/* smp.c: Sparc64 SMP support. * * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu) */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include extern int linux_num_cpus; extern void calibrate_delay(void); /* Please don't make this stuff initdata!!! --DaveM */ static unsigned char boot_cpu_id; cpumask_t cpu_online_map = CPU_MASK_NONE; cpumask_t phys_cpu_present_map = CPU_MASK_NONE; static cpumask_t smp_commenced_mask; static cpumask_t cpu_callout_map; void smp_info(struct seq_file *m) { int i; seq_printf(m, "State:\n"); for (i = 0; i < NR_CPUS; i++) { if (cpu_online(i)) seq_printf(m, "CPU%d:\t\tonline\n", i); } } void smp_bogo(struct seq_file *m) { int i; for (i = 0; i < NR_CPUS; i++) if (cpu_online(i)) seq_printf(m, "Cpu%dBogo\t: %lu.%02lu\n" "Cpu%dClkTck\t: %016lx\n", i, cpu_data(i).udelay_val / (500000/HZ), (cpu_data(i).udelay_val / (5000/HZ)) % 100, i, cpu_data(i).clock_tick); } void __init smp_store_cpu_info(int id) { int cpu_node; /* multiplier and counter set by smp_setup_percpu_timer() */ cpu_data(id).udelay_val = loops_per_jiffy; cpu_find_by_mid(id, &cpu_node); cpu_data(id).clock_tick = prom_getintdefault(cpu_node, "clock-frequency", 0); cpu_data(id).pgcache_size = 0; cpu_data(id).pte_cache[0] = NULL; cpu_data(id).pte_cache[1] = NULL; cpu_data(id).pgdcache_size = 0; cpu_data(id).pgd_cache = NULL; cpu_data(id).idle_volume = 1; } static void smp_setup_percpu_timer(void); static volatile unsigned long callin_flag = 0; extern void inherit_locked_prom_mappings(int save_p); void __init smp_callin(void) { int cpuid = hard_smp_processor_id(); extern int bigkernel; extern unsigned long kern_locked_tte_data; if (bigkernel) { prom_dtlb_load(sparc64_highest_locked_tlbent()-1, kern_locked_tte_data + 0x400000, KERNBASE + 0x400000); prom_itlb_load(sparc64_highest_locked_tlbent()-1, kern_locked_tte_data + 0x400000, KERNBASE + 0x400000); } inherit_locked_prom_mappings(0); __flush_tlb_all(); smp_setup_percpu_timer(); local_irq_enable(); calibrate_delay(); smp_store_cpu_info(cpuid); callin_flag = 1; __asm__ __volatile__("membar #Sync\n\t" "flush %%g6" : : : "memory"); /* Clear this or we will die instantly when we * schedule back to this idler... */ clear_thread_flag(TIF_NEWCHILD); /* Attach to the address space of init_task. */ atomic_inc(&init_mm.mm_count); current->active_mm = &init_mm; while (!cpu_isset(cpuid, smp_commenced_mask)) membar("#LoadLoad"); cpu_set(cpuid, cpu_online_map); } void cpu_panic(void) { printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id()); panic("SMP bolixed\n"); } static unsigned long current_tick_offset; /* This tick register synchronization scheme is taken entirely from * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit. * * The only change I've made is to rework it so that the master * initiates the synchonization instead of the slave. -DaveM */ #define MASTER 0 #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long)) #define NUM_ROUNDS 64 /* magic value */ #define NUM_ITERS 5 /* likewise */ static spinlock_t itc_sync_lock = SPIN_LOCK_UNLOCKED; static unsigned long go[SLAVE + 1]; #define DEBUG_TICK_SYNC 0 static inline long get_delta (long *rt, long *master) { unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0; unsigned long tcenter, t0, t1, tm; unsigned long i; for (i = 0; i < NUM_ITERS; i++) { t0 = tick_ops->get_tick(); go[MASTER] = 1; membar("#StoreLoad"); while (!