/* * Distributed under the terms of the GNU GPL version 2. * Copyright (c) 2007, 2008 The Board of Trustees of The Leland * Stanford Junior University */ /* Functions for managing the dp interface/device. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "openflow/nicira-ext.h" #include "openflow/openflow-netlink.h" #include "datapath.h" #include "nx_act_snat.h" #include "table.h" #include "chain.h" #include "dp_dev.h" #include "forward.h" #include "flow.h" #include "compat.h" /* Strings to describe the manufacturer, hardware, and software. This data * is queriable through the switch description stats message. */ static char mfr_desc[DESC_STR_LEN] = "Nicira Networks, Inc."; static char hw_desc[DESC_STR_LEN] = "Reference Linux Kernel Module"; static char sw_desc[DESC_STR_LEN] = VERSION BUILDNR; static char serial_num[SERIAL_NUM_LEN] = "None"; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0) module_param_string(mfr_desc, mfr_desc, sizeof mfr_desc, 0444); module_param_string(hw_desc, hw_desc, sizeof hw_desc, 0444); module_param_string(sw_desc, sw_desc, sizeof sw_desc, 0444); module_param_string(serial_num, serial_num, sizeof serial_num, 0444); #else MODULE_PARM(mfr_desc, "s"); MODULE_PARM(hw_desc, "s"); MODULE_PARM(sw_desc, "s"); MODULE_PARM(serial_num, "s"); #endif /* Number of milliseconds between runs of the maintenance thread. */ #define MAINT_SLEEP_MSECS 1000 #define UINT32_MAX 4294967295U #define UINT16_MAX 65535 #define MAX(X, Y) ((X) > (Y) ? (X) : (Y)) static struct genl_family dp_genl_family; static struct genl_multicast_group mc_group; /* It's hard to imagine wanting more than one datapath, but... */ #define DP_MAX 32 /* Datapaths. Protected on the read side by rcu_read_lock, on the write side * by dp_mutex. dp_mutex is almost completely redundant with genl_mutex * maintained by the Generic Netlink code, but the timeout path needs mutual * exclusion too. * * It is safe to access the datapath and net_bridge_port structures with just * dp_mutex. */ static struct datapath *dps[DP_MAX]; DEFINE_MUTEX(dp_mutex); EXPORT_SYMBOL(dp_mutex); static int dp_maint_func(void *data); static void init_port_status(struct net_bridge_port *p); static int dp_genl_openflow_done(struct netlink_callback *); static struct net_bridge_port *new_nbp(struct datapath *, struct net_device *, int port_no); /* nla_shrink - reduce amount of space reserved by nla_reserve * @skb: socket buffer from which to recover room * @nla: netlink attribute to adjust * @len: new length of attribute payload * * Reduces amount of space reserved by a call to nla_reserve. * * No other attributes may be added between calling nla_reserve and this * function, since it will create a hole in the message. */ void nla_shrink(struct sk_buff *skb, struct nlattr *nla, int len) { int delta = nla_total_size(len) - nla_total_size(nla_len(nla)); BUG_ON(delta > 0); skb->tail += delta; skb->len += delta; nla->nla_len = nla_attr_size(len); } /* Puts a set of openflow headers for a message of the given 'type' into 'skb'. * If 'sender' is nonnull, then it is used as the message's destination. 'dp' * must specify the datapath to use. * * '*max_openflow_len' receives the maximum number of bytes that are available * for the embedded OpenFlow message. The caller must call * resize_openflow_skb() to set the actual size of the message to this number * of bytes or less. * * Returns the openflow header if successful, otherwise (if 'skb' is too small) * an error code. */ static void * put_openflow_headers(struct datapath *dp, struct sk_buff *skb, uint8_t type, const struct sender *sender, int *max_openflow_len) { struct ofp_header *oh; struct nlattr *attr; int openflow_len; /* Assemble the Generic Netlink wrapper. */ if (!genlmsg_put(skb, sender ? sender->pid : 0, sender ? sender->seq : 0, &dp_genl_family, 0, DP_GENL_C_OPENFLOW)) return ERR_PTR(-ENOBUFS); if (nla_put_u32(skb, DP_GENL_A_DP_IDX, dp->dp_idx) < 0) return ERR_PTR(-ENOBUFS); openflow_len = (skb_tailroom(skb) - NLA_HDRLEN) & ~(NLA_ALIGNTO - 1); if (openflow_len < sizeof *oh) return ERR_PTR(-ENOBUFS); *max_openflow_len = openflow_len; attr = nla_reserve(skb, DP_GENL_A_OPENFLOW, openflow_len); BUG_ON(!attr); /* Fill in the header. The caller is responsible for the length. */ oh = nla_data(attr); oh->version = OFP_VERSION; oh->type = type; oh->xid = sender ? sender->xid : 0; return oh; } /* Resizes OpenFlow header 'oh', which must be at the tail end of 'skb', to new * length 'new_length' (in bytes), adjusting pointers and size values as * necessary. */ static void resize_openflow_skb(struct sk_buff *skb, struct ofp_header *oh, size_t new_length) { struct nlattr *attr = ((void *) oh) - NLA_HDRLEN; nla_shrink(skb, attr, new_length); oh->length = htons(new_length); nlmsg_end(skb, (struct nlmsghdr *) skb->data); } /* Allocates a new skb to contain an OpenFlow message 'openflow_len' bytes in * length. Returns a null pointer if memory is unavailable, otherwise returns * the OpenFlow header and stores a pointer to the skb in '*pskb'. * * 'type' is the OpenFlow message type. If 'sender' is nonnull, then it is * used as the message's destination. 