/* * Copyright (c) 2010 Nicira Networks. * Distributed under the terms of the GNU GPL version 2. * * Significant portions of this file may be copied from parts of the Linux * kernel, by Linus Torvalds and others. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) #include #endif #include #include #include #include "actions.h" #include "datapath.h" #include "openvswitch/gre.h" #include "table.h" #include "vport.h" #include "vport-generic.h" /* The absolute minimum fragment size. Note that there are many other * definitions of the minimum MTU. */ #define IP_MIN_MTU 68 /* The GRE header is composed of a series of sections: a base and then a variable * number of options. */ #define GRE_HEADER_SECTION 4 struct mutable_config { struct rcu_head rcu; unsigned char eth_addr[ETH_ALEN]; unsigned int mtu; struct gre_port_config port_config; int tunnel_hlen; /* Tunnel header length. */ }; struct gre_vport { struct tbl_node tbl_node; char name[IFNAMSIZ]; /* Protected by RCU. */ struct mutable_config *mutable; }; /* Protected by RCU. */ static struct tbl *port_table; /* These are just used as an optimization: they don't require any kind of * synchronization because we could have just as easily read the value before * the port change happened. */ static unsigned int key_local_remote_ports; static unsigned int key_remote_ports; static unsigned int local_remote_ports; static unsigned int remote_ports; static inline struct gre_vport * gre_vport_priv(const struct vport *vport) { return vport_priv(vport); } static inline struct vport * gre_vport_to_vport(const struct gre_vport *gre_vport) { return vport_from_priv(gre_vport); } static inline struct gre_vport * gre_vport_table_cast(const struct tbl_node *node) { return container_of(node, struct gre_vport, tbl_node); } /* RCU callback. */ static void free_config(struct rcu_head *rcu) { struct mutable_config *c = container_of(rcu, struct mutable_config, rcu); kfree(c); } static void assign_config_rcu(struct vport *vport, struct mutable_config *new_config) { struct gre_vport *gre_vport = gre_vport_priv(vport); struct mutable_config *old_config; old_config = rcu_dereference(gre_vport->mutable); rcu_assign_pointer(gre_vport->mutable, new_config); call_rcu(&old_config->rcu, free_config); } static unsigned int * find_port_pool(const struct mutable_config *mutable) { if (mutable->port_config.flags & GRE_F_IN_KEY_MATCH) { if (mutable->port_config.saddr) return &local_remote_ports; else return &remote_ports; } else { if (mutable->port_config.saddr) return &key_local_remote_ports; else return &key_remote_ports; } } enum lookup_key { LOOKUP_SADDR = 0, LOOKUP_DADDR = 1, LOOKUP_KEY = 2, LOOKUP_KEY_MATCH = 3 }; struct port_lookup_key { u32 vals[4]; /* Contains enum lookup_key keys. */ const struct mutable_config *mutable; }; /* Modifies 'target' to store the rcu_dereferenced pointer that was used to do * the comparision. */ static int port_cmp(const struct tbl_node *node, void *target) { const struct gre_vport *gre_vport = gre_vport_table_cast(node); struct port_lookup_key *lookup = target; lookup->mutable = rcu_dereference(gre_vport->mutable); return ((lookup->mutable->port_config.flags & GRE_F_IN_KEY_MATCH) == lookup->vals[LOOKUP_KEY_MATCH]) && lookup->mutable->port_config.daddr == lookup->vals[LOOKUP_DADDR] && lookup->mutable->port_config.in_key == lookup->vals[LOOKUP_KEY] && lookup->mutable->port_config.saddr == lookup->vals[LOOKUP_SADDR]; } static u32 port_hash(struct port_lookup_key *lookup) { return jhash2(lookup->vals, ARRAY_SIZE(lookup->vals), 0); } static int add_port(struct vport *vport) { struct gre_vport *gre_vport = gre_vport_priv(vport); struct port_lookup_key lookup; int err; if (!port_table) { struct tbl *new_table; new_table = tbl_create(0); if (!new_table) return -ENOMEM; rcu_assign_pointer(port_table, new_table); } else if (tbl_count(port_table) > tbl_n_buckets(port_table)) { struct tbl *old_table = port_table; struct tbl *new_table; new_table = tbl_expand(old_table); if (IS_ERR(new_table)) return