NEPI v3.0 User Manual

Contents

Contents 2
1 FAQ 4
1.1 WhatisNEPI? 4
1.2 What does a NEPI script look like 2 5
1.3 What does NEPI stands for? 6
1.4 Whodeveloped NEPI?. 6
1.5 Isitfree? e 6
1.6 How canIcontribute? 6
1.7 Howcanlreportabug? 7
1.8 Where can I get more information? 7
2 Getting started 8
2.1 Dependencies 8
2.2 Thesourcecode 9
2.3 Install NEPIinyoursystem. 9
24 Runexperiments 10
3 Introduction to NEPI 16
3.1 Experiment Description 17
3.2 ExperimentLifeCycle L. 19
3.3 Resource Management: The EC& TheRMs 21
4 The ExperimentController API 23
4.1 Theexperimentscript L 23
42 Thedesign API 24
4.3 Theexecution API, 27
5 Supported resources 31
5.1 LINUXTESOUICeS o v v v vttt ittt 31
5.2 Planetlabresources oo oo 31

CONTENTS

6

7

5.3 OME resources v v v v v i e e e e e e e e e e e e
Debbuging

Release Cycle

7.1 Thedevelopmentbranch,
7.2 Versioning e
7.3 Therelease process

FAQ

1.1 What is NEPI?

NEPI is not a network simulator, nor an emulator or a testbed. NEPI is a Python
library that provides classes to describe and run network experiments on different
experimentation platforms (e.g. Planetlab, OMF wireless testbeds, network simula-
tors, etc).

Imagine that you want to run an experiment to test a distributed application you
just coded, on the Internet. You can use NEPI to deploy your application on Plan-
etLab nodes, run the experiment, and collect result files you might have generated
during the experiment (e.g. pcap files from tcpudmps).

Sure, you could do this by coding your own BASH script, but it will probably take
more time and painful hours of debugging if you want to do it right. NEPI aims at
providing a re-usable code base to run network experiments on target experimen-
tation platforms, so to decrease the time you spend in developing platform specific
scripts or programs, and debugging them.

In a nut-shell, NEPI is a network experiment management framework which pro-
vides a simple way of describing network experiments, and the logic to automati-
cally deploy those experiments on the target experimentation environments. It also
provides the means to control the resources used in the experiment (e.g. Nodes, ap-
plications, switches, virtual machines, routing table entries, etc) during experiment
execution, and to collect results generated by the experiment to a local repository.

The experiment deployment and control is done by the Experiment Controller
(EC) entity, which is responsible for the global orchestration of the experiment. The
EC knows nothing about how to manage specific resources (e.g. how to configure
a network interface in a PlanetLab node), instead it delegates those tasks to entities
called Resource Manager (RM).

The RMs are responsible of controlling single resources (e.g. a Linux host, an
Open vSwitched on PlanetLab nodes, etc). Different types of resources will be con-
trolled by different RMs, specifically adpated to control them. All RMs implement a
same external interface, that the EC uses to control them in a uniform way.

4

1.2. WHAT DOES A NEPI SCRIPT LOOK LIKE ? 5

NEPI is not magical, it can not control all existing resources on all existing ex-
perimentation platforms by default. However, potentially any resource could be
controlled by NEPI if the adequate Resource Manager is implemented for it. For-
tunately, NEPI already provides several Resource Managers for different resources
on a variety of testbeds, and new Resource Manager classes can be extended from
existing ones, to control new types of resources.

The idea behind NEPI is to enable runing network experiments on potentially
any experimentation platform, using a single software tool, as opposite to using a
dedicated software for each platform. An additional perk is that you don’t have to
deal with a lot of platform-specific gory details of setting up and configuring the
resources (e.g. Creating a TAP device on Planetlab. If you ever had to do that, you
know what I mean). Also, you could combine resources from different platforms in
a same experiment, using just one script.