'dp' must specify the datapath to * use. */ static void * alloc_openflow_skb(struct datapath *dp, size_t openflow_len, uint8_t type, const struct sender *sender, struct sk_buff **pskb) { struct ofp_header *oh; size_t genl_len; struct sk_buff *skb; int max_openflow_len; if ((openflow_len + sizeof(struct ofp_header)) > UINT16_MAX) { if (net_ratelimit()) printk("alloc_openflow_skb: openflow message too large: %zu\n", openflow_len); return NULL; } genl_len = nlmsg_total_size(GENL_HDRLEN + dp_genl_family.hdrsize); genl_len += nla_total_size(sizeof(uint32_t)); /* DP_GENL_A_DP_IDX */ genl_len += nla_total_size(openflow_len); /* DP_GENL_A_OPENFLOW */ skb = *pskb = genlmsg_new(genl_len, GFP_ATOMIC); if (!skb) { if (net_ratelimit()) printk("alloc_openflow_skb: genlmsg_new failed\n"); return NULL; } oh = put_openflow_headers(dp, skb, type, sender, &max_openflow_len); BUG_ON(!oh || IS_ERR(oh)); resize_openflow_skb(skb, oh, openflow_len); return oh; } /* Sends 'skb' to 'sender' if it is nonnull, otherwise multicasts 'skb' to all * listeners. */ static int send_openflow_skb(struct sk_buff *skb, const struct sender *sender) { return (sender ? genlmsg_unicast(skb, sender->pid) : genlmsg_multicast(skb, 0, mc_group.id, GFP_ATOMIC)); } /* Retrieves the datapath id, which is the MAC address of the "of" device. */ static uint64_t get_datapath_id(struct net_device *dev) { uint64_t id = 0; int i; for (i=0; idev_addr[i] << (8*(ETH_ALEN-1 - i)); return id; } /* Creates a new datapath numbered 'dp_idx'. Returns 0 for success or a * negative error code. */ static int new_dp(int dp_idx) { struct datapath *dp; int err; if (dp_idx < 0 || dp_idx >= DP_MAX) return -EINVAL; if (!try_module_get(THIS_MODULE)) return -ENODEV; /* Exit early if a datapath with that number already exists. */ if (dps[dp_idx]) { err = -EEXIST; goto err_unlock; } err = -ENOMEM; dp = kzalloc(sizeof *dp, GFP_KERNEL); if (dp == NULL) goto err_unlock; /* Setup our "of" device */ err = dp_dev_setup(dp); if (err) goto err_free_dp; dp->dp_idx = dp_idx; dp->id = get_datapath_id(dp->netdev); dp->chain = chain_create(dp); if (dp->chain == NULL) goto err_destroy_dp_dev; INIT_LIST_HEAD(&dp->port_list); dp->local_port = new_nbp(dp, dp->netdev, OFPP_LOCAL); if (IS_ERR(dp->local_port)) { err = PTR_ERR(dp->local_port); goto err_destroy_local_port; } dp->flags = 0; dp->miss_send_len = OFP_DEFAULT_MISS_SEND_LEN; dp->dp_task = kthread_run(dp_maint_func, dp, "dp%d", dp_idx); if (IS_ERR(dp->dp_task)) goto err_destroy_chain; dps[dp_idx] = dp; return 0; err_destroy_local_port: dp_del_switch_port(dp->local_port); err_destroy_chain: chain_destroy(dp->chain); err_destroy_dp_dev: dp_dev_destroy(dp); err_free_dp: kfree(dp); err_unlock: module_put(THIS_MODULE); return err; } /* Find and return a free port number under 'dp'. */ static int find_portno(struct datapath *dp) { int i; for (i = 0; i < DP_MAX_PORTS; i++) if (dp->ports[i] == NULL) return i; return -EXFULL; } static struct net_bridge_port *new_nbp(struct datapath *dp, struct net_device *dev, int port_no) { struct net_bridge_port *p; if (dev->br_port != NULL) return ERR_PTR(-EBUSY); p = kzalloc(sizeof(*p), GFP_KERNEL); if (p == NULL) return ERR_PTR(-ENOMEM); rtnl_lock(); dev_set_promiscuity(dev, 1); rtnl_unlock(); dev_hold(dev); p->dp = dp; p->dev = dev; p->port_no = port_no; spin_lock_init(&p->lock); INIT_WORK(&p->port_task, NULL); if (port_no != OFPP_LOCAL) rcu_assign_pointer(dev->br_port, p); if (port_no < DP_MAX_PORTS) rcu_assign_pointer(dp->ports[port_no], p); list_add_rcu(&p->node, &dp->port_list); return p; } int add_switch_port(struct datapath *dp, struct net_device *dev) { struct net_bridge_port *p; int port_no; if (dev->flags & IFF_LOOPBACK || dev->type != ARPHRD_ETHER || is_dp_dev(dev)) return -EINVAL; port_no = find_portno(dp); if (port_no < 0) return port_no; p = new_nbp(dp, dev, port_no); if (IS_ERR(p)) return PTR_ERR(p); init_port_status(p); /* Notify the ctlpath that this port has been added */ dp_send_port_status(p, OFPPR_ADD); return 0; } /* Delete 'p' from switch. */ int dp_del_switch_port(struct net_bridge_port *p) { #ifdef SUPPORT_SNAT unsigned long flags; #endif /* First drop references to device. */ cancel_work_sync(&p->port_task); rtnl_lock(); dev_set_promiscuity(p->dev, -1); rtnl_unlock(); list_del_rcu(&p->node); if (p->port_no != OFPP_LOCAL) rcu_assign_pointer(p->dp->ports[p->port_no], NULL); rcu_assign_pointer(p->dev->br_port, NULL); /* Then wait until no one is still using it, and destroy it. */ synchronize_rcu(); #ifdef SUPPORT_SNAT /* Free any SNAT configuration on the port. */ spin_lock_irqsave(&p->lock, flags); snat_free_conf(p); spin_unlock_irqrestore(&p->lock, flags); #endif /* Notify the ctlpath that this port no longer exists */ dp_send_port_status(p, OFPPR_DELETE); dev_put(p->dev); kfree(p); return 0; } static void del_dp(struct datapath *dp) { struct net_bridge_port *p, *n; kthread_stop(dp->dp_task); /* Drop references to DP. */ list_for_each_entry_safe (p, n, &dp->port_list, node) dp_del_switch_port(p); rcu_assign_pointer(dps[dp->dp_idx], NULL); /* Kill off local_port dev references from buffered packets that have * associated dst entries. */ synchronize_rcu(); fwd_discard_all(); /* Destroy dp->netdev. (Must follow deleting switch ports since * dp->local_port has a reference to it.) */ dp_dev_destroy(dp); /* Wait until no longer in use, then destroy it. */ synchronize_rcu(); chain_destroy(dp->chain); kfree(dp); module_put(THIS_MODULE); } static int dp_maint_func(void *data) { struct datapath *dp = (struct datapath *) data; while (!kthread_should_stop()) { #ifdef SUPPORT_SNAT struct net_bridge_port *p; /* Expire old SNAT entries */ rcu_read_lock(); list_for_each_entry_rcu (p, &dp->port_list, node) snat_maint(p); rcu_read_unlock(); #endif /* Timeout old entries */ chain_timeout(dp->chain); msleep_interruptible(MAINT_SLEEP_MSECS); } return 0; } static void do_port_input(struct net_bridge_port *p, struct sk_buff *skb) { /* Make our own copy of the packet. Otherwise we will mangle the * packet for anyone who came before us (e.g. tcpdump via AF_PACKET). * (No one comes after us, since we tell handle_bridge() that we took * the packet.) */ skb = skb_share_check(skb, GFP_ATOMIC); if (!skb) return; #ifdef SUPPORT_SNAT /* Check if this packet needs early SNAT processing. */ if (snat_pre_route(skb)) { kfree_skb(skb); return; } #endif /* Push the Ethernet header back on. */ skb_push(skb, ETH_HLEN); skb_reset_mac_header(skb); fwd_port_input(p->dp->chain, skb, p); } /* * Used as br_handle_frame_hook. (Cannot run bridge at the same time, even on * different set of devices!) */ #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,22) /* Called with rcu_read_lock. */ static struct sk_buff *dp_frame_hook(struct net_bridge_port *p, struct sk_buff *skb) { do_port_input(p, skb); return NULL; } #elif LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0) static int dp_frame_hook(struct net_bridge_port *p, struct sk_buff **pskb) { do_port_input(p, *pskb); return 1; } #else /* NB: This has only been tested on 2.4.35 */ static void dp_frame_hook(struct sk_buff *skb) { struct net_bridge_port *p = skb->dev->br_port; if (p) { rcu_read_lock(); do_port_input(p, skb); rcu_read_unlock(); } else kfree_skb(skb); } #endif /* Forwarding output path. * Based on net/bridge/br_forward.c. */ static inline unsigned packet_length(const struct sk_buff *skb) { int length = skb->len - ETH_HLEN; if (skb->protocol == htons(ETH_P_8021Q)) length -= VLAN_HLEN; return length; } /* Send packets out all the ports except the originating one. If the * "flood" argument is set, only send along the minimum spanning tree. */ static int output_all(struct datapath *dp, struct sk_buff *skb, int flood) { u32 disable = flood ? OFPPC_NO_FLOOD : 0; struct net_bridge_port *p; int prev_port = -1; list_for_each_entry_rcu (p, &dp->port_list, node) { if (skb->dev == p->dev || p->config & disable) continue; if (prev_port != -1) { struct sk_buff *clone = skb_clone(skb, GFP_ATOMIC); if (!clone) { kfree_skb(skb); return -ENOMEM; } dp_output_port(dp, clone, prev_port, 0); } prev_port = p->port_no; } if (prev_port != -1) dp_output_port(dp, skb, prev_port, 0); else kfree_skb(skb); return 0; } /* Marks 'skb' as having originated from 'in_port' in 'dp'. FIXME: how are devices reference counted? */ void dp_set_origin(struct datapath *dp, uint16_t in_port, struct sk_buff *skb) { struct net_bridge_port *p; p = (in_port < DP_MAX_PORTS ? dp->ports[in_port] : in_port == OFPP_LOCAL ? dp->local_port : NULL); if (p) skb->dev = p->dev; else skb->dev = NULL; } int dp_xmit_skb(struct sk_buff *skb) { int len = skb->len; if (packet_length(skb) > skb->dev->mtu) { printk("dropped over-mtu packet: %d > %d\n", packet_length(skb), skb->dev->mtu); kfree_skb(skb); return -E2BIG; } dev_queue_xmit(skb); return len; } /* Takes ownership of 'skb' and transmits it to 'out_port' on 'dp'. */ int dp_output_port(struct datapath *dp, struct sk_buff *skb, int out_port, int ignore_no_fwd) { BUG_ON(!skb); switch (out_port){ case OFPP_IN_PORT: /* Send it out the port it came in on, which is already set in * the skb. */ if (!skb->dev) { if (net_ratelimit()) printk("skb device not set forwarding to in_port\n"); kfree_skb(skb); return -ESRCH; } return dp_xmit_skb(skb); case OFPP_TABLE: { int retval = run_flow_through_tables(dp->chain, skb, skb->dev->br_port); if (retval) kfree_skb(skb); return retval; } case OFPP_FLOOD: return output_all(dp, skb, 1); case OFPP_ALL: return output_all(dp, skb, 0); case OFPP_CONTROLLER: return dp_output_control(dp, skb, fwd_save_skb(skb), 0, OFPR_ACTION); case OFPP_LOCAL: { struct net_device *dev = dp->netdev; #ifdef SUPPORT_SNAT snat_local_in(skb); #endif return dev ? dp_dev_recv(dev, skb) : -ESRCH; } case 0 ... DP_MAX_PORTS - 1: { struct net_bridge_port *p = dp->ports[out_port]; if (p == NULL) goto bad_port; if (p->dev == skb->dev) { /* To send to the input port, must use OFPP_IN_PORT */ kfree_skb(skb); if (net_ratelimit()) printk("can't directly forward to input port\n"); return -EINVAL; } if (p->config & OFPPC_NO_FWD && !ignore_no_fwd) { kfree_skb(skb); return 0; } skb->dev = p->dev; return dp_xmit_skb(skb); } default: goto bad_port; } bad_port: kfree_skb(skb); if (net_ratelimit()) printk("can't forward to bad port %d\n", out_port); return -ENOENT; } /* Takes ownership of 'skb' and transmits it to 'dp''s control path. If * 'buffer_id' != -1, then only the first 64 bytes of 'skb' are sent; * otherwise, all of 'skb' is sent. 'reason' indicates why 'skb' is being * sent. 'max_len' sets the maximum number of bytes that the caller * wants to be sent; a value of 0 indicates the entire packet should be * sent. */ int dp_output_control(struct datapath *dp, struct sk_buff *skb, uint32_t buffer_id, size_t max_len, int reason) { /* FIXME? Can we avoid creating a new skbuff in the case where we * forward the whole packet? */ struct sk_buff *f_skb; struct ofp_packet_in *opi; struct net_bridge_port *p; size_t fwd_len, opi_len; int err; fwd_len = skb->len; if ((buffer_id != (uint32_t) -1) && max_len) fwd_len = min(fwd_len, max_len); opi_len = offsetof(struct ofp_packet_in, data) + fwd_len; opi = alloc_openflow_skb(dp, opi_len, OFPT_PACKET_IN, NULL, &f_skb); if (!opi) { err = -ENOMEM; goto out; } opi->buffer_id = htonl(buffer_id); opi->total_len = htons(skb->len); p = skb->dev->br_port; opi->in_port = htons(p ? p->port_no : OFPP_LOCAL); opi->reason = reason; opi->pad = 0; memcpy(opi->data, skb_mac_header(skb), fwd_len); err = send_openflow_skb(f_skb, NULL); out: kfree_skb(skb); return err; } static void fill_port_desc(struct net_bridge_port *p, struct ofp_phy_port *desc) { unsigned long flags; desc->port_no = htons(p->port_no); strncpy(desc->name, p->dev->name, OFP_MAX_PORT_NAME_LEN); desc->name[OFP_MAX_PORT_NAME_LEN-1] = '\0'; memcpy(desc->hw_addr, p->dev->dev_addr, ETH_ALEN); desc->curr = 0; desc->supported = 0; desc->advertised = 0; desc->peer = 0; spin_lock_irqsave(&p->lock, flags); desc->config = htonl(p->config); desc->state = htonl(p->state); spin_unlock_irqrestore(&p->lock, flags); #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,24) if (p->dev->ethtool_ops && p->dev->ethtool_ops->get_settings) { struct ethtool_cmd ecmd = { .cmd = ETHTOOL_GSET }; if (!p->dev->ethtool_ops->get_settings(p->dev, &ecmd)) { /* Set the supported features */ if (ecmd.supported & SUPPORTED_10baseT_Half) desc->supported |= OFPPF_10MB_HD; if (ecmd.supported & SUPPORTED_10baseT_Full) desc->supported |= OFPPF_10MB_FD; if (ecmd.supported & SUPPORTED_100baseT_Half) desc->supported |= OFPPF_100MB_HD; if (ecmd.supported & SUPPORTED_100baseT_Full) desc->supported |= OFPPF_100MB_FD; if (ecmd.supported & SUPPORTED_1000baseT_Half) desc->supported |= OFPPF_1GB_HD; if (ecmd.supported & SUPPORTED_1000baseT_Full) desc->supported |= OFPPF_1GB_FD; if (ecmd.supported & SUPPORTED_10000baseT_Full) desc->supported |= OFPPF_10GB_FD; if (ecmd.supported & SUPPORTED_TP) desc->supported |= OFPPF_COPPER; if (ecmd.supported & SUPPORTED_FIBRE) desc->supported |= OFPPF_FIBER; if (ecmd.supported & SUPPORTED_Autoneg) desc->supported |= OFPPF_AUTONEG; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,14) if (ecmd.supported & SUPPORTED_Pause) desc->supported |= OFPPF_PAUSE; if (ecmd.supported & SUPPORTED_Asym_Pause) desc->supported |= OFPPF_PAUSE_ASYM; #endif /* kernel >= 2.6.14 */ /* Set the advertised features */ if (ecmd.advertising & ADVERTISED_10baseT_Half) desc->advertised |= OFPPF_10MB_HD; if (ecmd.advertising & ADVERTISED_10baseT_Full) desc->advertised |= OFPPF_10MB_FD; if (ecmd.advertising & ADVERTISED_100baseT_Half) desc->advertised |= OFPPF_100MB_HD; if (ecmd.advertising & ADVERTISED_100baseT_Full) desc->advertised |= OFPPF_100MB_FD; if (ecmd.advertising & ADVERTISED_1000baseT_Half) desc->advertised |= OFPPF_1GB_HD; if (ecmd.advertising & ADVERTISED_1000baseT_Full) desc->advertised |= OFPPF_1GB_FD; if (ecmd.advertising & ADVERTISED_10000baseT_Full) desc->advertised |= OFPPF_10GB_FD; if (ecmd.advertising & ADVERTISED_TP) desc->advertised |= OFPPF_COPPER; if (ecmd.advertising & ADVERTISED_FIBRE) desc->advertised |= OFPPF_FIBER; if (ecmd.advertising & ADVERTISED_Autoneg) desc->advertised |= OFPPF_AUTONEG; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,14) if (ecmd.advertising & ADVERTISED_Pause) desc->advertised |= OFPPF_PAUSE; if (ecmd.advertising & ADVERTISED_Asym_Pause) desc->advertised |= OFPPF_PAUSE_ASYM; #endif /* kernel >= 2.6.14 */ /* Set the current features */ if (ecmd.speed == SPEED_10) desc->curr = (ecmd.duplex) ? OFPPF_10MB_FD : OFPPF_10MB_HD; else if (ecmd.speed == SPEED_100) desc->curr = (ecmd.duplex) ? OFPPF_100MB_FD : OFPPF_100MB_HD; else if (ecmd.speed == SPEED_1000) desc->curr = (ecmd.duplex) ? OFPPF_1GB_FD : OFPPF_1GB_HD; else if (ecmd.speed == SPEED_10000) desc->curr = OFPPF_10GB_FD; if (ecmd.port == PORT_TP) desc->curr |= OFPPF_COPPER; else if (ecmd.port == PORT_FIBRE) desc->curr |= OFPPF_FIBER; if (ecmd.autoneg) desc->curr |= OFPPF_AUTONEG; } } #endif desc->curr = htonl(desc->curr); desc->supported = htonl(desc->supported); desc->advertised = htonl(desc->advertised); desc->peer = htonl(desc->peer); } static int fill_features_reply(struct datapath *dp, struct ofp_switch_features *ofr) { struct net_bridge_port *p; int port_count = 0; ofr->datapath_id = cpu_to_be64(dp->id); ofr->n_buffers = htonl(N_PKT_BUFFERS); ofr->n_tables = dp->chain->n_tables; ofr->capabilities = htonl(OFP_SUPPORTED_CAPABILITIES); ofr->actions = htonl(OFP_SUPPORTED_ACTIONS); memset(ofr->pad, 0, sizeof ofr->pad); list_for_each_entry_rcu (p, &dp->port_list, node) { fill_port_desc(p, &ofr->ports[port_count]); port_count++; } return port_count; } int dp_send_features_reply(struct datapath *dp, const struct sender *sender) { struct sk_buff *skb; struct ofp_switch_features *ofr; size_t ofr_len, port_max_len; int port_count; /* Overallocate. */ port_max_len = sizeof(struct ofp_phy_port) * DP_MAX_PORTS; ofr = alloc_openflow_skb(dp, sizeof(*ofr) + port_max_len, OFPT_FEATURES_REPLY, sender, &skb); if (!ofr) return -ENOMEM; /* Fill. */ port_count = fill_features_reply(dp, ofr); /* Shrink to fit. */ ofr_len = sizeof(*ofr) + (sizeof(struct ofp_phy_port) * port_count); resize_openflow_skb(skb, &ofr->header, ofr_len); return send_openflow_skb(skb, sender); } int dp_send_config_reply(struct datapath *dp, const struct sender *sender) { struct sk_buff *skb; struct ofp_switch_config *osc; osc = alloc_openflow_skb(dp, sizeof *osc, OFPT_GET_CONFIG_REPLY, sender, &skb); if (!osc) return -ENOMEM; osc->flags = htons(dp->flags); osc->miss_send_len = htons(dp->miss_send_len); return send_openflow_skb(skb, sender); } int dp_send_hello(struct datapath *dp, const struct sender *sender, const struct ofp_header *request) { if (request->version < OFP_VERSION) { char err[64]; sprintf(err, "Only version 0x%02x supported", OFP_VERSION); dp_send_error_msg(dp, sender, OFPET_HELLO_FAILED, OFPHFC_INCOMPATIBLE, err, strlen(err)); return -EINVAL; } else { struct sk_buff *skb; struct ofp_header *reply; reply = alloc_openflow_skb(dp, sizeof *reply, OFPT_HELLO, sender, &skb); if (!reply) return -ENOMEM; return send_openflow_skb(skb, sender); } } /* Callback function for a workqueue to disable an interface */ static void down_port_cb(struct work_struct *work) { struct net_bridge_port *p = container_of(work, struct net_bridge_port, port_task); rtnl_lock(); if (dev_change_flags(p->dev, p->dev->flags & ~IFF_UP) < 0) if (net_ratelimit()) printk("problem bringing up port %s\n", p->dev->name); rtnl_unlock(); p->config |= OFPPC_PORT_DOWN; } /* Callback function for a workqueue to enable an interface */ static void up_port_cb(struct work_struct *work) { struct net_bridge_port *p = container_of(work, struct net_bridge_port, port_task); rtnl_lock(); if (dev_change_flags(p->dev, p->dev->flags | IFF_UP) < 0) if (net_ratelimit()) printk("problem bringing down port %s\n", p->dev->name); rtnl_unlock(); p->config &= ~OFPPC_PORT_DOWN; } int dp_update_port_flags(struct datapath *dp, const struct ofp_port_mod *opm) { unsigned long int flags; int port_no = ntohs(opm->port_no); struct net_bridge_port *p; p = (port_no < DP_MAX_PORTS ? dp->ports[port_no] : port_no == OFPP_LOCAL ? dp->local_port : NULL); /* Make sure the port id hasn't changed since this was sent */ if (!p || memcmp(opm->hw_addr, p->dev->dev_addr, ETH_ALEN)) return -1; spin_lock_irqsave(&p->lock, flags); if (opm->mask) { uint32_t config_mask = ntohl(opm->mask); p->config &= ~config_mask; p->config |= ntohl(opm->config) & config_mask; } /* Modifying the status of an interface requires taking a lock * that cannot be done from here. For this reason, we use a shared * workqueue, which will cause it to be executed from a safer * context. */ if (opm->mask & htonl(OFPPC_PORT_DOWN)) { if ((opm->config & htonl(OFPPC_PORT_DOWN)) && (p->config & OFPPC_PORT_DOWN) == 0) { PREPARE_WORK(&p->port_task, down_port_cb); schedule_work(&p->port_task); } else if ((opm->config & htonl(OFPPC_PORT_DOWN)) == 0 && (p->config & OFPPC_PORT_DOWN)) { PREPARE_WORK(&p->port_task, up_port_cb); schedule_work(&p->port_task); } } spin_unlock_irqrestore(&p->lock, flags); return 0; } /* Initialize the port status field of the bridge port. */ static void init_port_status(struct net_bridge_port *p) { unsigned long int flags; spin_lock_irqsave(&p->lock, flags); if (p->dev->flags & IFF_UP) p->config &= ~OFPPC_PORT_DOWN; else p->config |= OFPPC_PORT_DOWN; if (netif_carrier_ok(p->dev)) p->state &= ~OFPPS_LINK_DOWN; else p->state |= OFPPS_LINK_DOWN; spin_unlock_irqrestore(&p->lock, flags); } int dp_send_port_status(struct net_bridge_port *p, uint8_t status) { struct sk_buff *skb; struct ofp_port_status *ops; ops = alloc_openflow_skb(p->dp, sizeof *ops, OFPT_PORT_STATUS, NULL, &skb); if (!ops) return -ENOMEM; ops->reason = status; memset(ops->pad, 0, sizeof ops->pad); fill_port_desc(p, &ops->desc); return send_openflow_skb(skb, NULL); } int dp_send_flow_expired(struct datapath *dp, struct sw_flow *flow, enum ofp_flow_expired_reason reason) { struct sk_buff *skb; struct ofp_flow_expired *ofe; if (!(dp->flags & OFPC_SEND_FLOW_EXP)) return 0; ofe = alloc_openflow_skb(dp, sizeof *ofe, OFPT_FLOW_EXPIRED, 0, &skb); if (!ofe) return -ENOMEM; flow_fill_match(&ofe->match, &flow->key); ofe->priority = htons(flow->priority); ofe->reason = reason; memset(ofe->pad, 0, sizeof ofe->pad); ofe->duration = htonl((jiffies - flow->init_time) / HZ); memset(ofe->pad2, 0, sizeof ofe->pad2); ofe->packet_count = cpu_to_be64(flow->packet_count); ofe->byte_count = cpu_to_be64(flow->byte_count); return send_openflow_skb(skb, NULL); } EXPORT_SYMBOL(dp_send_flow_expired); int dp_send_error_msg(struct datapath *dp, const struct sender *sender, uint16_t type, uint16_t code, const void *data, size_t len) { struct sk_buff *skb; struct ofp_error_msg *oem; oem = alloc_openflow_skb(dp, sizeof(*oem)+len, OFPT_ERROR, sender, &skb); if (!oem) return -ENOMEM; oem->type = htons(type); oem->code = htons(code); memcpy(oem->data, data, len); return send_openflow_skb(skb, sender); } int dp_send_echo_reply(struct datapath *dp, const struct sender *sender, const struct ofp_header *rq) { struct sk_buff *skb; struct ofp_header *reply; reply = alloc_openflow_skb(dp, ntohs(rq->length), OFPT_ECHO_REPLY, sender, &skb); if (!reply) return -ENOMEM; memcpy(reply + 1, rq + 1, ntohs(rq->length) - sizeof *rq); return send_openflow_skb(skb, sender); } /* Generic Netlink interface. * * See netlink(7) for an introduction to netlink. See * http://linux-net.osdl.org/index.php/Netlink for more information and * pointers on how to work with netlink and Generic Netlink in the kernel and * in userspace. */ static struct genl_family dp_genl_family = { .id = GENL_ID_GENERATE, .hdrsize = 0, .name = DP_GENL_FAMILY_NAME, .version = 1, .maxattr = DP_GENL_A_MAX, }; /* Attribute policy: what each attribute may contain. */ static struct nla_policy dp_genl_policy[DP_GENL_A_MAX + 1] = { [DP_GENL_A_DP_IDX] = { .type = NLA_U32 }, [DP_GENL_A_MC_GROUP] = { .type = NLA_U32 }, [DP_GENL_A_PORTNAME] = { .type = NLA_STRING } }; static int dp_genl_add(struct sk_buff *skb, struct genl_info *info) { if (!info->attrs[DP_GENL_A_DP_IDX]) return -EINVAL; return new_dp(nla_get_u32(info->attrs[DP_GENL_A_DP_IDX])); } static struct genl_ops dp_genl_ops_add_dp = { .cmd = DP_GENL_C_ADD_DP, .flags = GENL_ADMIN_PERM, /* Requires CAP_NET_ADMIN privilege. */ .policy = dp_genl_policy, .doit = dp_genl_add, .dumpit = NULL, }; struct datapath *dp_get(int dp_idx) { if (dp_idx < 0 || dp_idx > DP_MAX) return NULL; return rcu_dereference(dps[dp_idx]); } static int dp_genl_del(struct sk_buff *skb, struct genl_info *info) { struct datapath *dp; int err; if (!info->attrs[DP_GENL_A_DP_IDX]) return -EINVAL; dp = dp_get(nla_get_u32((info->attrs[DP_GENL_A_DP_IDX]))); if (!dp) err = -ENOENT; else { del_dp(dp); err = 0; } return err; } static struct genl_ops dp_genl_ops_del_dp = { .cmd = DP_GENL_C_DEL_DP, .flags = GENL_ADMIN_PERM, /* Requires CAP_NET_ADMIN privilege. */ .policy = dp_genl_policy, .doit = dp_genl_del, .dumpit = NULL, }; /* Queries a datapath for related information. Currently the only relevant * information is the datapath's multicast group ID. Really we want one * multicast group per datapath, but because of locking issues[*] we can't * easily get one. Thus, every datapath will currently return the same * global multicast group ID, but in the future it would be nice to fix that. * * [*] dp_genl_add, to add a new datapath, is called under the genl_lock * mutex, and genl_register_mc_group, called to acquire a new multicast * group ID, also acquires genl_lock, thus deadlock. */ static int dp_genl_query(struct sk_buff *skb, struct genl_info *info) { struct datapath *dp; struct sk_buff *ans_skb = NULL; int dp_idx; int err = -ENOMEM; if (!info->attrs[DP_GENL_A_DP_IDX]) return -EINVAL; rcu_read_lock(); dp_idx = nla_get_u32((info->attrs[DP_GENL_A_DP_IDX])); dp = dp_get(dp_idx); if (!dp) err = -ENOENT; else { void *data; ans_skb = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_ATOMIC); if (!ans_skb) { err = -ENOMEM; goto err; } data = genlmsg_put_reply(ans_skb, info, &dp_genl_family, 0, DP_GENL_C_QUERY_DP); if (data == NULL) { err = -ENOMEM; goto err; } NLA_PUT_U32(ans_skb, DP_GENL_A_DP_IDX, dp_idx); NLA_PUT_U32(ans_skb, DP_GENL_A_MC_GROUP, mc_group.id); genlmsg_end(ans_skb, data); err = genlmsg_reply(ans_skb, info); if (!err) ans_skb = NULL; } err: nla_put_failure: if (ans_skb) kfree_skb(ans_skb); rcu_read_unlock(); return err; } static struct genl_ops dp_genl_ops_query_dp = { .cmd = DP_GENL_C_QUERY_DP, .flags = GENL_ADMIN_PERM, /* Requires CAP_NET_ADMIN privilege. */ .policy = dp_genl_policy, .doit = dp_genl_query, .dumpit = NULL, }; static int dp_genl_add_del_port(struct sk_buff *skb, struct genl_info *info) { struct datapath *dp; struct net_device *port; int err; if (!info->attrs[DP_GENL_A_DP_IDX] || !info->attrs[DP_GENL_A_PORTNAME]) return -EINVAL; /* Get datapath. */ dp = dp_get(nla_get_u32(info->attrs[DP_GENL_A_DP_IDX])); if (!dp) { err = -ENOENT; goto out; } /* Get interface to add/remove. */ port = dev_get_by_name(&init_net, nla_data(info->attrs[DP_GENL_A_PORTNAME])); if (!port) { err = -ENOENT; goto out; } /* Execute operation. */ if (info->genlhdr->cmd == DP_GENL_C_ADD_PORT) err = add_switch_port(dp, port); else { if (port->br_port == NULL || port->br_port->dp != dp) { err = -ENOENT; goto out_put; } err = dp_del_switch_port(port->br_port); } out_put: dev_put(port); out: return err; } static struct genl_ops dp_genl_ops_add_port = { .cmd = DP_GENL_C_ADD_PORT, .flags = GENL_ADMIN_PERM, /* Requires CAP_NET_ADMIN privilege. */ .policy = dp_genl_policy, .doit = dp_genl_add_del_port, .dumpit = NULL, }; static struct genl_ops dp_genl_ops_del_port = { .cmd = DP_GENL_C_DEL_PORT, .flags = GENL_ADMIN_PERM, /* Requires CAP_NET_ADMIN privilege. */ .policy = dp_genl_policy, .doit = dp_genl_add_del_port, .dumpit = NULL, }; static int dp_genl_openflow(struct sk_buff *skb, struct genl_info *info) { struct nlattr *va = info->attrs[DP_GENL_A_OPENFLOW]; struct datapath *dp; struct ofp_header *oh; struct sender sender; int err; if (!info->attrs[DP_GENL_A_DP_IDX] || !va) return -EINVAL; dp = dp_get(nla_get_u32(info->attrs[DP_GENL_A_DP_IDX])); if (!dp) return -ENOENT; if (nla_len(va) < sizeof(struct ofp_header)) return -EINVAL; oh = nla_data(va); sender.xid = oh->xid; sender.pid = info->snd_pid; sender.seq = info->snd_seq; mutex_lock(&dp_mutex); err = fwd_control_input(dp->chain, &sender, nla_data(va), nla_len(va)); mutex_unlock(&dp_mutex); return err; } static struct nla_policy dp_genl_openflow_policy[DP_GENL_A_MAX + 1] = { [DP_GENL_A_DP_IDX] = { .type = NLA_U32 }, }; static int desc_stats_dump(struct datapath *dp, void *state, void *body, int *body_len) { struct ofp_desc_stats *ods = body; int n_bytes = sizeof *ods; if (n_bytes > *body_len) { return -ENOBUFS; } *body_len = n_bytes; strncpy(ods->mfr_desc, mfr_desc, sizeof ods->mfr_desc); strncpy(ods->hw_desc, hw_desc, sizeof ods->hw_desc); strncpy(ods->sw_desc, sw_desc, sizeof ods->sw_desc); strncpy(ods->serial_num, serial_num, sizeof ods->serial_num); return 0; } struct flow_stats_state { int table_idx; struct sw_table_position position; const struct ofp_flow_stats_request *rq; void *body; int bytes_used, bytes_allocated; }; static int flow_stats_init(struct datapath *dp, const void *body, int body_len, void **state) { const struct ofp_flow_stats_request *fsr = body; struct flow_stats_state *s = kmalloc(sizeof *s, GFP_ATOMIC); if (!s) return -ENOMEM; s->table_idx = fsr->table_id == 0xff ? 0 : fsr->table_id; memset(&s->position, 0, sizeof s->position); s->rq = fsr; *state = s; return 0; } static int flow_stats_dump_callback(struct sw_flow *flow, void *private) { struct sw_flow_actions *sf_acts = rcu_dereference(flow->sf_acts); struct flow_stats_state *s = private; struct ofp_flow_stats *ofs; int length; length = sizeof *ofs + sf_acts->actions_len; if (length + s->bytes_used > s->bytes_allocated) return 1; ofs = s->body + s->bytes_used; ofs->length = htons(length); ofs->table_id = s->table_idx; ofs->pad = 0; ofs->match.wildcards = htonl(flow->key.wildcards); ofs->match.in_port = flow->key.in_port; memcpy(ofs->match.dl_src, flow->key.dl_src, ETH_ALEN); memcpy(ofs->match.dl_dst, flow->key.dl_dst, ETH_ALEN); ofs->match.dl_vlan = flow->key.dl_vlan; ofs->match.dl_type = flow->key.dl_type; ofs->match.nw_src = flow->key.nw_src; ofs->match.nw_dst = flow->key.nw_dst; ofs->match.nw_proto = flow->key.nw_proto; ofs->match.pad = 0; ofs->match.tp_src = flow->key.tp_src; ofs->match.tp_dst = flow->key.tp_dst; ofs->duration = htonl((jiffies - flow->init_time) / HZ); ofs->priority = htons(flow->priority); ofs->idle_timeout = htons(flow->idle_timeout); ofs->hard_timeout = htons(flow->hard_timeout); memset(ofs->pad2, 0, sizeof ofs->pad2); ofs->packet_count = cpu_to_be64(flow->packet_count); ofs->byte_count = cpu_to_be64(flow->byte_count); memcpy(ofs->actions, sf_acts->actions, sf_acts->actions_len); s->bytes_used += length; return 0; } static int flow_stats_dump(struct datapath *dp, void *state, void *body, int *body_len) { struct flow_stats_state *s = state; struct sw_flow_key match_key; int error = 0; s->bytes_used = 0; s->bytes_allocated = *body_len; s->body = body; flow_extract_match(&match_key, &s->rq->match); while (s->table_idx < dp->chain->n_tables && (s->rq->table_id == 0xff || s->rq->table_id == s->table_idx)) { struct sw_table *table = dp->chain->tables[s->table_idx]; error = table->iterate(table, &match_key, &s->position, flow_stats_dump_callback, s); if (error) break; s->table_idx++; memset(&s->position, 0, sizeof s->position); } *body_len = s->bytes_used; /* If error is 0, we're done. * Otherwise, if some bytes were used, there are more flows to come. * Otherwise, we were not able to fit even a single flow in the body, * which indicates that we have a single flow with too many actions to * fit. We won't ever make any progress at that rate, so give up. */ return !error ? 