PTR_ERR(new_table); rcu_assign_pointer(port_table, new_table); tbl_deferred_destroy(old_table, NULL); } lookup.vals[LOOKUP_SADDR] = gre_vport->mutable->port_config.saddr; lookup.vals[LOOKUP_DADDR] = gre_vport->mutable->port_config.daddr; lookup.vals[LOOKUP_KEY] = gre_vport->mutable->port_config.in_key; lookup.vals[LOOKUP_KEY_MATCH] = gre_vport->mutable->port_config.flags & GRE_F_IN_KEY_MATCH; err = tbl_insert(port_table, &gre_vport->tbl_node, port_hash(&lookup)); if (err) return err; (*find_port_pool(gre_vport->mutable))++; return 0; } static int del_port(struct vport *vport) { struct gre_vport *gre_vport = gre_vport_priv(vport); int err; err = tbl_remove(port_table, &gre_vport->tbl_node); if (err) return err; (*find_port_pool(gre_vport->mutable))--; return 0; } #define FIND_PORT_KEY (1 << 0) #define FIND_PORT_MATCH (1 << 1) #define FIND_PORT_ANY (FIND_PORT_KEY | FIND_PORT_MATCH) static struct vport * find_port(__be32 saddr, __be32 daddr, __be32 key, int port_type, const struct mutable_config **mutable) { struct port_lookup_key lookup; struct tbl *table = rcu_dereference(port_table); struct tbl_node *tbl_node; if (!table) return NULL; lookup.vals[LOOKUP_SADDR] = saddr; lookup.vals[LOOKUP_DADDR] = daddr; if (port_type & FIND_PORT_KEY) { lookup.vals[LOOKUP_KEY] = key; lookup.vals[LOOKUP_KEY_MATCH] = 0; if (key_local_remote_ports) { tbl_node = tbl_lookup(table, &lookup, port_hash(&lookup), port_cmp); if (tbl_node) goto found; } if (key_remote_ports) { lookup.vals[LOOKUP_SADDR] = 0; tbl_node = tbl_lookup(table, &lookup, port_hash(&lookup), port_cmp); if (tbl_node) goto found; lookup.vals[LOOKUP_SADDR] = saddr; } } if (port_type & FIND_PORT_MATCH) { lookup.vals[LOOKUP_KEY] = 0; lookup.vals[LOOKUP_KEY_MATCH] = GRE_F_IN_KEY_MATCH; if (local_remote_ports) { tbl_node = tbl_lookup(table, &lookup, port_hash(&lookup), port_cmp); if (tbl_node) goto found; } if (remote_ports) { lookup.vals[LOOKUP_SADDR] = 0; tbl_node = tbl_lookup(table, &lookup, port_hash(&lookup), port_cmp); if (tbl_node) goto found; } } return NULL; found: *mutable = lookup.mutable; return gre_vport_to_vport(gre_vport_table_cast(tbl_node)); } static bool check_ipv4_address(__be32 addr) { if (ipv4_is_multicast(addr) || ipv4_is_lbcast(addr) || ipv4_is_loopback(addr) || ipv4_is_zeronet(addr)) return false; return true; } static bool ipv4_should_icmp(struct sk_buff *skb) { struct iphdr *old_iph = ip_hdr(skb); /* Don't respond to L2 broadcast. */ if (is_multicast_ether_addr(eth_hdr(skb)->h_dest)) return false; /* Don't respond to L3 broadcast or invalid addresses. */ if (!check_ipv4_address(old_iph->daddr) || !check_ipv4_address(old_iph->saddr)) return false; /* Only respond to the first fragment. */ if (old_iph->frag_off & htons(IP_OFFSET)) return false; /* Don't respond to ICMP error messages. */ if (old_iph->protocol == IPPROTO_ICMP) { u8 icmp_type, *icmp_typep; icmp_typep = skb_header_pointer(skb, (u8 *)old_iph + (old_iph->ihl << 2) + offsetof(struct icmphdr, type) - skb->data, sizeof(icmp_type), &icmp_type); if (!icmp_typep) return false; if (*icmp_typep > NR_ICMP_TYPES || (*icmp_typep <= ICMP_PARAMETERPROB && *icmp_typep != ICMP_ECHOREPLY && *icmp_typep != ICMP_ECHO)) return false; } return true; } static void ipv4_build_icmp(struct sk_buff *skb, struct sk_buff *nskb, unsigned int mtu, unsigned int payload_length) { struct iphdr *iph, *old_iph = ip_hdr(skb); struct icmphdr *icmph; u8 *payload; iph = (struct iphdr *)skb_put(nskb, sizeof(struct iphdr)); icmph = (struct icmphdr *)skb_put(nskb, sizeof(struct icmphdr)); payload = skb_put(nskb, payload_length); /* IP */ iph->version = 4; iph->ihl = sizeof(struct iphdr) >> 2; iph->tos = (old_iph->tos & IPTOS_TOS_MASK) | IPTOS_PREC_INTERNETCONTROL; iph->tot_len = htons(sizeof(struct iphdr) + sizeof(struct icmphdr) + payload_length); get_random_bytes(&iph->id, sizeof(iph->id)); iph->frag_off = 0; iph->ttl = IPDEFTTL; iph->protocol = IPPROTO_ICMP; iph->daddr = old_iph->saddr; iph->saddr = old_iph->daddr; ip_send_check(iph); /* ICMP */ icmph->type = ICMP_DEST_UNREACH; icmph->code = ICMP_FRAG_NEEDED; icmph->un.gateway = htonl(mtu); icmph->checksum = 0; nskb->csum = csum_partial((u8 *)icmph, sizeof(struct icmphdr), 0); nskb->csum = skb_copy_and_csum_bits(skb, (u8 *)old_iph - skb->data, payload, payload_length, nskb->csum); icmph->checksum = csum_fold(nskb->csum); } #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) static bool ipv6_should_icmp(struct sk_buff *skb) { struct ipv6hdr *old_ipv6h = ipv6_hdr(skb); int addr_type; int payload_off = (u8 *)(old_ipv6h + 1) - skb->data; u8 nexthdr = ipv6_hdr(skb)->nexthdr; /* Check source address is valid. */ addr_type = ipv6_addr_type(&old_ipv6h->saddr); if (addr_type & IPV6_ADDR_MULTICAST || addr_type == IPV6_ADDR_ANY) return false; /* Don't reply to unspecified addresses. */ if (ipv6_addr_type(&old_ipv6h->daddr) == IPV6_ADDR_ANY) return false; /* Don't respond to ICMP error messages. */ payload_off = ipv6_skip_exthdr(skb, payload_off, &nexthdr); if (payload_off < 0) return false; if (nexthdr == NEXTHDR_ICMP) { u8 icmp_type, *icmp_typep; icmp_typep = skb_header_pointer(skb, payload_off + offsetof(struct icmp6hdr, icmp6_type), sizeof(icmp_type), &icmp_type); if (!icmp_typep || !(*icmp_typep & ICMPV6_INFOMSG_MASK)) return false; } return true; } static void ipv6_build_icmp(struct sk_buff *skb, struct sk_buff *nskb, unsigned int mtu, unsigned int payload_length) { struct ipv6hdr *ipv6h, *old_ipv6h = ipv6_hdr(skb); struct icmp6hdr *icmp6h; u8 *payload; ipv6h = (struct ipv6hdr *)skb_put(nskb, sizeof(struct ipv6hdr)); icmp6h = (struct icmp6hdr *)skb_put(nskb, sizeof(struct icmp6hdr)); payload = skb_put(nskb, payload_length); /* IPv6 */ ipv6h->version = 6; ipv6h->priority = 0; memset(&ipv6h->flow_lbl, 0, sizeof(ipv6h->flow_lbl)); ipv6h->payload_len = htons(sizeof(struct icmp6hdr) + payload_length); ipv6h->nexthdr = NEXTHDR_ICMP; ipv6h->hop_limit = IPV6_DEFAULT_HOPLIMIT; ipv6_addr_copy(&ipv6h->daddr, &old_ipv6h->saddr); ipv6_addr_copy(&ipv6h->saddr, &old_ipv6h->daddr); /* ICMPv6 */ icmp6h->icmp6_type = ICMPV6_PKT_TOOBIG; icmp6h->icmp6_code = 0; icmp6h->icmp6_cksum = 0; icmp6h->icmp6_mtu = htonl(mtu); nskb->csum = csum_partial((u8 *)icmp6h, sizeof(struct icmp6hdr), 0); nskb->csum = skb_copy_and_csum_bits(skb, (u8 *)old_ipv6h - skb->data, payload, payload_length, nskb->csum); icmp6h->icmp6_cksum = csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr, sizeof(struct icmp6hdr) + payload_length, ipv6h->nexthdr, nskb->csum); } #endif /* IPv6 */ static bool send_frag_needed(struct vport *vport, const struct mutable_config *mutable, struct sk_buff *skb, unsigned int mtu, __be32 flow_key) { unsigned int eth_hdr_len = ETH_HLEN; unsigned int total_length = 0, header_length = 0, payload_length; struct ethhdr *eh, *old_eh = eth_hdr(skb); struct sk_buff *nskb; /* Sanity check */ if (skb->protocol == htons(ETH_P_IP)) { if (mtu < IP_MIN_MTU) return false; if (!ipv4_should_icmp(skb)) return true; } #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) else if (skb->protocol == htons(ETH_P_IPV6)) { if (mtu < IPV6_MIN_MTU) return false; /* In theory we should do PMTUD on IPv6 multicast messages but * we don't have an address to send from so just fragment. */ if (ipv6_addr_type(&ipv6_hdr(skb)->daddr) & IPV6_ADDR_MULTICAST) return false; if (!ipv6_should_icmp(skb)) return true; } #endif else return false; /* Allocate */ if (old_eh->h_proto == htons(ETH_P_8021Q)) eth_hdr_len = VLAN_ETH_HLEN; payload_length = skb->len - eth_hdr_len; if (skb->protocol == htons(ETH_P_IP)) { header_length = sizeof(struct iphdr) + sizeof(struct icmphdr); total_length = min_t(unsigned int, header_length + payload_length, 576); } #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) else { header_length = sizeof(struct ipv6hdr) + sizeof(struct icmp6hdr); total_length = min_t(unsigned int, header_length + payload_length, IPV6_MIN_MTU); } #endif total_length = min(total_length, mutable->mtu); payload_length = total_length - header_length; nskb = dev_alloc_skb(NET_IP_ALIGN + eth_hdr_len + header_length + payload_length); if (!nskb) return false; skb_reserve(nskb, NET_IP_ALIGN); /* Ethernet / VLAN */ eh = (struct ethhdr *)skb_put(nskb, eth_hdr_len); memcpy(eh->h_dest, old_eh->h_source, ETH_ALEN); memcpy(eh->h_source, mutable->eth_addr, ETH_ALEN); nskb->protocol = eh->h_proto = old_eh->h_proto; if (old_eh->h_proto == htons(ETH_P_8021Q)) { struct vlan_ethhdr *vh = (struct vlan_ethhdr *)eh; vh->h_vlan_TCI = vlan_eth_hdr(skb)->h_vlan_TCI; vh->h_vlan_encapsulated_proto = skb->protocol; } skb_reset_mac_header(nskb); /* Protocol */ if (skb->protocol == htons(ETH_P_IP)) ipv4_build_icmp(skb, nskb, mtu, payload_length); #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) else ipv6_build_icmp(skb, nskb, mtu, payload_length); #endif /* Assume that flow based keys are symmetric with respect to input * and output and use the key that we were going to put on the * outgoing packet for the fake received packet. If the keys are * not symmetric then PMTUD needs to be disabled since we won't have * any way of synthesizing packets. */ if (mutable->port_config.flags & GRE_F_IN_KEY_MATCH && mutable->port_config.flags & GRE_F_OUT_KEY_ACTION) OVS_CB(nskb)->tun_id = flow_key; compute_ip_summed(nskb, false); vport_receive(vport, nskb); return true; } static struct sk_buff * check_headroom(struct sk_buff *skb, int headroom) { if (skb_headroom(skb) < headroom || skb_header_cloned(skb)) { struct sk_buff *nskb = skb_realloc_headroom(skb, max(headroom, 64)); if (!nskb) { kfree_skb(skb); return ERR_PTR(-ENOMEM); } set_skb_csum_bits(skb, nskb); if (skb->sk) skb_set_owner_w(nskb, skb->sk); dev_kfree_skb(skb); return nskb; } return skb; } static void create_gre_header(struct sk_buff *skb, const struct mutable_config *mutable) { struct iphdr *iph = ip_hdr(skb); __be16 *flags = (__be16 *)(iph + 1); __be16 *protocol = flags + 1; __be32 *options = (__be32 *)((u8 *)iph + mutable->tunnel_hlen - GRE_HEADER_SECTION); *protocol = htons(ETH_P_TEB); *flags = 0; /* Work backwards over the options so the checksum is last. */ if (mutable->port_config.out_key || mutable->port_config.flags & GRE_F_OUT_KEY_ACTION) { *flags |= GRE_KEY; if (mutable->port_config.flags & GRE_F_OUT_KEY_ACTION) *options = OVS_CB(skb)->tun_id; else *options = mutable->port_config.out_key; options--; } if (mutable->port_config.flags & GRE_F_OUT_CSUM) { *flags |= GRE_CSUM; *options = 0; *(__sum16 *)options = csum_fold(skb_checksum(skb, sizeof(struct iphdr), skb->len - sizeof(struct iphdr), 0)); } } static int check_checksum(struct sk_buff *skb) { struct iphdr *iph = ip_hdr(skb); __be16 flags = *(__be16 *)(iph + 1); __sum16 csum = 0; if (flags & GRE_CSUM) { switch (skb->ip_summed) { case CHECKSUM_COMPLETE: csum = csum_fold(skb->csum); if (!csum) break; /* Fall through. */ case CHECKSUM_NONE: skb->csum = 0; csum = __skb_checksum_complete(skb); skb->ip_summed = CHECKSUM_COMPLETE; break; } } return (csum == 0); } static int parse_gre_header(struct iphdr *iph, __be16 *flags, __be32 *key) { /* IP and ICMP protocol handlers check that the IHL is valid. */ __be16 *flagsp = (__be16 *)((u8 *)iph + (iph->ihl << 2)); __be16 *protocol = flagsp + 1; __be32 *options = (__be32 *)(protocol + 1); int hdr_len; *flags = *flagsp; if (*flags & (GRE_VERSION | GRE_ROUTING)) return -EINVAL; if (*protocol != htons(ETH_P_TEB)) return -EINVAL; hdr_len = GRE_HEADER_SECTION; if (*flags & GRE_CSUM) { hdr_len += GRE_HEADER_SECTION; options++; } if (*flags & GRE_KEY) { hdr_len += GRE_HEADER_SECTION; *key = *options; options++; } else *key = 0; if (*flags & GRE_SEQ) hdr_len += GRE_HEADER_SECTION; return hdr_len; } static inline u8 ecn_encapsulate(u8 tos, struct sk_buff *skb) { u8 inner; if (skb->protocol == htons(ETH_P_IP)) inner = ((struct iphdr *)skb_network_header(skb))->tos; #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) else if (skb->protocol == htons(ETH_P_IPV6)) inner = ipv6_get_dsfield((struct ipv6hdr *)skb_network_header(skb)); #endif else inner = 0; return INET_ECN_encapsulate(tos, inner); } static inline void ecn_decapsulate(u8 tos, struct sk_buff *skb) { if (INET_ECN_is_ce(tos)) { __be16 protocol = skb->protocol; unsigned int nw_header = skb_network_header(skb) - skb->data; if (skb->protocol == htons(ETH_P_8021Q)) { if (unlikely(!pskb_may_pull(skb, VLAN_ETH_HLEN))) return; protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto; nw_header += VLAN_HLEN; } if (protocol == htons(ETH_P_IP)) { if (unlikely(!pskb_may_pull(skb, nw_header + sizeof(struct iphdr)))) return; IP_ECN_set_ce((struct iphdr *)(nw_header + skb->data)); } #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) else