So, 'One ring to rule them all’, sorry I meant, 'One tool to control them all’...
or something like that. We though it was a good idea to abstract platform details
behind a common resource management interface, and let NEPI deal with the details
and give you back the results.

1.2 What does a NEPI script look like ?

Here is a very simple experiment example, which runs a PING to "nepi.inria.fr"
from a given host. Note that you will need to replace the hostname, username, and
ssh_key variables va to run the example.

from nepi.execution.ec import ExperimentController

ec = ExperimentController(exp_id = "myexperiment")

hostname # Host that can be accessed with an SSH account
username = # SSH user account on host
ssh_key = # Path to SSH public key file to access host

node = ec.register_resource("LinuxNode")
ec.set(node, "hostname", hostname)
ec.set(node, "username", username)
ec.set(node, "identity", ssh_key)

app = ec.register_resource("LinuxApplication")
ec.set(app, "command", "ping -c3 nepi.inria.fr")

ec.register_connection(app, node)

ec.deploy()

6 CHAPTER 1. FAQ

ec.wait_finished(app)
print ec.trace(app, "stdout")

ec.shutdown()

1.3 What does NEPI stands for?

It stands for: Network Experiment Programming Interface.

1.4 Who developed NEPI?

NEPI was developed at INRIA, Sophia Antipolis France. A first prototype was im-
plemented in 2010. Versions 1.0 and 2.0 were released in 2011 and 2012, respec-
tively. The current version is 3.0, and it was completely redesigned and rewritten to
broaden the scope, and to include several new features, which will be described in
detail in this document. The following people has contributed to the project:

* NEPI version 3.0: Alina Quereilhac, Julien Tribino, Lucia Guevgeozian Odizzio,
Alexandros Kouvakas

e NEPI versions 1.0 and 2.0: Alina Quereilhac, Claudio Freire, Martin Ferrari,
Mathieu Lacage

* NEPI prototype: Martin Ferrari, Mathieu Lacage

e Other contributors: Dirk Hasselbalch

1.5 Isit free?

Yes, NEPI is free software. It is free to use, free to modify, free to share. NEPI v3.0
is licensed under GPL v3, so you can do whatever you want with it, as long as you
keep the same license.

1.6 How can I contribute?

There are many ways you can contribute to the project. The first one is using it and
reporting bugs. You can report bugs on the NEPI bugzilla page at:
http://nepi.inria.fr/bugzilla

http://nepi.inria.fr/bugzilla

1.7. HOW CAN I REPORT A BUG ? 7

You can also become a part of the NEPI community and join our mailing lists:

* To subscribe to the users mailing list at nepi-users@inria.fr you can send an
email to sympa@inria.fr with subject Subscribe nepi-users <put-your-user-name-
here>

* To subscribe to the developers mailing list at nepi-developers@inria.fr you can
send an email to sympa@inria.fr with subject Subscribe nepi-developers <put-
your-user-name-here>

To contribute with bug fixes and new features, please send your code patch to
the nepi-developers list.

1.7 How can I report a bug?

To report a bug take a look at the NEPI bugzilla page at :
http://nepi.inria.fr/bugzilla

1.8 Where can I get more information ?

For more information visit NEPI web site at :
http://nepi.inria.fr

http://nepi.inria.fr/bugzilla
http://nepi.inria.fr

Getting started

NEPI is written in Python, so you will need to install Python before being able to run
experiments with NEPI. NEPI is known to work on Linux (Fedore, Debian, Ubuntu)
and Mac (OS X).

2.1 Dependencies

Dependencies for NEPI vary according to the features you want to enable. Make sure
the following dependencies are correctly installed in your system before using NEPI.