(tm = go[SLAVE])) membar("#LoadLoad"); go[SLAVE] = 0; membar("#StoreStore"); t1 = tick_ops->get_tick(); if (t1 - t0 < best_t1 - best_t0) best_t0 = t0, best_t1 = t1, best_tm = tm; } *rt = best_t1 - best_t0; *master = best_tm - best_t0; /* average best_t0 and best_t1 without overflow: */ tcenter = (best_t0/2 + best_t1/2); if (best_t0 % 2 + best_t1 % 2 == 2) tcenter++; return tcenter - best_tm; } void smp_synchronize_tick_client(void) { long i, delta, adj, adjust_latency = 0, done = 0; unsigned long flags, rt, master_time_stamp, bound; #if DEBUG_TICK_SYNC struct { long rt; /* roundtrip time */ long master; /* master's timestamp */ long diff; /* difference between midpoint and master's timestamp */ long lat; /* estimate of itc adjustment latency */ } t[NUM_ROUNDS]; #endif go[MASTER] = 1; while (go[MASTER]) membar("#LoadLoad"); local_irq_save(flags); { for (i = 0; i < NUM_ROUNDS; i++) { delta = get_delta(&rt, &master_time_stamp); if (delta == 0) { done = 1; /* let's lock on to this... */ bound = rt; } if (!done) { if (i > 0) { adjust_latency += -delta; adj = -delta + adjust_latency/4; } else adj = -delta; tick_ops->add_tick(adj, current_tick_offset); } #if DEBUG_TICK_SYNC t[i].rt = rt; t[i].master = master_time_stamp; t[i].diff = delta; t[i].lat = adjust_latency/4; #endif } } local_irq_restore(flags); #if DEBUG_TICK_SYNC for (i = 0; i < NUM_ROUNDS; i++) printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n", t[i].rt, t[i].master, t[i].diff, t[i].lat); #endif printk(KERN_INFO "CPU %d: synchronized TICK with master CPU (last diff %ld cycles," "maxerr %lu cycles)\n", smp_processor_id(), delta, rt); } static void smp_start_sync_tick_client(int cpu); static void smp_synchronize_one_tick(int cpu) { unsigned long flags, i; go[MASTER] = 0; smp_start_sync_tick_client(cpu); /* wait for client to be ready */ while (!go[MASTER]) membar("#LoadLoad"); /* now let the client proceed into his loop */ go[MASTER] = 0; membar("#StoreLoad"); spin_lock_irqsave(&itc_sync_lock, flags); { for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) { while (!go[MASTER]) membar("#LoadLoad"); go[MASTER] = 0; membar("#StoreStore"); go[SLAVE] = tick_ops->get_tick(); membar("#StoreLoad"); } } spin_unlock_irqrestore(&itc_sync_lock, flags); } extern unsigned long sparc64_cpu_startup; /* The OBP cpu startup callback truncates the 3rd arg cookie to * 32-bits (I think) so to be safe we have it read the pointer * contained here so we work on >4GB machines. -DaveM */ static struct thread_info *cpu_new_thread = NULL; static int __devinit smp_boot_one_cpu(unsigned int cpu) { unsigned long entry = (unsigned long)(&sparc64_cpu_startup); unsigned long cookie = (unsigned long)(&cpu_new_thread); struct task_struct *p; int timeout, ret, cpu_node; kernel_thread(NULL, NULL, CLONE_IDLETASK); p = prev_task(&init_task); init_idle(p, cpu); unhash_process(p); callin_flag = 0; cpu_new_thread = p->thread_info; cpu_set(cpu, cpu_callout_map); cpu_find_by_mid(cpu, &cpu_node); prom_startcpu(cpu_node, entry, cookie); for (timeout = 0; timeout < 5000000; timeout++) { if (callin_flag) break; udelay(100); } if (callin_flag) { ret = 0; } else { printk("Processor %d is stuck.\n", cpu); cpu_clear(cpu, cpu_callout_map); ret = -ENODEV; } cpu_new_thread = NULL; return ret; } static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu) { u64 result, target; int stuck, tmp; if (this_is_starfire) { /* map to real upaid */ cpu = (((cpu & 0x3c) << 1) | ((cpu & 0x40) >> 4) | (cpu & 0x3)); } target = (cpu << 14) | 0x70; again: /* Ok, this is the real Spitfire Errata #54. * One must read back from a UDB internal register * after writes to the UDB interrupt dispatch, but * before the membar Sync for that write. * So we use the high UDB control register (ASI 0x7f, * ADDR 0x20) for the dummy read. -DaveM */ tmp = 0x40; __asm__ __volatile__( "wrpr %1, %2, %%pstate\n\t" "stxa %4, [%0] %3\n\t" "stxa %5, [%0+%8] %3\n\t" "add %0, %8, %0\n\t" "stxa %6, [%0+%8] %3\n\t" "membar #Sync\n\t" "stxa %%g0, [%7] %3\n\t" "membar #Sync\n\t" "mov 0x20, %%g1\n\t" "ldxa [%%g1] 0x7f, %%g0\n\t" "membar #Sync" : "=r" (tmp) : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W), "r" (data0), "r" (data1), "r" (data2), "r" (target), "r" (0x10), "0" (tmp) : "g1"); /* NOTE: PSTATE_IE is still clear. */ stuck = 100000; do { __asm__ __volatile__("ldxa [%%g0] %1, %0" : "=r" (result) : "i" (ASI_INTR_DISPATCH_STAT)); if (result == 0) { __asm__ __volatile__("wrpr %0, 0x0, %%pstate" : : "r" (pstate)); return; } stuck -= 1; if (stuck == 0) break; } while (result & 0x1); __asm__ __volatile__("wrpr %0, 0x0, %%pstate" : : "r" (pstate)); if (stuck == 0) { printk("CPU[%d]: mondo stuckage result[%016lx]\n", smp_processor_id(), result); } else { udelay(2); goto again; } } static __inline__ void spitfire_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask) { u64 pstate; int i; __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate)); for (i = 0; i < NR_CPUS; i++) { if (cpu_isset(i, mask)) { spitfire_xcall_helper(data0, data1, data2, pstate, i); cpu_clear(i, mask); if (cpus_empty(mask)) break; } } } /* Cheetah now allows to send the whole 64-bytes of data in the interrupt * packet, but we have no use for that. However we do take advantage of * the new pipelining feature (ie. dispatch to multiple cpus simultaneously). */ #if NR_CPUS > 32 #error Fixup cheetah_xcall_deliver Dave... #endif static void cheetah_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask) { u64 pstate, ver; int nack_busy_id, is_jalapeno; if (cpus_empty(mask)) return; /* Unfortunately, someone at Sun had the brilliant idea to make the * busy/nack fields hard-coded by ITID number for this Ultra-III * derivative processor. */ __asm__ ("rdpr %%ver, %0" : "=r" (ver)); is_jalapeno = ((ver >> 32) == 0x003e0016); __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate)); retry: __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t" : : "r" (pstate), "i" (PSTATE_IE)); /* Setup the dispatch data registers. */ __asm__ __volatile__("stxa %0, [%3] %6\n\t" "stxa %1, [%4] %6\n\t" "stxa %2, [%5] %6\n\t" "membar #Sync\n\t" : /* no outputs */ : "r" (data0), "r" (data1), "r" (data2), "r" (0x40), "r" (0x50), "r" (0x60), "i" (ASI_INTR_W)); nack_busy_id = 0; { cpumask_t work_mask = mask; int i; for (i = 0; i < NR_CPUS; i++) { if (cpu_isset(i, work_mask)) { u64 target = (i << 14) | 0x70; if (!is_jalapeno) target |= (nack_busy_id << 24); __asm__ __volatile__( "stxa %%g0, [%0] %1\n\t" "membar #Sync\n\t" : /* no outputs */ : "r" (target), "i" (ASI_INTR_W)); nack_busy_id++; cpu_clear(i, work_mask); if (cpus_empty(work_mask)) break; } } } /* Now, poll for completion. */ { u64 dispatch_stat; long stuck; stuck = 100000 * nack_busy_id; do { __asm__ __volatile__("ldxa [%%g0] %1, %0" : "=r" (dispatch_stat) : "i" (ASI_INTR_DISPATCH_STAT)); if (dispatch_stat == 0UL) { __asm__ __volatile__("wrpr %0, 0x0, %%pstate" : : "r" (pstate)); return; } if (!--stuck) break; } while (dispatch_stat & 0x5555555555555555UL); __asm__ __volatile__("wrpr %0, 0x0, %%pstate" : : "r" (pstate)); if ((dispatch_stat & ~(0x5555555555555555UL)) == 0) { /* Busy bits will not clear, continue instead * of freezing up on this cpu. */ printk("CPU[%d]: mondo stuckage result[%016lx]\n", smp_processor_id(), dispatch_stat); } else { cpumask_t work_mask = mask; int i, this_busy_nack = 0; /* Delay some random time with interrupts enabled * to prevent deadlock. */ udelay(2 * nack_busy_id); /* Clear out the mask bits for cpus which did not * NACK us. */ for (i = 0; i < NR_CPUS; i++) { if (cpu_isset(i, work_mask)) { u64 check_mask; if (is_jalapeno) check_mask = (0x2UL << (2*i)); else check_mask = (0x2UL << this_busy_nack); if ((dispatch_stat & check_mask) == 0) cpu_clear(i, mask); this_busy_nack += 2; cpu_clear(i, work_mask); if (cpus_empty(work_mask)) break; } } goto retry; } } } /* Send cross call to all processors mentioned in MASK * except self. */ static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, cpumask_t mask) { u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff)); cpus_and(mask, mask, cpu_online_map); cpu_clear(smp_processor_id(), mask); if (tlb_type == spitfire) spitfire_xcall_deliver(data0, data1, data2, mask); else cheetah_xcall_deliver(data0, data1, data2, mask); /* NOTE: Caller runs local copy on master. */ } extern unsigned long xcall_sync_tick; static void smp_start_sync_tick_client(int cpu) { cpumask_t mask = cpumask_of_cpu(cpu); smp_cross_call_masked(&xcall_sync_tick, 0, 0, 0, mask); } /* Send cross call to all processors except self. */ #define smp_cross_call(func, ctx, data1, data2) \ smp_cross_call_masked(func, ctx, data1, data2, cpu_online_map) struct call_data_struct { void (*func) (void *info); void *info; atomic_t finished; int wait; }; static spinlock_t call_lock = SPIN_LOCK_UNLOCKED; static struct call_data_struct *call_data; extern unsigned long xcall_call_function; /* * You must not call this function with disabled interrupts or from a * hardware interrupt handler or from a bottom half handler. */ int smp_call_function(void (*func)(void *info), void *info, int nonatomic, int wait) { struct call_data_struct data; int cpus = num_online_cpus() - 1; long timeout; if (!cpus) return 0; data.func = func; data.info = info; atomic_set(&data.finished, 0); data.wait = wait; spin_lock(&call_lock); call_data = &data; smp_cross_call(&xcall_call_function, 0, 0, 0); /* * Wait for other cpus to complete function or at * least snap the call data. */ timeout = 1000000; while (atomic_read(&data.finished) != cpus) { if (--timeout <= 0) goto out_timeout; barrier(); udelay(1); } spin_unlock(&call_lock); return 0; out_timeout: spin_unlock(&call_lock); printk("XCALL: Remote cpus not responding, ncpus=%ld finished=%ld\n", (long) num_online_cpus() - 1L, (long) atomic_read(&data.finished)); return 0; } void smp_call_function_client(int irq, struct pt_regs *regs) { void (*func) (void *info) = call_data->func; void *info = call_data->info; clear_softint(1 << irq); if (call_data->wait) { /* let initiator proceed only after completion */ func(info); atomic_inc(&call_data->finished); } else { /* let initiator proceed after getting data */ atomic_inc(&call_data->finished); func(info); } } extern unsigned long xcall_flush_tlb_page; extern unsigned long xcall_flush_tlb_mm; extern unsigned long xcall_flush_tlb_range; extern unsigned long xcall_flush_tlb_kernel_range; extern unsigned long xcall_flush_tlb_all_spitfire; extern unsigned long xcall_flush_tlb_all_cheetah; extern unsigned long xcall_report_regs; extern unsigned long xcall_receive_signal; extern unsigned long xcall_flush_dcache_page_cheetah; extern unsigned long xcall_flush_dcache_page_spitfire; #ifdef CONFIG_DEBUG_DCFLUSH extern atomic_t dcpage_flushes; extern atomic_t dcpage_flushes_xcall; #endif static __inline__ void __local_flush_dcache_page(struct page *page) { #if (L1DCACHE_SIZE > PAGE_SIZE) __flush_dcache_page(page->virtual, ((tlb_type == spitfire) && page_mapping(page) != NULL)); #else if (page_mapping(page) != NULL && tlb_type == spitfire) __flush_icache_page(__pa(page->virtual)); #endif } void smp_flush_dcache_page_impl(struct page *page, int cpu) { cpumask_t mask = cpumask_of_cpu(cpu); #ifdef CONFIG_DEBUG_DCFLUSH atomic_inc(&dcpage_flushes); #endif if (cpu == smp_processor_id()) { __local_flush_dcache_page(page); } else if (cpu_online(cpu)) { u64 data0; if (tlb_type == spitfire) { data0 = ((u64)&xcall_flush_dcache_page_spitfire); if (page_mapping(page) != NULL) data0 |= ((u64)1 << 32); spitfire_xcall_deliver(data0, __pa(page->virtual), (u64) page->virtual, mask); } else { data0 = ((u64)&xcall_flush_dcache_page_cheetah); cheetah_xcall_deliver(data0, __pa(page->virtual), 0, mask); } #ifdef