if (protocol == htons(ETH_P_IPV6)) { if (unlikely(!pskb_may_pull(skb, nw_header + sizeof(struct ipv6hdr)))) return; IP6_ECN_set_ce((struct ipv6hdr *)(nw_header + skb->data)); } #endif } } static struct sk_buff * handle_gso(struct sk_buff *skb) { if (skb_is_gso(skb)) { struct sk_buff *nskb = skb_gso_segment(skb, 0); dev_kfree_skb(skb); return nskb; } return skb; } static int handle_csum_offload(struct sk_buff *skb) { if (skb->ip_summed == CHECKSUM_PARTIAL) return skb_checksum_help(skb); else { skb->ip_summed = CHECKSUM_NONE; return 0; } } /* Called with rcu_read_lock. */ static void gre_err(struct sk_buff *skb, u32 info) { struct vport *vport; const struct mutable_config *mutable; const int type = icmp_hdr(skb)->type; const int code = icmp_hdr(skb)->code; int mtu = ntohs(icmp_hdr(skb)->un.frag.mtu); struct iphdr *iph; __be16 flags; __be32 key; int tunnel_hdr_len, tot_hdr_len; unsigned int orig_mac_header; unsigned int orig_nw_header; if (type != ICMP_DEST_UNREACH || code != ICMP_FRAG_NEEDED) return; /* The mimimum size packet that we would actually be able to process: * encapsulating IP header, minimum GRE header, Ethernet header, * inner IPv4 header. */ if (!pskb_may_pull(skb, sizeof(struct iphdr) + GRE_HEADER_SECTION + ETH_HLEN + sizeof(struct iphdr))) return; iph = (struct iphdr *)skb->data; tunnel_hdr_len = parse_gre_header(iph, &flags, &key); if (tunnel_hdr_len < 0) return; vport = find_port(iph->saddr, iph->daddr, key, FIND_PORT_ANY, &mutable); if (!vport) return; /* Packets received by this function were previously sent by us, so * any comparisons should be to the output values, not the input. * However, it's not really worth it to have a hash table based on * output keys (especially since ICMP error handling of tunneled packets * isn't that reliable anyways). Therefore, we do a lookup based on the * out key as if it were the in key and then check to see if the input * and output keys are the same. */ if (mutable->port_config.in_key != mutable->port_config.out_key) return; if (!!(mutable->port_config.flags & GRE_F_IN_KEY_MATCH) != !!(mutable->port_config.flags & GRE_F_OUT_KEY_ACTION)) return; if ((mutable->port_config.flags & GRE_F_OUT_CSUM) && !(flags & GRE_CSUM)) return; tunnel_hdr_len += iph->ihl << 2; orig_mac_header = skb_mac_header(skb) - skb->data; orig_nw_header = skb_network_header(skb) - skb->data; skb_set_mac_header(skb, tunnel_hdr_len); tot_hdr_len = tunnel_hdr_len + ETH_HLEN; skb->protocol = eth_hdr(skb)->h_proto; if (skb->protocol == htons(ETH_P_8021Q)) { tot_hdr_len += VLAN_HLEN; skb->protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto; } skb_set_network_header(skb, tot_hdr_len); mtu -= tot_hdr_len; if (skb->protocol == htons(ETH_P_IP)) tot_hdr_len += sizeof(struct iphdr); #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) else if (skb->protocol == htons(ETH_P_IPV6)) tot_hdr_len += sizeof(struct ipv6hdr); #endif else goto out; if (!pskb_may_pull(skb, tot_hdr_len)) goto out; if (skb->protocol == htons(ETH_P_IP)) { if (mtu < IP_MIN_MTU) { if (ntohs(ip_hdr(skb)->tot_len) >= IP_MIN_MTU) mtu = IP_MIN_MTU; else goto out; } } #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) else if (skb->protocol == htons(ETH_P_IPV6)) { if (mtu < IPV6_MIN_MTU) { unsigned int packet_length = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); if (packet_length >= IPV6_MIN_MTU || ntohs(ipv6_hdr(skb)->payload_len) == 0) mtu = IPV6_MIN_MTU; else goto out; } } #endif __pskb_pull(skb, tunnel_hdr_len); send_frag_needed(vport, mutable, skb, mtu, key); skb_push(skb, tunnel_hdr_len); out: skb_set_mac_header(skb, orig_mac_header); skb_set_network_header(skb, orig_nw_header); skb->protocol = htons(ETH_P_IP); } /* Called with rcu_read_lock. */ static int gre_rcv(struct sk_buff *skb) { struct vport *vport; const struct mutable_config *mutable; int hdr_len; struct iphdr *iph; __be16 flags; __be32 key; if (!pskb_may_pull(skb, GRE_HEADER_SECTION + ETH_HLEN)) goto error; if (!check_checksum(skb)) goto error; iph = ip_hdr(skb); hdr_len = parse_gre_header(iph, &flags, &key); if (hdr_len < 0) goto error; vport = find_port(iph->daddr, iph->saddr, key, FIND_PORT_ANY, &mutable); if (!vport) { icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); goto error; } if ((mutable->port_config.flags & GRE_F_IN_CSUM) && !