Mandatory dependencies:

e Python 2.6+

Mercurial

python-ipaddr

python-networkx

python-pygraphviz
* python-matplotlib
Optional dependencies:

e SleekXMPP - Required to run experiments on OMF testbeds

Install dependencies on Debian/Ubuntu

$ sudo apt-get -y install python mercurial python-ipaddr python-networkx python-pygraphviz pyt

Install dependencies on Fedora

$ sudo yum -y install python mercurial python-ipaddr python-networkx graphviz-python python-me

2.2. THE SOURCE CODE 9

Install dependencies on Mac

First install homebrew (http://mxcl.github.io/homebrew/), then you can install
Python and the rest of the dependencies as follows:

brew install python

sudo port install mercurial
sudo easy_install pip

sudo pip install ipaddr

sudo pip install networkx
sudo pip install pygraphviz
sudo pip install matplotlib

A A A A A A

To use Python you will need to set the PATH environmental variable as:

$ export PATH=$PATH:/usr/local/share/python

Install SleekXMPP

You will need git to get the SleekXMPP sources.
$ git clone -b develop git://github.com/fritzy/SleekXMPP.git

$ cd SleekXMPP
$ sudo python setup.py install

2.2 The source code

To get NEPI’s source code you will need Mercurial version control system. The Mer-
curial NEPI repo can also be browsed online at:

http://nepi.inria.fr/code/nepi/

Clone the repo

$ hg clone http://nepi.inria.fr/code/nepi -r nepi-3-dev

2.3 Install NEPI in your system

You don’t need to install NEPI in your system to be able to run experiments. How-
ever this might be convenient if you don’t plan to modify or extend the sources.
To install NEPI, just run make install in the NEPI source folder.

$ cd nepi
$ make install

http://mxcl.github.io/homebrew/
http://nepi.inria.fr/code/nepi/

10 CHAPTER 2. GETTING STARTED

If you are developing your own NEPI extensions, the installed NEPI version
might interfere with your work. In this case it is probably more convenient to tell
Python where to find the NEPI sources, using the PYTHONPATH environmental
variable, when you run a NEPI script.

$ export PYTHONPATH=$PYTHONPATH:<path-to-nepi>/src

2.4 Run experiments

There are two ways you can use NEPI to run your experiments. The first one is
writing a Python script, which will import NEPI libraries, and run it. The second
one is in interactive mode by using Python console.

Run from script

Writing a simple NEPI expeiment script is easy. Take a look at the example in the
FAQ section 1.2. Once you have written down the script, you can run it using
Python. If NEPI is not installed in your system, you will need to export the path
to NEPI'’s source code to the PYTHONPATH environment variable, so that Python
can find NEPI’s libraries.

$ export PYTHONPATH=<path-to-nepi>/src:$PYTHONPATH
$ cd <path-to-nepi>
$ python examples/linux/ping.py -a localhost

Run NEPI interactively

The IPython console can be used as an interactive interpreter to execute Python
instructions. We can take advantage of this feature, to interactively run NEPI exper-
iments. We will use the IPython console for the example below.

You can easily install IPython on Debian, Ubuntu, Fedora or Mac as follows:

Debian/Ubuntu

$ sudo apt-get install ipython

Fedora

$ sudo yum install ipython

Mac

2.4. RUN EXPERIMENTS 11

$ pip install ipython

Before starting, make sure to add Python and IPython source directory path to
the PYTHONPATH environment variable

$ export PYTHONPATH=$PYTHONPATH:/usr/local/lib/python:/usr/local/share/python/ipython
Then you can start IPython as follows:

$ export PYTHONPATH=<path-to-nepi>/src:$PYTHONPATH

$ ipython
Python 2.7.3 (default, Jan 2 2013, 13:56:14)
Type "copyright", "credits" or "license" for more information.

IPython 0.13.1 -- An enhanced Interactive Python.

? -> Introduction and overview of IPython’s features.
%squickref -> Quick reference.

help -> Python’s own help system.

object? -> Details about ’'object’, use 'object??’ for extra details.

If you want to paste many lines at once in IPython, you will need to type %cpaste
and finish the paste block with .

