/* * arch/i386/mm/ioremap.c * * Re-map IO memory to kernel address space so that we can access it. * This is needed for high PCI addresses that aren't mapped in the * 640k-1MB IO memory area on PC's * * (C) Copyright 1995 1996 Linus Torvalds */ #include #include #include #include #include #include #include #include #include #include #ifndef CONFIG_XEN_PHYSDEV_ACCESS void * __ioremap(unsigned long phys_addr, unsigned long size, unsigned long flags) { return NULL; } void *ioremap_nocache (unsigned long phys_addr, unsigned long size) { return NULL; } void iounmap(volatile void __iomem *addr) { } void __init *bt_ioremap(unsigned long phys_addr, unsigned long size) { return NULL; } void __init bt_iounmap(void *addr, unsigned long size) { } #else /* * Does @address reside within a non-highmem page that is local to this virtual * machine (i.e., not an I/O page, nor a memory page belonging to another VM). * See the comment that accompanies pte_pfn() in pgtable-2level.h to understand * why this works. */ static inline int is_local_lowmem(unsigned long address) { extern unsigned long max_low_pfn; unsigned long mfn = address >> PAGE_SHIFT; unsigned long pfn = mfn_to_pfn(mfn); return ((pfn < max_low_pfn) && (pfn_to_mfn(pfn) == mfn)); } /* * Generic mapping function (not visible outside): */ /* * Remap an arbitrary physical address space into the kernel virtual * address space. Needed when the kernel wants to access high addresses * directly. * * NOTE! We need to allow non-page-aligned mappings too: we will obviously * have to convert them into an offset in a page-aligned mapping, but the * caller shouldn't need to know that small detail. */ void __iomem * __ioremap(unsigned long phys_addr, unsigned long size, unsigned long flags) { void __iomem * addr; struct vm_struct * area; unsigned long offset, last_addr; domid_t domid = DOMID_IO; /* Don't allow wraparound or zero size */ last_addr = phys_addr + size - 1; if (!size || last_addr < phys_addr) return NULL; #ifdef CONFIG_XEN_PRIVILEGED_GUEST /* * Don't remap the low PCI/ISA area, it's always mapped.. */ if (phys_addr >= 0x0 && last_addr < 0x100000) return isa_bus_to_virt(phys_addr); #endif /* * Don't allow anybody to remap normal RAM that we're using.. */ if (is_local_lowmem(phys_addr)) { char *t_addr, *t_end; struct page *page; t_addr = bus_to_virt(phys_addr); t_end = t_addr + (size - 1); for(page = virt_to_page(t_addr); page <= virt_to_page(t_end); page++) if(!PageReserved(page)) return NULL; domid = DOMID_SELF; } /* * Mappings have to be page-aligned */ offset = phys_addr & ~PAGE_MASK; phys_addr &= PAGE_MASK; size = PAGE_ALIGN(last_addr+1) - phys_addr; /* * Ok, go for it.. */ area = get_vm_area(size, VM_IOREMAP | (flags << 20)); if (!area) return NULL; area->phys_addr = phys_addr; addr = (void __iomem *) area->addr; if (direct_remap_area_pages(&init_mm, (unsigned long) addr, phys_addr, size, __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED | flags), domid)) { vunmap((void __force *) addr); return NULL; } return (void __iomem *) (offset + (char __iomem *)addr); } /** * ioremap_nocache - map bus memory into CPU space * @offset: bus address of the memory * @size: size of the resource to map * * ioremap_nocache performs a platform specific sequence of operations to * make bus memory CPU accessible via the readb/readw/readl/writeb/ * writew/writel functions and the other mmio helpers. The returned * address is not guaranteed to be usable directly as a virtual * address. * * This version of ioremap ensures that the memory is marked uncachable * on the CPU as well as honouring existing caching rules from things like * the PCI bus. Note that there are other caches and buffers on many * busses. In particular driver authors should read up on PCI writes * * It's useful if some control registers are in such an area and * write combining or read caching is not desirable: * * Must be freed with iounmap. */ void __iomem *ioremap_nocache (unsigned long phys_addr, unsigned long size) { unsigned long last_addr; void __iomem *p = __ioremap(phys_addr, size, _PAGE_PCD); if (!p) return p; /* Guaranteed to be > phys_addr, as per __ioremap() */ last_addr = phys_addr + size - 1; if (is_local_lowmem(last_addr)) { struct page *ppage = virt_to_page(bus_to_virt(phys_addr)); unsigned long npages; phys_addr &= PAGE_MASK; /* This might overflow and become zero.. */ last_addr = PAGE_ALIGN(last_addr); /* .. but that's ok, because modulo-2**n arithmetic will make * the page-aligned "last - first" come out right. */ npages = (last_addr - phys_addr) >> PAGE_SHIFT; if (change_page_attr(ppage, npages, PAGE_KERNEL_NOCACHE) < 0) { iounmap(p); p = NULL; } global_flush_tlb(); } return p; } void iounmap(volatile void __iomem *addr) { struct vm_struct *p; if ((void __force *) addr <= high_memory) return; #ifdef CONFIG_XEN_PRIVILEGED_GUEST if ((unsigned long) addr >= fix_to_virt(FIX_ISAMAP_BEGIN)) return; #endif p = remove_vm_area((void *) (PAGE_MASK & (unsigned long __force) addr)); if (!p) { printk("__iounmap: bad address %p\n", addr); return; } if ((p->flags >> 20) && is_local_lowmem(p->phys_addr)) { /* p->size includes the guard page, but cpa doesn't like that */ change_page_attr(virt_to_page(bus_to_virt(p->phys_addr)), (p->size - PAGE_SIZE) >> PAGE_SHIFT, PAGE_KERNEL); global_flush_tlb(); } kfree(p); } void __init *bt_ioremap(unsigned long phys_addr, unsigned long size) { unsigned long offset, last_addr; unsigned int nrpages; enum fixed_addresses idx; /* Don't allow wraparound or zero size */ last_addr = phys_addr + size - 1; if (!size || last_addr < phys_addr) return NULL; #ifdef CONFIG_XEN_PRIVILEGED_GUEST /* * Don't remap the low PCI/ISA area, it's always mapped.. */ if (phys_addr >= 0x0 && last_addr < 0x100000) return isa_bus_to_virt(phys_addr); #endif /* * Mappings have to be page-aligned */ offset = phys_addr & ~PAGE_MASK; phys_addr &= PAGE_MASK; size = PAGE_ALIGN(last_addr) - phys_addr; /* * Mappings have to fit in the FIX_BTMAP area. */ nrpages = size >> PAGE_SHIFT; if (nrpages > NR_FIX_BTMAPS) return NULL; /* * Ok, go for it.. */ idx = FIX_BTMAP_BEGIN; while (nrpages > 0) { set_fixmap_ma(idx, phys_addr); phys_addr += PAGE_SIZE; --idx; --nrpages; } return (void*) (offset + fix_to_virt(FIX_BTMAP_BEGIN)); } void __init bt_iounmap(void *addr, unsigned long size) { unsigned long virt_addr; unsigned long offset; unsigned int nrpages; enum fixed_addresses idx; virt_addr = (unsigned long)addr; if (virt_addr < fix_to_virt(FIX_BTMAP_BEGIN)) return; #ifdef CONFIG_XEN_PRIVILEGED_GUEST if (virt_addr >= fix_to_virt(FIX_ISAMAP_BEGIN)) return; #endif offset = virt_addr & ~PAGE_MASK; nrpages = PAGE_ALIGN(offset + size - 1) >> PAGE_SHIFT; idx = FIX_BTMAP_BEGIN; while (nrpages > 0) { clear_fixmap(idx); --idx; --nrpages; } } #endif /* CONFIG_XEN_PHYSDEV_ACCESS */ /* These hacky macros avoid phys->machine translations. */ #define __direct_pte(x) ((pte_t) { (x) } ) #define __direct_mk_pte(page_nr,pgprot) \ __direct_pte(((page_nr) << PAGE_SHIFT) | pgprot_val(pgprot)) #define direct_mk_pte_phys(physpage, pgprot) \ __direct_mk_pte((physpage) >> PAGE_SHIFT, pgprot) static inline void direct_remap_area_pte(pte_t *pte, unsigned long address, unsigned long size, mmu_update_t **v) { unsigned long end; address &= ~PMD_MASK; end = address + size; if (end > PMD_SIZE) end = PMD_SIZE; if (address >= end) BUG(); do { (*v)->ptr = virt_to_machine(pte); (*v)++; address += PAGE_SIZE; pte++; } while (address && (address < end)); } static inline int direct_remap_area_pmd(struct mm_struct *mm, pmd_t *pmd, unsigned long address, unsigned long size, mmu_update_t **v) { unsigned long end; address &= ~PGDIR_MASK; end = address + size; if (end > PGDIR_SIZE) end = PGDIR_SIZE; if (address >= end) BUG(); do { pte_t *pte = (mm == &init_mm) ? pte_alloc_kernel(mm, pmd, address) : pte_alloc_map(mm, pmd, address); if (!pte) return -ENOMEM; direct_remap_area_pte(pte, address, end - address, v); pte_unmap(pte); address = (address + PMD_SIZE) & PMD_MASK; pmd++; } while (address && (address < end)); return 0; } int __direct_remap_area_pages(struct mm_struct *mm, unsigned long address, unsigned long size, mmu_update_t *v) { pgd_t * dir; unsigned long end = address + size; int error; dir = pgd_offset(mm, address); if (address >= end) BUG(); spin_lock(&mm->page_table_lock); do { pud_t *pud; pmd_t *pmd; error = -ENOMEM; pud = pud_alloc(mm, dir, address); if (!pud) break; pmd = pmd_alloc(mm, pud, address); if (!pmd) break; error = 0; direct_remap_area_pmd(mm, pmd, address, end - address, &v); address = (address + PGDIR_SIZE) & PGDIR_MASK; dir++; } while (address && (address < end)); spin_unlock(&mm->page_table_lock); return error; } int direct_remap_area_pages(struct mm_struct *mm, unsigned long address, unsigned long machine_addr, unsigned long size, pgprot_t prot, domid_t domid) { int i; unsigned long start_address; #define MAX_DIRECTMAP_MMU_QUEUE 130 mmu_update_t u[MAX_DIRECTMAP_MMU_QUEUE], *v = u; start_address = address; flush_cache_all(); for (i = 0; i < size; i += PAGE_SIZE) { if ((v - u) == MAX_DIRECTMAP_MMU_QUEUE) { /* Fill in the PTE pointers. */ __direct_remap_area_pages(mm, start_address, address-start_address, u); if (HYPERVISOR_mmu_update(u, v - u, NULL, domid) < 0) return -EFAULT; v = u; start_address = address; } /* * Fill in the machine address: PTE ptr is done later by * __direct_remap_area_pages(). */ v->val = (machine_addr & PAGE_MASK) | pgprot_val(prot); machine_addr += PAGE_SIZE; address += PAGE_SIZE; v++; } if (v != u) { /* get the ptep's filled in */ __direct_remap_area_pages(mm, start_address, address-start_address, u); if (unlikely(HYPERVISOR_mmu_update(u, v - u, NULL, domid) < 0)) return -EFAULT; } flush_tlb_all(); return 0; } EXPORT_SYMBOL(direct_remap_area_pages);