL; while ((memory = of_find_node_by_type(memory, "memory")) != NULL) { unsigned long start; unsigned long size; int numa_domain; int ranges; unsigned int *memcell_buf; unsigned int len; memcell_buf = (unsigned int *)get_property(memory, "reg", &len); if (!memcell_buf || len <= 0) continue; ranges = memory->n_addrs; new_range: /* these are order-sensitive, and modify the buffer pointer */ start = read_cell_ul(memory, &memcell_buf); size = read_cell_ul(memory, &memcell_buf); start = _ALIGN_DOWN(start, MEMORY_INCREMENT); size = _ALIGN_UP(size, MEMORY_INCREMENT); numa_domain = of_node_numa_domain(memory, depth); if (numa_domain >= MAX_NUMNODES) { if (numa_domain != 0xffff) printk(KERN_ERR "WARNING: memory at %lx maps " "to invalid NUMA node %d\n", start, numa_domain); numa_domain = 0; } node_set_online(numa_domain); if (max_domain < numa_domain) max_domain = numa_domain; /* * For backwards compatibility, OF splits the first node * into two regions (the first being 0-4GB). Check for * this simple case and complain if there is a gap in * memory */ if (init_node_data[numa_domain].node_spanned_pages) { unsigned long shouldstart = init_node_data[numa_domain].node_start_pfn + init_node_data[numa_domain].node_spanned_pages; if (shouldstart != (start / PAGE_SIZE)) { printk(KERN_ERR "WARNING: Hole in node, " "disabling region start %lx " "length %lx\n", start, size); continue; } init_node_data[numa_domain].node_spanned_pages += size / PAGE_SIZE; } else { init_node_data[numa_domain].node_start_pfn = start / PAGE_SIZE; init_node_data[numa_domain].node_spanned_pages = size / PAGE_SIZE; } for (i = start ; i < (start+size); i += MEMORY_INCREMENT) numa_memory_lookup_table[i >> MEMORY_INCREMENT_SHIFT] = numa_domain; ranges--; if (ranges) goto new_range; } numnodes = max_domain + 1; return 0; } static void __init setup_nonnuma(void) { unsigned long top_of_ram = lmb_end_of_DRAM(); unsigned long total_ram = lmb_phys_mem_size(); unsigned long i; printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n", top_of_ram, total_ram); printk(KERN_INFO "Memory hole size: %ldMB\n", (top_of_ram - total_ram) >> 20); if (!numa_memory_lookup_table) { long entries = top_of_ram >> MEMORY_INCREMENT_SHIFT; numa_memory_lookup_table = (char *)abs_to_virt(lmb_alloc(entries * sizeof(char), 1)); memset(numa_memory_lookup_table, 0, entries * sizeof(char)); for (i = 0; i < entries ; i++) numa_memory_lookup_table[i] = ARRAY_INITIALISER; } for (i = 0; i < NR_CPUS; i++) map_cpu_to_node(i, 0); node_set_online(0); init_node_data[0].node_start_pfn = 0; init_node_data[0].node_spanned_pages = lmb_end_of_DRAM() / PAGE_SIZE; for (i = 0 ; i < top_of_ram; i += MEMORY_INCREMENT) numa_memory_lookup_table[i >> MEMORY_INCREMENT_SHIFT] = 0; node0_io_hole_size = top_of_ram - total_ram; } static void __init dump_numa_topology(void) { unsigned int node; unsigned int cpu, count; for (node = 0; node < MAX_NUMNODES; node++) { if (!node_online(node)) continue; printk(KERN_INFO "Node %d CPUs:", node); count = 0; /* * If we used a CPU iterator here we would miss printing * the holes in the cpumap. */ for (cpu = 0; cpu < NR_CPUS; cpu++) { if (cpu_isset(cpu, numa_cpumask_lookup_table[node])) { if (count == 0) printk(" %u", cpu); ++count; } else { if (count > 1) printk("-%u", cpu - 1); count = 0; } } if (count > 1) printk("-%u", NR_CPUS - 1); printk("\n"); } for (node = 0; node < MAX_NUMNODES; node++) { unsigned long i; if (!node_online(node)) continue; printk(KERN_INFO "Node %d Memory:", node); count = 0; for (i = 0; i < lmb_end_of_DRAM(); i += MEMORY_INCREMENT) { if (numa_memory_lookup_table[i >> MEMORY_INCREMENT_SHIFT] == node) { if (count == 0) printk(" 0x%lx", i); ++count; } else { if (count > 0) printk("-0x%lx", i); count = 0; } } if (count > 0) printk("-0x%lx", i); printk("\n"); } } /* * Allocate some memory, satisfying the lmb or bootmem allocator where * required. nid is the preferred node and end is the physical address of * the highest address in the node. * * Returns the physical address of the memory. */ static unsigned long careful_allocation(int nid, unsigned long size, unsigned long