The first thing we need to do to describe an experiment with NEPI is to import the
NEPI Python modules. In particular we need to import the ExperimentController
class. To do this type the following in the Python console:

from nepi.execution.ec import ExperimentController

After importing the ExperimentController class, it is possible to create a new
instance of an the ExperimentController (EC) for your experiment. The <exp-id>
argument is the name you want to give the experiment to identify it and distinguish
it from other experiments.

ec = ExperimentController(exp_id = "<your-exp-id>")

Next we will define two Python functions: add_node and add_app. The first one
to register LinuxNodes resources and the second one to register LinuxApplications
resources.

%sCpaste
def add_node(ec, hostname, username, ssh_key):

12 CHAPTER 2. GETTING STARTED

node = ec.register_resource("LinuxNode")
ec.set(node, "hostname", hostname)
ec.set(node, "username", username)

ec.set(node, "cleanHome", True)
ec.set(node, "cleanProcesses", True)
return node

(
(
ec.set(node, "identity", ssh_key)
(
(

def add_app(ec, command, node):
app = ec.register_resource("LinuxApplication")
ec.set(app, "command", command)
ec.register_connection(app, node)
return app

The method register_resource registers a resource instance with the Experiment-
Controller. The method register_connection indicates that two resources will interact
during the experiment. Note that invoking add_node or add_app has no effect other
than informing the EC about the resources that will be used during the experiment.
The actual deployment of the experiment requires the method deploy to be invoked.

The LinuxNode resource exposes the hostname, username and identity attributes.
This attributes provide information about the SSH credentials needed to log in to
the Linux host. The hostname is the one that identifies the physical host you want to
access during the experiment. The username must correspond to a valid account on
that host, and the identity attribute is the "absolute’ path to the SSH private key in
your local computer that allows you to log in to the host.

The command attribute of the LinuxApplication resource expects a BASH com-
mand line string to be executed in the remote host. Apart from the command at-
tribute, the LinuxApplication resource exposes several other attributes that allow to
upload, compile and install arbitrary sources. The add_app function registers a con-
nection between a LinuxNode and a LinuxApplication.

Lets now use these functions to describe a simple experiment. Choose a host
where you have an account, and can access using SSH key authentication.

hostname = "<the-hostname>"
username = "<my-username>"
identity = "</home/myuser/.ssh/id_rsa>"

node = add_node(ec, hostname, username, ssh_key)
app = add_app(ec, "ping -c3 nepi.inria.fr", node)

The values returned by the functions add_node and add_app are global unique
identifiers (guid) of the resources that were registered with the EC. The guid is used

2.4. RUN EXPERIMENTS 13

to reference the ResourceManager associated to a registered resource (for instance
to retrieve results or change attribute values).

Now that we have registered some resources, we can ask the ExperimentCon-
troller (EC) to deploy them. Invoking the deploy command will not only configure
the resource but also automatically launch the applications.

ec.deploy()

After some seconds, we should see some output messages informing us about the
progress in the host deployment. If you now open another terminal and you connect
to the host using SSH (as indicated below), you should see that a directory for your
experiment has been created in the host. In the remote host you will see that two
NEPI directories were created in the $HOME directory: nepi-src and nepi-exp. The
first one is where NEPI will store files that might be re used by many experiments
(e.g. source code, input files) . The second directory nepi-exp, is where experiment
specific files (e.g. results, deployment scripts) will be stored.

$ ssh -i identity username@hostname

Inside the nepi-exp directory, you will find another directory with the <exp-id>
assigned to your EC, and inside that directory you should find one directory named
node-1 which will contain the files (e.g. result traces) associated to the LinuxNode
reosurce you just deployed. In fact for every resource deployed associated to that
host (e.g. each LinuxApplication), NEPI will create a directory to place files related
to it. The name of the directory identifies the type of resources (e.g. ‘node’, app’,
etc) and it is followed by the global unique identifier (guid).