0 : s->bytes_used ? 1 : -ENOMEM; } static void flow_stats_done(void *state) { kfree(state); } static int aggregate_stats_init(struct datapath *dp, const void *body, int body_len, void **state) { *state = (void *)body; return 0; } static int aggregate_stats_dump_callback(struct sw_flow *flow, void *private) { struct ofp_aggregate_stats_reply *rpy = private; rpy->packet_count += flow->packet_count; rpy->byte_count += flow->byte_count; rpy->flow_count++; return 0; } static int aggregate_stats_dump(struct datapath *dp, void *state, void *body, int *body_len) { struct ofp_aggregate_stats_request *rq = state; struct ofp_aggregate_stats_reply *rpy; struct sw_table_position position; struct sw_flow_key match_key; int table_idx; if (*body_len < sizeof *rpy) return -ENOBUFS; rpy = body; *body_len = sizeof *rpy; memset(rpy, 0, sizeof *rpy); flow_extract_match(&match_key, &rq->match); table_idx = rq->table_id == 0xff ? 0 : rq->table_id; memset(&position, 0, sizeof position); while (table_idx < dp->chain->n_tables && (rq->table_id == 0xff || rq->table_id == table_idx)) { struct sw_table *table = dp->chain->tables[table_idx]; int error; error = table->iterate(table, &match_key, &position, aggregate_stats_dump_callback, rpy); if (error) return error; table_idx++; memset(&position, 0, sizeof position); } rpy->packet_count = cpu_to_be64(rpy->packet_count); rpy->byte_count = cpu_to_be64(rpy->byte_count); rpy->flow_count = htonl(rpy->flow_count); return 0; } static int table_stats_dump(struct datapath *dp, void *state, void *body, int *body_len) { struct ofp_table_stats *ots; int n_bytes = dp->chain->n_tables * sizeof *ots; int i; if (n_bytes > *body_len) return -ENOBUFS; *body_len = n_bytes; for (i = 0, ots = body; i < dp->chain->n_tables; i++, ots++) { struct sw_table_stats stats; dp->chain->tables[i]->stats(dp->chain->tables[i], &stats); strncpy(ots->name, stats.name, sizeof ots->name); ots->table_id = i; ots->wildcards = htonl(stats.wildcards); memset(ots->pad, 0, sizeof ots->pad); ots->max_entries = htonl(stats.max_flows); ots->active_count = htonl(stats.n_flows); ots->lookup_count = cpu_to_be64(stats.n_lookup); ots->matched_count = cpu_to_be64(stats.n_matched); } return 0; } struct port_stats_state { int port; }; static int port_stats_init(struct datapath *dp, const void *body, int body_len, void **state) { struct port_stats_state *s = kmalloc(sizeof *s, GFP_ATOMIC); if (!s) return -ENOMEM; s->port = 0; *state = s; return 0; } static int port_stats_dump(struct datapath *dp, void *state, void *body, int *body_len) { struct port_stats_state *s = state; struct ofp_port_stats *ops; int n_ports, max_ports; int i; max_ports = *body_len / sizeof *ops; if (!max_ports) return -ENOMEM; ops = body; n_ports = 0; for (i = s->port; i < DP_MAX_PORTS && n_ports < max_ports; i++) { struct net_bridge_port *p = dp->ports[i]; struct net_device_stats *stats; if (!p) continue; stats = p->dev->get_stats(p->dev); ops->port_no = htons(p->port_no); memset(ops->pad, 0, sizeof ops->pad); ops->rx_packets = cpu_to_be64(stats->rx_packets); ops->tx_packets = cpu_to_be64(stats->tx_packets); ops->rx_bytes = cpu_to_be64(stats->rx_bytes); ops->tx_bytes = cpu_to_be64(stats->tx_bytes); ops->rx_dropped = cpu_to_be64(stats->rx_dropped); ops->tx_dropped = cpu_to_be64(stats->tx_dropped); ops->rx_errors = cpu_to_be64(stats->rx_errors); ops->tx_errors = cpu_to_be64(stats->tx_errors); ops->rx_frame_err = cpu_to_be64(stats->rx_frame_errors); ops->rx_over_err = cpu_to_be64(stats->rx_over_errors); ops->rx_crc_err = cpu_to_be64(stats->rx_crc_errors); ops->collisions = cpu_to_be64(stats->collisions); n_ports++; ops++; } s->port = i; *body_len = n_ports * sizeof *ops; return n_ports >= max_ports; } static void port_stats_done(void *state) { kfree(state); } struct stats_type { /* Minimum and maximum acceptable number of bytes in body member of * struct ofp_stats_request. */ size_t min_body, max_body; /* Prepares to dump some kind of statistics on 'dp'. 'body' and * 'body_len' are the 'body' member of the struct ofp_stats_request. * Returns zero if successful, otherwise a negative error code. * May initialize '*state' to state information. May be null if no * initialization is required.*/ int (*init)(struct datapath *dp, const void *body, int body_len, void **state); /* Dumps statistics for 'dp' into the '*body_len' bytes at 'body', and * modifies '*body_len' to reflect the number of bytes actually used. * ('body' will be transmitted as the 'body' member of struct * ofp_stats_reply.) */ int (*dump)(struct datapath *dp, void *state, void *body, int *body_len); /* Cleans any state created by the init or dump functions. May be null * if no cleanup is required. */ void (*done)(void *state); }; static const struct stats_type stats[] = { [OFPST_DESC] = { 0, 0, NULL, desc_stats_dump, NULL }, [OFPST_FLOW] = { sizeof(struct ofp_flow_stats_request), sizeof(struct ofp_flow_stats_request), flow_stats_init, flow_stats_dump, flow_stats_done }, [OFPST_AGGREGATE] = { sizeof(struct ofp_aggregate_stats_request), sizeof(struct ofp_aggregate_stats_request), aggregate_stats_init, aggregate_stats_dump, NULL }, [OFPST_TABLE] = { 0, 0, NULL, table_stats_dump, NULL }, [OFPST_PORT] = { 0, 0, port_stats_init, port_stats_dump, port_stats_done }, }; static int dp_genl_openflow_dumpit(struct sk_buff *skb, struct netlink_callback *cb) { struct datapath *dp; struct sender