(flags & GRE_CSUM)) { vport_record_error(vport, VPORT_E_RX_CRC); goto error; } if (!pskb_pull(skb, hdr_len) || !pskb_may_pull(skb, ETH_HLEN)) { vport_record_error(vport, VPORT_E_RX_ERROR); goto error; } skb->pkt_type = PACKET_HOST; skb->protocol = eth_type_trans(skb, skb->dev); skb_postpull_rcsum(skb, skb_transport_header(skb), hdr_len + ETH_HLEN); skb_dst_drop(skb); nf_reset(skb); secpath_reset(skb); skb_reset_network_header(skb); ecn_decapsulate(iph->tos, skb); if (mutable->port_config.flags & GRE_F_IN_KEY_MATCH) OVS_CB(skb)->tun_id = key; else OVS_CB(skb)->tun_id = 0; skb_push(skb, ETH_HLEN); compute_ip_summed(skb, false); vport_receive(vport, skb); return 0; error: kfree_skb(skb); return 0; } static int build_packet(struct vport *vport, const struct mutable_config *mutable, struct iphdr *iph, struct rtable *rt, int max_headroom, int mtu, struct sk_buff *skb) { int err; struct iphdr *new_iph; int orig_len = skb->len; __be16 frag_off = iph->frag_off; skb = check_headroom(skb, max_headroom); if (unlikely(IS_ERR(skb))) goto error; err = handle_csum_offload(skb); if (err) goto error_free; if (skb->protocol == htons(ETH_P_IP)) { struct iphdr *old_iph = ip_hdr(skb); if ((old_iph->frag_off & htons(IP_DF)) && mtu < ntohs(old_iph->tot_len)) { if (send_frag_needed(vport, mutable, skb, mtu, OVS_CB(skb)->tun_id)) goto error_free; } } #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) else if (skb->protocol == htons(ETH_P_IPV6)) { unsigned int packet_length = skb->len - ETH_HLEN - (eth_hdr(skb)->h_proto == htons(ETH_P_8021Q) ? VLAN_HLEN : 0); /* IPv6 requires PMTUD if the packet is above the minimum MTU. */ if (packet_length > IPV6_MIN_MTU) frag_off = htons(IP_DF); if (mtu < packet_length) { if (send_frag_needed(vport, mutable, skb, mtu, OVS_CB(skb)->tun_id)) goto error_free; } } #endif skb_reset_transport_header(skb); new_iph = (struct iphdr *)skb_push(skb, mutable->tunnel_hlen); skb_reset_network_header(skb); memcpy(new_iph, iph, sizeof(struct iphdr)); new_iph->frag_off = frag_off; ip_select_ident(new_iph, &rt->u.dst, NULL); create_gre_header(skb, mutable); /* Allow our local IP stack to fragment the outer packet even if the * DF bit is set as a last resort. */ skb->local_df = 1; memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt)); IPCB(skb)->flags = 0; err = ip_local_out(skb); if (likely(net_xmit_eval(err) == 0)) return orig_len; else { vport_record_error(vport, VPORT_E_TX_ERROR); return 0; } error_free: kfree_skb(skb); error: vport_record_error(vport, VPORT_E_TX_DROPPED); return 0; } static int gre_send(struct vport *vport, struct sk_buff *skb) { struct gre_vport *gre_vport = gre_vport_priv(vport); const struct mutable_config *mutable = rcu_dereference(gre_vport->mutable); struct iphdr *old_iph; int orig_len; struct iphdr iph; struct rtable *rt; int max_headroom; int mtu; /* Validate the protocol headers before we try to use them. */ if (skb->protocol == htons(ETH_P_8021Q)) { if (unlikely(!pskb_may_pull(skb, VLAN_ETH_HLEN))) goto error_free; skb->protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto; skb_set_network_header(skb, VLAN_ETH_HLEN); } if (skb->protocol == htons(ETH_P_IP)) { if (unlikely(!pskb_may_pull(skb, skb_network_header(skb) + sizeof(struct iphdr) - skb->data))) skb->protocol = 0; } #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) else if (skb->protocol == htons(ETH_P_IPV6)) { if (unlikely(!pskb_may_pull(skb, skb_network_header(skb) + sizeof(struct ipv6hdr) - skb->data))) skb->protocol = 0; } #endif old_iph = ip_hdr(skb); iph.tos = mutable->port_config.tos; if (mutable->port_config.flags & GRE_F_TOS_INHERIT) { if (skb->protocol == htons(ETH_P_IP)) iph.tos = old_iph->tos; #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) else if (skb->protocol == htons(ETH_P_IPV6)) iph.tos = ipv6_get_dsfield(ipv6_hdr(skb)); #endif } iph.tos = ecn_encapsulate(iph.tos, skb); { struct flowi fl = { .nl_u = { .ip4_u = { .daddr = mutable->port_config.daddr, .saddr = mutable->port_config.saddr, .tos = RT_TOS(iph.tos) } }, .proto = IPPROTO_GRE }; if (ip_route_output_key(&init_net, &rt, &fl)) goto error_free; } iph.ttl = mutable->port_config.ttl; if (mutable->port_config.flags & GRE_F_TTL_INHERIT) { if (skb->protocol == htons(ETH_P_IP)) iph.ttl = old_iph->ttl; #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) else if (skb->protocol == htons(ETH_P_IPV6)) iph.ttl = ipv6_hdr(skb)->hop_limit; #endif } if (!iph.ttl) iph.ttl = dst_metric(&rt->u.dst, RTAX_HOPLIMIT); iph.frag_off = (mutable->port_config.flags & GRE_F_PMTUD) ? htons(IP_DF) : 0; if (iph.frag_off) mtu = dst_mtu(&rt->u.dst) - ETH_HLEN - mutable->tunnel_hlen - (eth_hdr(skb)->h_proto == htons(ETH_P_8021Q) ? VLAN_HLEN : 0); else mtu = mutable->mtu; if (skb->protocol == htons(ETH_P_IP)) { iph.frag_off |= old_iph->frag_off & htons(IP_DF); mtu = max(mtu, IP_MIN_MTU); } #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) else if (skb->protocol == htons(ETH_P_IPV6)) mtu = max(mtu, IPV6_MIN_MTU); #endif iph.version = 4; iph.ihl = sizeof(struct iphdr) >> 2; iph.protocol = IPPROTO_GRE; iph.daddr = rt->rt_dst; iph.saddr = rt->rt_src; nf_reset(skb); secpath_reset(skb); skb_dst_drop(skb); skb_dst_set(skb, &rt->u.dst); /* If we are doing GSO on a pskb it is better to make sure that the * headroom is correct now. We will only have to copy the portion in * the linear data area and GSO will preserve headroom when it creates * the segments. This is particularly beneficial on Xen where we get * lots of GSO pskbs. Conversely, we delay copying if it is just to * get our own writable clone because GSO may do the copy for us. */ max_headroom = LL_RESERVED_SPACE(rt->u.dst.dev) + rt->u.dst.header_len + mutable->tunnel_hlen; if (skb_headroom(skb) < max_headroom) { skb = check_headroom(skb, max_headroom); if (unlikely(IS_ERR(skb))) { vport_record_error(vport, VPORT_E_TX_DROPPED); goto error; } } forward_ip_summed(skb); if (unlikely(vswitch_skb_checksum_setup(skb))) goto error_free; skb = handle_gso(skb); if (unlikely(IS_ERR(skb))) { vport_record_error(vport, VPORT_E_TX_DROPPED); goto error; } /* Process GSO segments. Try to do any work for the entire packet that * doesn't involve actually writing to it before this point. */ orig_len = 0; do { struct sk_buff *next_skb = skb->next; skb->next = NULL; orig_len += build_packet(vport, mutable, &iph, rt, max_headroom, mtu, skb); skb = next_skb; } while (skb); return orig_len; error_free: kfree_skb(skb); vport_record_error(vport, VPORT_E_TX_ERROR); error: return 0; } static struct net_protocol gre_protocol_handlers = { .handler = gre_rcv, .err_handler = gre_err, }; static int gre_init(void) { int err; err = inet_add_protocol(&gre_protocol_handlers, IPPROTO_GRE); if (err) printk(KERN_WARNING "openvswitch: cannot register gre protocol handler\n"); return err; } static void gre_exit(void) { tbl_destroy(port_table, NULL); inet_del_protocol(&gre_protocol_handlers, IPPROTO_GRE); } static int set_config(const struct vport *cur_vport, struct mutable_config *mutable, const void __user *uconfig) { const struct vport *old_vport; const struct mutable_config *old_mutable; int port_type; if (copy_from_user(&mutable->port_config, uconfig, sizeof(struct gre_port_config))) return -EFAULT; if (mutable->port_config.daddr == 0) return -EINVAL; if (mutable->port_config.flags & GRE_F_IN_KEY_MATCH) { port_type = FIND_PORT_MATCH; mutable->port_config.in_key = 0; } else port_type = FIND_PORT_KEY; old_vport = find_port(mutable->port_config.saddr, mutable->port_config.daddr, mutable->port_config.in_key, port_type, &old_mutable); if (old_vport && old_vport != cur_vport) return -EEXIST; if (mutable->port_config.flags & GRE_F_OUT_KEY_ACTION) mutable->port_config.out_key = 0; mutable->tunnel_hlen = sizeof(struct iphdr) + GRE_HEADER_SECTION; if (mutable->port_config.flags & GRE_F_OUT_CSUM) mutable->tunnel_hlen += GRE_HEADER_SECTION; if (mutable->port_config.out_key || mutable->port_config.flags & GRE_F_OUT_KEY_ACTION) mutable->tunnel_hlen += GRE_HEADER_SECTION; return 0; } static struct vport * gre_create(const char *name, const void __user *config) { struct vport *vport; struct gre_vport *gre_vport; int err; vport = vport_alloc(sizeof(struct gre_vport), &gre_vport_ops); if (IS_ERR(vport)) { err = PTR_ERR(vport); goto error; } gre_vport = gre_vport_priv(vport); strcpy(gre_vport->name, name); gre_vport->mutable = kmalloc(sizeof(struct mutable_config), GFP_KERNEL); if (!gre_vport->mutable) { err = -ENOMEM; goto error_free_vport; } vport_gen_rand_ether_addr(gre_vport->mutable->eth_addr); gre_vport->mutable->mtu = ETH_DATA_LEN; err = set_config(NULL, gre_vport->mutable, config); if (err) goto error_free_mutable; err = add_port(vport); if (err) goto error_free_mutable; return vport; error_free_mutable: kfree(gre_vport->mutable); error_free_vport: vport_free(vport); error: return ERR_PTR(err); } static int gre_modify(struct vport *vport, const void __user *config) { struct gre_vport *gre_vport = gre_vport_priv(vport); struct mutable_config *mutable; int err; int update_hash = 0; mutable = kmemdup(gre_vport->mutable, sizeof(struct mutable_config), GFP_KERNEL); if (!mutable) { err = -ENOMEM; goto error; } err = set_config(vport, mutable, config); if (err) goto error_free; /* Only remove the port from the hash table if something that would * affect the lookup has changed. */ if (gre_vport->mutable->port_config.saddr != mutable->port_config.saddr || gre_vport->mutable->port_config.daddr != mutable->port_config.daddr || gre_vport->mutable->port_config.in_key != mutable->port_config.in_key || (gre_vport->mutable->port_config.flags & GRE_F_IN_KEY_MATCH) != (mutable->port_config.flags & GRE_F_IN_KEY_MATCH)) update_hash = 1; /* This update is not atomic but the lookup uses the config, which * serves as an inherent double check. */ if (update_hash) { err = del_port(vport); if (err) goto error_free; } assign_config_rcu(vport, mutable); if (update_hash) { err = add_port(vport); if (err) goto error_free; } return 0; error_free: kfree(mutable); error: return err; } static int gre_destroy(struct vport *vport) { struct gre_vport *gre_vport = gre_vport_priv(vport); int port_type; const struct mutable_config *old_mutable; /* Do a hash table lookup to make sure that the port exists. It should * exist but might not if a modify failed earlier. */ if (gre_vport->mutable->port_config.flags & GRE_F_IN_KEY_MATCH) port_type = FIND_PORT_MATCH; else port_type = FIND_PORT_KEY; if (vport == find_port(gre_vport->mutable->port_config.saddr, gre_vport->mutable->port_config.daddr, gre_vport->mutable->port_config.in_key, port_type, &old_mutable)) del_port(vport); kfree(gre_vport->mutable); vport_free(vport); return 0; } static int gre_set_mtu(struct vport *vport, int mtu) { struct gre_vport *gre_vport = gre_vport_priv(vport); struct mutable_config *mutable; mutable = kmemdup(gre_vport->mutable, sizeof(struct mutable_config), GFP_KERNEL); if (!mutable) return -ENOMEM; mutable->mtu = mtu; assign_config_rcu(vport, mutable); return 0; } static int gre_set_addr(struct vport *vport, const unsigned char *addr) { struct gre_vport *gre_vport = gre_vport_priv(vport); struct mutable_config *mutable; mutable = kmemdup(gre_vport->mutable, sizeof(struct mutable_config), GFP_KERNEL); if (!mutable) return -ENOMEM; memcpy(mutable->eth_addr, addr, ETH_ALEN); assign_config_rcu(vport, mutable); return 0; } static const char * gre_get_name(const struct vport *vport) { const struct gre_vport *gre_vport = gre_vport_priv(vport); return gre_vport->name; } static const unsigned char * gre_get_addr(const struct vport *vport) { const struct gre_vport *gre_vport = gre_vport_priv(vport); return rcu_dereference(gre_vport->mutable)->eth_addr; } static int gre_get_mtu(const struct vport *vport) { const struct gre_vport *gre_vport = gre_vport_priv(vport); return rcu_dereference(gre_vport->mutable)->mtu; } struct vport_ops gre_vport_ops = { .type = "gre", .flags = VPORT_F_GEN_STATS | VPORT_F_TUN_ID, .init = gre_init, .exit = gre_exit, .create = gre_create, .modify = gre_modify, .destroy = gre_destroy, .set_mtu = gre_set_mtu, .set_addr = gre_set_addr, .get_name = gre_get_name, .get_addr = gre_get_addr, .get_dev_flags = vport_gen_get_dev_flags, .is_running = vport_gen_is_running, .get_operstate = vport_gen_get_operstate, .get_mtu = gre_get_mtu, .send = gre_send, };