We can see if a resource finished deploying by querying its state through the EC

ec.state(app, hr=True)

Once a LinuxApplication has reached the state 'STARTED’, we can retrieve the
‘stdout’ trace, which should contain the output of the PING command.

ec.trace(app, "stdout")

That is it. We can terminate the experiment by invoking the method shutdown.

ec.shutdown ()

14 CHAPTER 2. GETTING STARTED

Define a workflow

Now that we have introduced to the basics of NEPI, we will register two more ap-
plications and define a workflow where one application will start after the other
one has finished executing. For this we will use the EC register_condition method
described below:

register_condition(self, guidsl, action, guids2, state, time=None):
Registers an action START, STOP or DEPLOY for all RM on list
guidsl to occur at time 'time’ after all elements in list guids2
have reached state ’'state’.

:param guidsl: List of guids of RMs subjected to action
:type guidsl: list

:param action: Action to perform (either START, STOP or DEPLOY)
:type action: ResourceAction

:param guids2: List of guids of RMs to we waited for
:type guids2: list

:param state: State to wait for on RMs of list guids2 (STARTED,
STOPPED, etc)
:type state: ResourceState

:param time: Time to wait after guids2 has reached status
:type time: string

To use the register_condition method we will need to import the ResourceState
and the ResourceAction classes

from nepi.execution.resource import ResourceState, ResourceAction

Then, we register the two applications. The first application will wait for 5 sec-
onds and the create a file in the host called "greetings" with the content "HELLO
WORLD". The second application will read the content of the file and output it to
standard output. If the file doesn’t exist il will instead output the string "FAILED".

add_app(ec, "sleep 5; echo 'HELLO WORLD!’ > ~/greetings", node)
add_app(ec, "cat ~/greetings || echo 'FAILED’'", node)

appl
app2

In order to guarantee that the second application is successful, we need to make
sure that the first application is executed first. For this we register a condition:

ec.register_condition (app2, ResourceAction.START, appl, ResourceState.STOPPED)

2.4. RUN EXPERIMENTS 15

We then deploy the two application:

ec.deploy(guids=[appl,app2])

Finally, we retrieve the standard output of the second application, which should
return the string "HELLO WORLD!".

ec.trace(app2, "stdout")

Introduction to NEPI

During the past decades, a wide variety of platforms to conduct network experi-
ments, including simulators, emulators and live testbeds, have been made available
to the research community. Some of these platforms are tailored for very specific use
cases (e.g. PlanetLab for very realistic Internet application level scenarios), while
others support more generic ones (e.g. ns-3 for controllable and repeatable experi-
mentation). Nevertheless, no single platform is able to satisfy all possible scenarios,
and so researchers often rely on different platforms to evaluate their ideas.

Given the huge diversity of available platforms, it is to be expected a big disparity
in the way to carry out an experiment between one platform and another. Indeed,
different platforms provide their own mechanisms to access resources and different
tools to conduct experiments. These tools vary widely, for instance, to run a ns-3
simulation it is necessary to write a C++ program, while to conduct an experiment
using PlanetLab nodes, one must first provision resources through a special web
service, and then connect to the nodes using SSH to launch any applications involved
in the experiment.

Mastering such diversity of tools can be a daunting task, but the complexity of
conducting network experiments is not only limited to having to master different
tools and services. Designing and implementing the programs and scripts to run
an experiment can be a time consuming and difficult task, specially if distributed
resources need to be synchronised to perform the right action at the right time.
Detecting and handling possible errors during experiment execution also posses a
challenge, even more when dealing with large size experiments. Additionally, diffi-
culties related to instrumenting the experiment and gathering the results must also
be considered.

In this context, the challenges that NEPI addresses are manifold. Firstly, to sim-
plify the complexity of running network experiments. Secondly, to simplify the use
of different experimentation platforms, allowing to easily switch from one to an-
other. Thirdly, to simplify the use of resources from different platforms at the same
time in a single experiment.