CONFIG_DEBUG_DCFLUSH atomic_inc(&dcpage_flushes_xcall); #endif } } void flush_dcache_page_all(struct mm_struct *mm, struct page *page) { cpumask_t mask = cpu_online_map; u64 data0; cpu_clear(smp_processor_id(), mask); #ifdef CONFIG_DEBUG_DCFLUSH atomic_inc(&dcpage_flushes); #endif if (cpus_empty(mask)) goto flush_self; if (tlb_type == spitfire) { data0 = ((u64)&xcall_flush_dcache_page_spitfire); if (page_mapping(page) != NULL) data0 |= ((u64)1 << 32); spitfire_xcall_deliver(data0, __pa(page->virtual), (u64) page->virtual, mask); } else { data0 = ((u64)&xcall_flush_dcache_page_cheetah); cheetah_xcall_deliver(data0, __pa(page->virtual), 0, mask); } #ifdef CONFIG_DEBUG_DCFLUSH atomic_inc(&dcpage_flushes_xcall); #endif flush_self: __local_flush_dcache_page(page); } void smp_receive_signal(int cpu) { cpumask_t mask = cpumask_of_cpu(cpu); if (cpu_online(cpu)) { u64 data0 = (((u64)&xcall_receive_signal) & 0xffffffff); if (tlb_type == spitfire) spitfire_xcall_deliver(data0, 0, 0, mask); else cheetah_xcall_deliver(data0, 0, 0, mask); } } void smp_receive_signal_client(int irq, struct pt_regs *regs) { /* Just return, rtrap takes care of the rest. */ clear_softint(1 << irq); } void smp_report_regs(void) { smp_cross_call(&xcall_report_regs, 0, 0, 0); } void smp_flush_tlb_all(void) { if (tlb_type == spitfire) smp_cross_call(&xcall_flush_tlb_all_spitfire, 0, 0, 0); else smp_cross_call(&xcall_flush_tlb_all_cheetah, 0, 0, 0); __flush_tlb_all(); } /* We know that the window frames of the user have been flushed * to the stack before we get here because all callers of us * are flush_tlb_*() routines, and these run after flush_cache_*() * which performs the flushw. * * The SMP TLB coherency scheme we use works as follows: * * 1) mm->cpu_vm_mask is a bit mask of which cpus an address * space has (potentially) executed on, this is the heuristic * we use to avoid doing cross calls. * * Also, for flushing from kswapd and also for clones, we * use cpu_vm_mask as the list of cpus to make run the TLB. * * 2) TLB context numbers are shared globally across all processors * in the system, this allows us to play several games to avoid * cross calls. * * One invariant is that when a cpu switches to a process, and * that processes tsk->active_mm->cpu_vm_mask does not have the * current cpu's bit set, that tlb context is flushed locally. * * If the address space is non-shared (ie. mm->count == 1) we avoid * cross calls when we want to flush the currently running process's * tlb state. This is done by clearing all cpu bits except the current * processor's in current->active_mm->cpu_vm_mask and performing the * flush locally only. This will force any subsequent cpus which run * this task to flush the context from the local tlb if the process * migrates to another cpu (again). * * 3) For shared address spaces (threads) and swapping we bite the * bullet for most cases and perform the cross call (but only to * the cpus listed in cpu_vm_mask). * * The performance gain from "optimizing" away the cross call for threads is * questionable (in theory the big win for threads is the massive sharing of * address space state across processors). */ void smp_flush_tlb_mm(struct mm_struct *mm) { /* * This code is called from two places, dup_mmap and exit_mmap. In the * former case, we really need a flush. In the later case, the callers * are single threaded exec_mmap (really need a flush), multithreaded * exec_mmap case (do not need to flush, since the caller gets a new * context via activate_mm), and all other callers of mmput() whence * the flush can be optimized since the associated threads are dead and * the mm is being torn down (__exit_mm and other mmput callers) or the * owning thread is dissociating itself from the mm. The * (atomic_read(&mm->mm_users) == 0) check ensures real work is done * for single thread exec and dup_mmap cases. An alternate check might * have been (current->mm != mm). * Kanoj Sarcar */ if (atomic_read(&mm->mm_users) == 0) return; { u32 ctx = CTX_HWBITS(mm->context); int cpu = smp_processor_id(); if (atomic_read(&mm->mm_users) == 1) { /* See smp_flush_tlb_page for info about this. */ mm->cpu_vm_mask = cpumask_of_cpu(cpu); goto local_flush_and_out; } smp_cross_call_masked(&xcall_flush_tlb_mm, ctx, 0, 0, mm->cpu_vm_mask); local_flush_and_out: __flush_tlb_mm(ctx, SECONDARY_CONTEXT); } } void smp_flush_tlb_range(struct mm_struct *mm, unsigned long start, unsigned long end) { u32 ctx = CTX_HWBITS(mm->context); int cpu = smp_processor_id(); start &= PAGE_MASK; end = PAGE_ALIGN(end); if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1) { mm->cpu_vm_mask = cpumask_of_cpu(cpu); goto local_flush_and_out; } smp_cross_call_masked(&xcall_flush_tlb_range, ctx, start, end, mm->cpu_vm_mask); local_flush_and_out: __flush_tlb_range(ctx, start, SECONDARY_CONTEXT, end, PAGE_SIZE, (end-start)); } void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end) { start &= PAGE_MASK; end = PAGE_ALIGN(end); if (start != end) { smp_cross_call(&xcall_flush_tlb_kernel_range, 0, start, end); __flush_tlb_kernel_range(start, end); } } void smp_flush_tlb_page(struct mm_struct *mm, unsigned long page) { { u32 ctx = CTX_HWBITS(mm->context); int cpu = smp_processor_id(); page &= PAGE_MASK; if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1) { /* By virtue of being the current address space, and * having the only reference to it, the following * operation is safe. * * It would not be a win to perform the xcall tlb * flush in this case, because even if we switch back * to one of the other processors in cpu_vm_mask it * is almost certain that all TLB entries for this * context will be replaced by the time that happens. */ mm->cpu_vm_mask = cpumask_of_cpu(cpu); goto local_flush_and_out; } else { cpumask_t this_cpu_mask = cpumask_of_cpu(cpu); /* By virtue of running under the mm->page_table_lock, * and mmu_context.h:switch_mm doing the same, the * following operation is safe. */ if (cpus_equal(mm->cpu_vm_mask, this_cpu_mask)) goto local_flush_and_out; } /* OK, we have to actually perform the cross call. Most * likely this is a cloned mm or kswapd is kicking out pages * for a task which has run recently on another cpu. */ smp_cross_call_masked(&xcall_flush_tlb_page, ctx, page, 0, mm->cpu_vm_mask); if (!cpu_isset(cpu, mm->cpu_vm_mask)) return; local_flush_and_out: __flush_tlb_page(ctx, page, SECONDARY_CONTEXT); } } /* CPU capture. */ /* #define CAPTURE_DEBUG */ extern unsigned long xcall_capture; static atomic_t smp_capture_depth = ATOMIC_INIT(0); static atomic_t smp_capture_registry = ATOMIC_INIT(0); static unsigned long penguins_are_doing_time; void smp_capture(void) { int result = __atomic_add(1, &smp_capture_depth); membar("#StoreStore | #LoadStore"); if (result == 1) { int ncpus = num_online_cpus(); #ifdef CAPTURE_DEBUG printk("CPU[%d]: Sending penguins to jail...", smp_processor_id()); #endif penguins_are_doing_time = 1; membar("#StoreStore | #LoadStore"); atomic_inc(&smp_capture_registry); smp_cross_call(&xcall_capture, 0, 0, 0); while (atomic_read(&smp_capture_registry) != ncpus) membar("#LoadLoad"); #ifdef CAPTURE_DEBUG printk("done\n"); #endif } } void smp_release(void) { if (atomic_dec_and_test(&smp_capture_depth)) { #ifdef CAPTURE_DEBUG printk("CPU[%d]: Giving pardon to " "imprisoned penguins\n", smp_processor_id()); #endif penguins_are_doing_time = 0; membar("#StoreStore | #StoreLoad"); atomic_dec(&smp_capture_registry); } } /* Imprisoned penguins run with %pil == 15, but PSTATE_IE set, so they * can service tlb flush xcalls... */ extern void prom_world(int); extern void save_alternate_globals(unsigned long *); extern void restore_alternate_globals(unsigned long *); void smp_penguin_jailcell(int irq, struct pt_regs *regs) { unsigned long global_save[24]; clear_softint(1 << irq); preempt_disable(); __asm__ __volatile__("flushw"); save_alternate_globals(global_save); prom_world(1); atomic_inc(&smp_capture_registry); membar("#StoreLoad | #StoreStore"); while (penguins_are_doing_time) membar("#LoadLoad"); restore_alternate_globals(global_save); atomic_dec(&smp_capture_registry); prom_world(0); preempt_enable(); } extern unsigned long xcall_promstop; void smp_promstop_others(void) { smp_cross_call(&xcall_promstop, 0, 0, 0); } extern void sparc64_do_profile(struct pt_regs *regs); #define prof_multiplier(__cpu) cpu_data(__cpu).multiplier #define prof_counter(__cpu) cpu_data(__cpu).counter void smp_percpu_timer_interrupt(struct pt_regs *regs) { unsigned long compare, tick, pstate; int cpu = smp_processor_id(); int user = user_mode(regs); /* * Check for level 14 softint. */ { unsigned long tick_mask = tick_ops->softint_mask; if (!(get_softint() & tick_mask)) { extern void handler_irq(int, struct pt_regs *); handler_irq(14, regs); return; } clear_softint(tick_mask); } do { sparc64_do_profile(regs); if (!--prof_counter(cpu)) { irq_enter(); if (cpu == boot_cpu_id) { kstat_this_cpu.irqs[0]++; timer_tick_interrupt(regs); } update_process_times(user); irq_exit(); prof_counter(cpu) = prof_multiplier(cpu); } /* Guarantee that the following sequences execute * uninterrupted. */ __asm__ __volatile__("rdpr %%pstate, %0\n\t" "wrpr %0, %1, %%pstate" : "=r" (pstate) : "i" (PSTATE_IE)); compare = tick_ops->add_compare(current_tick_offset); tick = tick_ops->get_tick(); /* Restore PSTATE_IE. */ __asm__ __volatile__("wrpr %0, 0x0, %%pstate" : /* no outputs */ : "r" (pstate)); } while (time_after_eq(tick, compare)); } static void __init smp_setup_percpu_timer(void) { int cpu = smp_processor_id(); unsigned long pstate; prof_counter(cpu) = prof_multiplier(cpu) = 1; /* Guarantee that the following sequences execute * uninterrupted. */ __asm__ __volatile__("rdpr %%pstate, %0\n\t" "wrpr %0, %1, %%pstate" : "=r" (pstate) : "i" (PSTATE_IE)); tick_ops->init_tick(current_tick_offset); /* Restore PSTATE_IE. */ __asm__ __volatile__("wrpr %0, 0x0, %%pstate" : /* no outputs */ : "r" (pstate)); } void __init smp_tick_init(void) { boot_cpu_id = hard_smp_processor_id(); current_tick_offset = timer_tick_offset; if (boot_cpu_id >= NR_CPUS) { prom_printf("Serious problem, boot cpu id >= NR_CPUS\n"); prom_halt(); } cpu_set(boot_cpu_id, cpu_online_map); prof_counter(boot_cpu_id) = prof_multiplier(boot_cpu_id) = 1; } cycles_t cacheflush_time; unsigned long cache_decay_ticks; extern unsigned long cheetah_tune_scheduling(void); static void __init smp_tune_scheduling(void) { unsigned long orig_flush_base, flush_base, flags, *p; unsigned int ecache_size, order; cycles_t tick1, tick2, raw; int cpu_node; /* Approximate heuristic for SMP scheduling. It is an * estimation of the time it takes to flush the L2 cache * on the local processor. * * The ia32 chooses to use the L1 cache flush time instead, * and I consider this complete nonsense. The Ultra can service * a miss to the L1 with a hit to the L2 in 7 or 8 cycles, and * L2 misses are what create extra bus traffic (ie. the "cost" * of moving a process from one cpu to another). */ printk("SMP: Calibrating ecache flush... "); if (tlb_type == cheetah || tlb_type == cheetah_plus) { cacheflush_time = cheetah_tune_scheduling(); goto report; } cpu_find_by_instance(0, &cpu_node, NULL); ecache_size = prom_getintdefault(cpu_node, "ecache-size", (512 * 1024)); if (ecache_size > (4 * 1024 * 1024)) ecache_size = (4 * 1024 * 