align, unsigned long end) { unsigned long ret = lmb_alloc_base(size, align, end); /* retry over all memory */ if (!ret) ret = lmb_alloc_base(size, align, lmb_end_of_DRAM()); if (!ret) panic("numa.c: cannot allocate %lu bytes on node %d", size, nid); /* * If the memory came from a previously allocated node, we must * retry with the bootmem allocator. */ if (pa_to_nid(ret) < nid) { nid = pa_to_nid(ret); ret = (unsigned long)__alloc_bootmem_node(NODE_DATA(nid), size, align, 0); if (!ret) panic("numa.c: cannot allocate %lu bytes on node %d", size, nid); ret = virt_to_abs(ret); dbg("alloc_bootmem %lx %lx\n", ret, size); } return ret; } void __init do_init_bootmem(void) { int nid; min_low_pfn = 0; max_low_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT; max_pfn = max_low_pfn; if (parse_numa_properties()) setup_nonnuma(); else dump_numa_topology(); for (nid = 0; nid < numnodes; nid++) { unsigned long start_paddr, end_paddr; int i; unsigned long bootmem_paddr; unsigned long bootmap_pages; start_paddr = init_node_data[nid].node_start_pfn * PAGE_SIZE; end_paddr = start_paddr + (init_node_data[nid].node_spanned_pages * PAGE_SIZE); /* Allocate the node structure node local if possible */ NODE_DATA(nid) = (struct pglist_data *)careful_allocation(nid, sizeof(struct pglist_data), SMP_CACHE_BYTES, end_paddr); NODE_DATA(nid) = abs_to_virt(NODE_DATA(nid)); memset(NODE_DATA(nid), 0, sizeof(struct pglist_data)); dbg("node %d\n", nid); dbg("NODE_DATA() = %p\n", NODE_DATA(nid)); NODE_DATA(nid)->bdata = &plat_node_bdata[nid]; NODE_DATA(nid)->node_start_pfn = init_node_data[nid].node_start_pfn; NODE_DATA(nid)->node_spanned_pages = init_node_data[nid].node_spanned_pages; if (init_node_data[nid].node_spanned_pages == 0) continue; dbg("start_paddr = %lx\n", start_paddr); dbg("end_paddr = %lx\n", end_paddr); bootmap_pages = bootmem_bootmap_pages((end_paddr - start_paddr) >> PAGE_SHIFT); bootmem_paddr = careful_allocation(nid, bootmap_pages << PAGE_SHIFT, PAGE_SIZE, end_paddr); memset(abs_to_virt(bootmem_paddr), 0, bootmap_pages << PAGE_SHIFT); dbg("bootmap_paddr = %lx\n", bootmem_paddr); init_bootmem_node(NODE_DATA(nid), bootmem_paddr >> PAGE_SHIFT, start_paddr >> PAGE_SHIFT, end_paddr >> PAGE_SHIFT); for (i = 0; i < lmb.memory.cnt; i++) { unsigned long physbase, size; physbase = lmb.memory.region[i].physbase; size = lmb.memory.region[i].size; if (physbase < end_paddr && (physbase+size) > start_paddr) { /* overlaps */ if (physbase < start_paddr) { size -= start_paddr - physbase; physbase = start_paddr; } if (size > end_paddr - physbase) size = end_paddr - physbase; dbg("free_bootmem %lx %lx\n", physbase, size); free_bootmem_node(NODE_DATA(nid), physbase, size); } } for (i = 0; i < lmb.reserved.cnt; i++) { unsigned long physbase = lmb.reserved.region[i].physbase; unsigned long size = lmb.reserved.region[i].size; if (physbase < end_paddr && (physbase+size) > start_paddr) { /* overlaps */ if (physbase < start_paddr) { size -= start_paddr - physbase; physbase = start_paddr; } if (size > end_paddr - physbase) size = end_paddr - physbase; dbg("reserve_bootmem %lx %lx\n", physbase, size); reserve_bootmem_node(NODE_DATA(nid), physbase, size); } } } } void __init paging_init(void) { unsigned long zones_size[MAX_NR_ZONES]; unsigned long zholes_size[MAX_NR_ZONES]; int nid; memset(zones_size, 0, sizeof(zones_size)); memset(zholes_size, 0, sizeof(zholes_size)); for (nid = 0; nid < numnodes; nid++) { unsigned long start_pfn; unsigned long end_pfn; start_pfn = plat_node_bdata[nid].node_boot_start >> PAGE_SHIFT; end_pfn = plat_node_bdata[nid].node_low_pfn; zones_size[ZONE_DMA] = end_pfn - start_pfn; zholes_size[ZONE_DMA] = 0; if (nid == 0) zholes_size[ZONE_DMA] = node0_io_hole_size >> PAGE_SHIFT; dbg("free_area_init node %d %lx %lx (hole: %lx)\n", nid, zones_size[ZONE_DMA], start_pfn, zholes_size[ZONE_DMA]); free_area_init_node(nid, NODE_DATA(nid), zones_size, start_pfn, zholes_size); } } static int __init early_numa(char *p) { if (!p) return 0; if (strstr(p, "off")) numa_enabled = 0; if (strstr(p, "debug")) numa_debug = 1; return 0; } early_param("numa", early_numa);