The approach proposed by NEPI consists on exposing a generic API that re-

16

3.1. EXPERIMENT DESCRIPTION 17

searchers can use to program experiments, and providing the libraries that can exe-
cute those experiments on target network experimentation platforms. The API ab-
stracts the researchers from the details required to actually run an experiment on
a given platform, while the libraries provide the code to automatically perform the
steps necessary to deploy the experiment and manage resources.

The API is generic enough to allow describing potentially any type of experiment,
while the architecture of the libraries was designed to be extensible to support arbi-
trary platforms. A consequence of this is that any new platform can be supported in
NEPI without changing the API, in a way that is transparent to the users.

3.1 Experiment Description

NEPI represents experiments as graphs of interconnected resources. A resource is
an abstraction of any component that takes part of an experiment and that can be
controlled by NEPI. It can be a software or hardware component, it could be a virtual
machine, a switch, a remote application process, a sensor node, etc.

Resources in NEPI are described by a set of attributes, traces and connections.
The attributes define the configuration of the resource, the traces represent the re-
sults that can be collected for that resource during the experiment and the connec-
tions represent how a resource relates to other resources in the experiment.

Resource type: LinuxApplication

| R | Resource Properties

Attributes
¢ Command

¢ Sources

Traces
* Stdout
e Stderr

s

Figure 3.1: Properties of a resource of type LinuxApplication

Examples of attributes are a linux hostname, an IP address to be assigned to a
network interface, a command to run as a remote application. Examples of traces

18 CHAPTER 3. INTRODUCTION TO NEPI

are the standard output or standard error of a running application, a tcpdump on a
network interface, etc.

Resources are also associated to a type (e.g. a Linux host, a Tap device on Plan-
etLab, an application running on a Linux host, etc). Different types of resources
expose different attributes and traces and can be connected to other specific types
(e.g. A resource representing a wireless channel can have an attribute SSID and be
connected to a Linux interface but not directly to a Linux host resource) Figure 3.1
exemplifies this concept.

There are two different types of connections between resources, the first one is
used to define the topology graph of the experiment. This graph provides information
about which resources will interact with which other resources during the experi-
ment (e.g. application A should run in host B, and host B will be connected to wire-
less channel D through a network interface C). Figure 3.2 shows a representation of
the concept of topology graph to describe the an experiment.

Application S Application C

Interface F Interface G

)
5

Node B

Figure 3.2: A topology graph representation of an abstract experiment

The second type of connections (called conditions to differentiate them from the
first type) specifies the dependencies graph. This graph is optional and imposes con-
straints on the experiment workflow, that is the order in which different events oc-
cur during the experiment. For instance, as depicted in Figure 3.3 a condition on
the experiment could specify that a server application has to start before a client
application does, or that an network interface needs to be stopped (go down) at a
certain time after the beginning of the experiment.

It is important to note, that the topology graph also defines implicit and com-
pulsory workflow constraints (e.g. if an application is topologically connected to a
host, the host will always need to be up and running before an application can run

3.2. EXPERIMENT LIFE CYCLE 19

Application C Application S

ResourceAction ResourceState

Figure 3.3: A dependencies graph representation involving two applications re-
sources in an experiment

on it). The difference is that the dependency graph adds complementary constraints
specified by the user, related to the behavior of the experiment.

This technique for modeling experiments is generic enough that can be used to
describe experiments involving resources from any experimentation environment
(i.e. testbed, simulator, emulator, etc). However, it does not provide by itself any
information about how to actually deploy and run an experiment using concrete
resources.

3.2 Experiment Life Cycle

The Experiment Description by itself is not enough to conduct an experiment. In
order to run an experiment it is necessary to translate the description into concrete
actions and to perform these actions on the specific resources taking part of the
experiment. NEPI does this for the user in an automated manner.

Given that different resources will require performing actions in different ways
(e.g. deploying an application on a Linux machine is different than deploying a
mobile wireless robot), NEPI abstracts the life cycle of resources into common stages
associated to generic actions, and allows to plug-in different implementation of these
actions for different types of resources. Figure 3.4 shows the three main stages of
the network experiment life cycle, Deployment, Control and Result (collection), and
the actions that are involved in each of them.

