/* mpi-inv.c - MPI functions * Copyright (C) 1998, 1999, 2000, 2001 Free Software Foundation, Inc. * * This file is part of GnuPG. * * GnuPG is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * GnuPG is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA */ #include "mpi-internal.h" /**************** * Calculate the multiplicative inverse X of A mod N * That is: Find the solution x for * 1 = (a*x) mod n */ int mpi_invm( MPI x, const MPI a, const MPI n ) { /* Extended Euclid's algorithm (See TAOPC Vol II, 4.5.2, Alg X) * modified according to Michael Penk's solution for Exercice 35 * with further enhancement */ MPI u = NULL, v = NULL; MPI u1 = NULL, u2 = NULL, u3 = NULL; MPI v1 = NULL, v2 = NULL, v3 = NULL; MPI t1 = NULL, t2 = NULL, t3 = NULL; unsigned k; int sign; int odd = 0; int rc = -ENOMEM; if (mpi_copy(&u, a) < 0) goto cleanup; if (mpi_copy(&v, n) < 0) goto cleanup; for(k=0; !mpi_test_bit(u,0) && !mpi_test_bit(v,0); k++ ) { if (mpi_rshift(u, u, 1) < 0) goto cleanup; if (mpi_rshift(v, v, 1) < 0) goto cleanup; } odd = mpi_test_bit(v,0); u1 = mpi_alloc_set_ui(1); if (!u1) goto cleanup; if( !odd ) { u2 = mpi_alloc_set_ui(0); if (!u2) goto cleanup; } if (mpi_copy(&u3, u) < 0) goto cleanup; if (mpi_copy(&v1, v) < 0) goto cleanup; if( !odd ) { v2 = mpi_alloc( mpi_get_nlimbs(u) ); if (!v2) goto cleanup; if (mpi_sub( v2, u1, u ) < 0) goto cleanup; /* U is used as const 1 */ } if (mpi_copy(&v3, v) < 0) goto cleanup; if( mpi_test_bit(u, 0) ) { /* u is odd */ t1 = mpi_alloc_set_ui(0); if (!t1) goto cleanup; if( !odd ) { t2 = mpi_alloc_set_ui(1); if (!t2) goto cleanup; t2->sign = 1; } if (mpi_copy(&t3, v) < 0) goto cleanup; t3->sign = !t3->sign; goto Y4; } else { t1 = mpi_alloc_set_ui(1); if (!t1) goto cleanup; if( !odd ) { t2 = mpi_alloc_set_ui(0); if (!t2) goto cleanup; } if (mpi_copy(&t3, u) < 0) goto cleanup; } do { do { if( !odd ) { if( mpi_test_bit(t1, 0) || mpi_test_bit(t2, 0) ) { /* one is odd */ if (mpi_add(t1, t1, v) < 0) goto cleanup; if (mpi_sub(t2, t2, u) < 0) goto cleanup; } if (mpi_rshift(t1, t1, 1) < 0) goto cleanup; if (mpi_rshift(t2, t2, 1) < 0) goto cleanup; if (mpi_rshift(t3, t3, 1) < 0) goto cleanup; } else { if( mpi_test_bit(t1, 0) ) if (mpi_add(t1, t1, v) < 0) goto cleanup; if (mpi_rshift(t1, t1, 1) < 0) goto cleanup; if (mpi_rshift(t3, t3, 1) < 0) goto cleanup; } Y4: ; } while( !mpi_test_bit( t3, 0 ) ); /* while t3 is even */ if( !t3->sign ) { if (mpi_set(u1, t1) < 0) goto cleanup; if( !odd ) if (mpi_set(u2, t2) < 0) goto cleanup; if (mpi_set(u3, t3) < 0) goto cleanup; } else { if (mpi_sub(v1, v, t1) < 0) goto cleanup; sign = u->sign; u->sign = !u->sign; if( !odd ) if (mpi_sub(v2, u, t2) < 0) goto cleanup; u->sign = sign; sign = t3->sign; t3->sign = !t3->sign; if (mpi_set(v3, t3) < 0) goto cleanup; t3->sign = sign; } if (mpi_sub(t1, u1, v1) < 0) goto cleanup; if( !odd ) if (mpi_sub(t2, u2, v2) < 0) goto cleanup; if (mpi_sub(t3, u3, v3) < 0) goto cleanup; if( t1->sign ) { if (mpi_add(t1, t1, v) < 0) goto cleanup; if( !odd ) if (mpi_sub(t2, t2, u) < 0) goto cleanup; } } while( mpi_cmp_ui( t3, 0 ) ); /* while t3 != 0 */ /* mpi_lshift( u3, k ); */ rc = mpi_set(x, u1); cleanup: mpi_free(u1); mpi_free(v1); mpi_free(t1); if( !odd ) { mpi_free(u2); mpi_free(v2); mpi_free(t2); } mpi_free(u3); mpi_free(v3); mpi_free(t3); mpi_free(u); mpi_free(v); return rc; }