1024); orig_flush_base = flush_base = __get_free_pages(GFP_KERNEL, order = get_order(ecache_size)); if (flush_base != 0UL) { local_irq_save(flags); /* Scan twice the size once just to get the TLB entries * loaded and make sure the second scan measures pure misses. */ for (p = (unsigned long *)flush_base; ((unsigned long)p) < (flush_base + (ecache_size<<1)); p += (64 / sizeof(unsigned long))) *((volatile unsigned long *)p); tick1 = tick_ops->get_tick(); __asm__ __volatile__("1:\n\t" "ldx [%0 + 0x000], %%g1\n\t" "ldx [%0 + 0x040], %%g2\n\t" "ldx [%0 + 0x080], %%g3\n\t" "ldx [%0 + 0x0c0], %%g5\n\t" "add %0, 0x100, %0\n\t" "cmp %0, %2\n\t" "bne,pt %%xcc, 1b\n\t" " nop" : "=&r" (flush_base) : "0" (flush_base), "r" (flush_base + ecache_size) : "g1", "g2", "g3", "g5"); tick2 = tick_ops->get_tick(); local_irq_restore(flags); raw = (tick2 - tick1); /* Dampen it a little, considering two processes * sharing the cache and fitting. */ cacheflush_time = (raw - (raw >> 2)); free_pages(orig_flush_base, order); } else { cacheflush_time = ((ecache_size << 2) + (ecache_size << 1)); } report: /* Convert ticks/sticks to jiffies. */ cache_decay_ticks = cacheflush_time / timer_tick_offset; if (cache_decay_ticks < 1) cache_decay_ticks = 1; printk("Using heuristic of %ld cycles, %ld ticks.\n", cacheflush_time, cache_decay_ticks); } /* /proc/profile writes can call this, don't __init it please. */ static spinlock_t prof_setup_lock = SPIN_LOCK_UNLOCKED; int setup_profiling_timer(unsigned int multiplier) { unsigned long flags; int i; if ((!multiplier) || (timer_tick_offset / multiplier) < 1000) return -EINVAL; spin_lock_irqsave(&prof_setup_lock, flags); for (i = 0; i < NR_CPUS; i++) prof_multiplier(i) = multiplier; current_tick_offset = (timer_tick_offset / multiplier); spin_unlock_irqrestore(&prof_setup_lock, flags); return 0; } void __init smp_prepare_cpus(unsigned int max_cpus) { int instance, mid; instance = 0; while (!cpu_find_by_instance(instance, NULL, &mid)) { if (mid < max_cpus) cpu_set(mid, phys_cpu_present_map); instance++; } if (num_possible_cpus() > max_cpus) { instance = 0; while (!cpu_find_by_instance(instance, NULL, &mid)) { if (mid != boot_cpu_id) { cpu_clear(mid, phys_cpu_present_map); if (num_possible_cpus() <= max_cpus) break; } instance++; } } smp_store_cpu_info(boot_cpu_id); } void __devinit smp_prepare_boot_cpu(void) { current_thread_info()->cpu = hard_smp_processor_id(); cpu_set(smp_processor_id(), cpu_online_map); cpu_set(smp_processor_id(), phys_cpu_present_map); } int __devinit __cpu_up(unsigned int cpu) { int ret = smp_boot_one_cpu(cpu); if (!ret) { cpu_set(cpu, smp_commenced_mask); while (!cpu_isset(cpu, cpu_online_map)) mb(); if (!cpu_isset(cpu, cpu_online_map)) { ret = -ENODEV; } else { smp_synchronize_one_tick(cpu); } } return ret; } void __init smp_cpus_done(unsigned int max_cpus) { unsigned long bogosum = 0; int i; for (i = 0; i < NR_CPUS; i++) { if (cpu_online(i)) bogosum += cpu_data(i).udelay_val; } printk("Total of %ld processors activated " "(%lu.%02lu BogoMIPS).\n", (long) num_online_cpus(), bogosum/(500000/HZ), (bogosum/(5000/HZ))%100); /* We want to run this with all the other cpus spinning * in the kernel. */ smp_tune_scheduling(); } /* This needn't do anything as we do not sleep the cpu * inside of the idler task, so an interrupt is not needed * to get a clean fast response. * * XXX Reverify this assumption... -DaveM * * Addendum: We do want it to do something for the signal * delivery case, we detect that by just seeing * if we are trying to send this to an idler or not. */ void smp_send_reschedule(int cpu) { if (cpu_data(cpu).idle_volume == 0) smp_receive_signal(cpu); } /* This is a nop because we capture all other cpus * anyways when making the PROM active. */ void smp_send_stop(void) { }