In order to be able to control different types of resources in a uniform way, NEPI
assigns a generic state to each of these actions and expects all resources to follow

20 CHAPTER 3. INTRODUCTION TO NEPI

Deployment Control Results

* Discover * Changes configuration * Queryinformation
* Provision * Monitor status * Collect traces

+ Configure + Detect errors

* Synchronize + Stop

* Instrument * Release resources

* Start

Figure 3.4: Common stages of a network experiment life cycle

Initial state for all resources (NEW)))
L * To achieve a uniform control interface, all resources

go through the same states. However, not all states
have a well defined meaning for all types of
resources.

A resource matching the
requirements has been identified *

DISCOVERED |

8

Access to the resources has been)
granted to the user * \PROVISIONED
The resource is configured and (
ready to be used { READY
; RELEASED

Figure 3.5: Resources state transitions

il

An error occurred and the resource

The resource has started taking d p 1 .
could not perform its tas

part of the experiment

Final state of all resources. The

The resource is no longer taking C A
resource is no longer in use

part in the experiment

the same set of state transitions during the experiment life. The states and state
transitions are depicted in Figure 3.5.

It is important to note that NEPI does not require these states to be globally
synchronized for all resources (e.g. resources are not required to be all ready or
started at the same time). NEPI does not even require all resources to be declared
and known at the beginning of the experiment, making it possible to use an inter-
active deployment mode, where new resources can de declared and deployed on the
fly, according to the experiment needs. This interactive mode can be useful to run

3.3. RESOURCE MANAGEMENT: THE EC & THE RMS 21

experiments with the purpose of exploring a new technology, or to use NEPI as an
adaptive experimentation tool, that could change an experiment according to exter-
nal conditions or measurements.

3.3 Resource Management: The EC & The RMs

The Experiment Controller (EC) is the entity that is responsible for translating the
Experiment Description into a running experiment. It holds the topology and depen-
dencies graphs, and it exposes a generic experiment control API that the user can
invoke to deploy experiments, control resources and collect results.

Topology

Dependencies

Figure 3.6: User interacting with the Experiment Controller

As shown in Figure 3.6, the user declares the resources and their dependencies
directly with the EC. When the user requests the EC to deploy a certain resource
or a group of resources, the EC will take care of performing all the necessary ac-
tions without further user intervention, including the sequencing of actions to re-
spect user defined and topology specific dependencies, through internal scheduling
mechanisms.

The EC is a generic entity responsible for the global orchestration of the experi-
ment. As such, it abstracts itself from the details of how to control concrete resources
and relies on other entities called Resource Managers (RM)s to perform resource spe-
cific actions.

For each resource that the user registers in the topology graph, the EC will in-
stantiate a RM of a corresponding type. A RM is a resource specific controller and

22 CHAPTER 3. INTRODUCTION TO NEPI

different types of resources require different type of RMs, specifically adapted to
manage them.

The EC communicates with the RMs through a well defined API that exposes the
necessary methods (actions) to achieve all the state transitions defined by the com-
mon resource life-cycle. Each type of RM must provide a specific implementation
for each action and ensure that the correct state transition has been achieved for the
resource (e.g. upon invocation of the START action, the RM must take the necessary
steps to start the resource and set itself to state STARTED). This decoupling between
the EC and the RMs makes it possible to extend the control capabilities of NEPI to
arbitrary resources, as long as a RM can be implemented to support it.

As an example, a testbed X could allow to control host resources using a certain
API X, which could be accessed via HTTP, XMLRPC, or via any other protocol. In
order to allow NEPI to run experiments using this type of resource, it would suf-
fice to create a new RM of type host X, which extends the common RM API, and
implements the API X to manage the resources.

Figure 3.7 illustrates how the user, the EC, the RMs and the resources collaborate
together to run an experiment.