sender; const struct stats_type *s; struct ofp_stats_reply *osr; int dp_idx; int max_openflow_len, body_len; void *body; int err; /* Set up the cleanup function for this dump. Linux 2.6.20 and later * support setting up cleanup functions via the .doneit member of * struct genl_ops. This kluge supports earlier versions also. */ cb->done = dp_genl_openflow_done; sender.pid = NETLINK_CB(cb->skb).pid; sender.seq = cb->nlh->nlmsg_seq; if (!cb->args[0]) { struct nlattr *attrs[DP_GENL_A_MAX + 1]; struct ofp_stats_request *rq; struct nlattr *va; size_t len, body_len; int type; err = nlmsg_parse(cb->nlh, GENL_HDRLEN, attrs, DP_GENL_A_MAX, dp_genl_openflow_policy); if (err < 0) return err; if (!attrs[DP_GENL_A_DP_IDX]) return -EINVAL; dp_idx = nla_get_u16(attrs[DP_GENL_A_DP_IDX]); dp = dp_get(dp_idx); if (!dp) return -ENOENT; va = attrs[DP_GENL_A_OPENFLOW]; len = nla_len(va); if (!va || len < sizeof *rq) return -EINVAL; rq = nla_data(va); sender.xid = rq->header.xid; type = ntohs(rq->type); if (rq->header.version != OFP_VERSION) { dp_send_error_msg(dp, &sender, OFPET_BAD_REQUEST, OFPBRC_BAD_VERSION, rq, len); return -EINVAL; } if (rq->header.type != OFPT_STATS_REQUEST || ntohs(rq->header.length) != len) return -EINVAL; if (type >= ARRAY_SIZE(stats) || !stats[type].dump) { dp_send_error_msg(dp, &sender, OFPET_BAD_REQUEST, OFPBRC_BAD_STAT, rq, len); return -EINVAL; } s = &stats[type]; body_len = len - offsetof(struct ofp_stats_request, body); if (body_len < s->min_body || body_len > s->max_body) return -EINVAL; cb->args[0] = 1; cb->args[1] = dp_idx; cb->args[2] = type; cb->args[3] = rq->header.xid; if (s->init) { void *state; err = s->init(dp, rq->body, body_len, &state); if (err) return err; cb->args[4] = (long) state; } } else if (cb->args[0] == 1) { sender.xid = cb->args[3]; dp_idx = cb->args[1]; s = &stats[cb->args[2]]; dp = dp_get(dp_idx); if (!dp) return -ENOENT; } else { return 0; } osr = put_openflow_headers(dp, skb, OFPT_STATS_REPLY, &sender, &max_openflow_len); if (IS_ERR(osr)) return PTR_ERR(osr); osr->type = htons(s - stats); osr->flags = 0; resize_openflow_skb(skb, &osr->header, max_openflow_len); body = osr->body; body_len = max_openflow_len - offsetof(struct ofp_stats_reply, body); err = s->dump(dp, (void *) cb->args[4], body, &body_len); if (err >= 0) { if (!err) cb->args[0] = 2; else osr->flags = ntohs(OFPSF_REPLY_MORE); resize_openflow_skb(skb, &osr->header, (offsetof(struct ofp_stats_reply, body) + body_len)); err = skb->len; } return err; } static int dp_genl_openflow_done(struct netlink_callback *cb) { if (cb->args[0]) { const struct stats_type *s = &stats[cb->args[2]]; if (s->done) s->done((void *) cb->args[4]); } return 0; } static struct genl_ops dp_genl_ops_openflow = { .cmd = DP_GENL_C_OPENFLOW, .flags = GENL_ADMIN_PERM, /* Requires CAP_NET_ADMIN privilege. */ .policy = dp_genl_openflow_policy, .doit = dp_genl_openflow, .dumpit = dp_genl_openflow_dumpit, }; static struct genl_ops *dp_genl_all_ops[] = { /* Keep this operation first. Generic Netlink dispatching * looks up operations with linear search, so we want it at the * front. */ &dp_genl_ops_openflow, &dp_genl_ops_add_dp, &dp_genl_ops_del_dp, &dp_genl_ops_query_dp, &dp_genl_ops_add_port, &dp_genl_ops_del_port, }; static int dp_init_netlink(void) { int err; int i; err = genl_register_family(&dp_genl_family); if (err) return err; for (i = 0; i < ARRAY_SIZE(dp_genl_all_ops); i++) { err = genl_register_ops(&dp_genl_family, dp_genl_all_ops[i]); if (err) goto err_unregister; } strcpy(mc_group.name, "openflow"); err = genl_register_mc_group(&dp_genl_family, &mc_group); if (err < 0) goto err_unregister; return 0; err_unregister: genl_unregister_family(&dp_genl_family); return err; } static void dp_uninit_netlink(void) { genl_unregister_family(&dp_genl_family); } /* Set the description strings if appropriate values are available from * the DMI. */ static void set_desc(void) { const char *uuid = dmi_get_system_info(DMI_PRODUCT_UUID); const char *uptr = uuid + 24; if (!uuid || *uuid == '\0' || strlen(uuid) != 36) return; /* We are only interested version 1 UUIDs, since the last six bytes * are an IEEE 802 MAC address. */ if (uuid[14] != '1') return; /* Only set if the UUID is from Nicira. */ if (strncmp(uptr, NICIRA_OUI_STR, strlen(NICIRA_OUI_STR))) return; strlcpy(mfr_desc, dmi_get_system_info(DMI_SYS_VENDOR), sizeof(mfr_desc)); snprintf(hw_desc, sizeof(hw_desc), "%s %s", dmi_get_system_info(DMI_PRODUCT_NAME), dmi_get_system_info(DMI_PRODUCT_VERSION)); strlcpy(serial_num, dmi_get_system_info(DMI_PRODUCT_SERIAL), sizeof(serial_num)); } static int __init dp_init(void) { int err; printk("OpenFlow %s, built "__DATE__" "__TIME__", " "protocol 0x%02x\n", VERSION BUILDNR, OFP_VERSION); err = flow_init(); if (err) goto error; err = register_netdevice_notifier(&dp_device_notifier); if (err) goto error_flow_exit; err = dp_init_netlink(); if (err) goto error_unreg_notifier; /* Check if better descriptions of the switch are available than the * defaults. */ set_desc(); /* Hook into callback used by the bridge to intercept packets. * Parasites we are. */ if (br_handle_frame_hook) printk("openflow: hijacking bridge hook\n"); br_handle_frame_hook = dp_frame_hook; return 0; error_unreg_notifier: unregister_netdevice_notifier(&dp_device_notifier); error_flow_exit: flow_exit(); error: printk(KERN_EMERG "openflow: failed to install!"); return err; } static void dp_cleanup(void) { fwd_exit(); dp_uninit_netlink(); unregister_netdevice_notifier(&dp_device_notifier); flow_exit(); br_handle_frame_hook = NULL; } module_init(dp_init); module_exit(dp_cleanup); MODULE_DESCRIPTION("OpenFlow switching datapath"); MODULE_AUTHOR("Copyright (c) 2007, 2008 The Board of Trustees of The Leland Stanford Junior University"); MODULE_LICENSE("GPL");