- RM AP .nepl

- RM RM RM
User

'ggl:; 'SSH API x|
Desktop N /

N

API x

Resources

Figure 3.7: Resource management in NEPI

The ExperimentController API

The ExperimentController (EC) is the entity in charge of turning the experiment
description into a running experiment. In order to do this the EC needs to know
which resources are to be used, how they should be configured and how resources
relate to one another. To this purpose the EC exposes methods to register resources,
specify their configuration, and register dependencies between. These methods are
part of the EC design API. Likewise, in order to deploy and control resources, and
collect data, the EC exposes another set of methods, which form the execution API.
These two APIs are described in detail in the rest of this chapter.

4.1 The experiment script

NEPI is a Python-based language and all classes and functions can be used by im-
porting the nepi module from a Python script.
In particular, the ExperimentController class can be imported as follows:

from nepi.execution.ec import ExperimentController

Once this is done, an ExperimentController must be instantiated for the experi-
ment. The ExperimentController constructor receives the optional argument exp_id.
This argument is important because it defines the experiment identity and allows to
distinguish among different experiments. If an experiment id is not explicitly given,
NEPI will automatically generate a unique id for the experiment.

ec = ExperimentController(exp_id = "my-exp-id")

The experiment id can always be retrieved as follows

exp_id = ec.exp_id

Since a same experiment can be ran more than one time, and this is often de-
sirable to obtain statistical data, the EC identifies different runs of an experiment

23

24 CHAPTER 4. THE EXPERIMENTCONTROLLER API

with a same exp_id with another attribute, the run_id. The run_id is a timestamp
string value, and in combination with the exp_id, it allows to uniquely identify an
experiment instance.

run_id = ec.run_id

4.2 The design API

Once an ExperimentController has been instantiated, it is possible to start describ-
ing the experiment. The design API is the set of methods which allow to do so.

Registering resources

Every resource supported by NEPI is controlled by a specific ResourceManager (RM).
The RM instances are automatically created by the EC, and the user does not need
to interact with them directly.

Each type of RM is associated with a type_id which uniquely identifies a concrete
kind of resource (e.g PlanetLab node, application that runs in a Linux machine, etc).
The type_ids are string identifiers, and they are required to register a resource with
the EC.

To discover all the available RMs and their type_ids we can make use of the Re-
sourceFactory class. This class is a Singleton that holds the templates and informa-
tion of all the RMs supported by NEPI. We can retrieve this information as follows:

from nepi.execution.resource import ResourceFactory

for type_id in ResourceFactory.resource_types():
rm_type = ResourceFactory.get_resource_type(type_id)
print type_id, ":", rm_type.get_help()

Once the type_id of the resource is known, the registration of a new resource with
the EC is simple:

type_id = "SomeRMType"
guid = ec.register_resources(type_id)

When a resource is registered, the EC instantiates a RM of the requested type_id
and assigns a global unique identifier (guid) to it. The guid is an incremental integer
number and it is the value returned by the register_resource method. The EC keeps
internal references to all RMs, which the user can reference using the corresponding
guid value.

4.2. THE DESIGN API 25

Attributes

ResourceManagers expose the configurable parameters of resources through a list of
attributes. An attribute can be seen as a name:value pair, that represents a certain
aspect of the resource (whether information or configuration information).

It is possible to discover the list of attributes exposed by an RM type as follows:

from nepi.execution.resource import ResourceFactory

type_id
rm_type

"SomeRMType"
ResourceFactory.get_resource_type(type_id)

for attr in rm_type.get_attributes():
print " ", attr.name, ":", attr.help

To configure or retrieve the value of a certain attribute of an registered resource
we can use the get and set methods of the EC.

old_value = ec.get(gquid, "attr_name")
ec.set(guid, "attr_name", new_value)
new_value = ec.get(gquid, "attr_name")

Since each RM type exposes the characteristics of a particular type of resource, it
is to be expected that different RMs will have different attributes. However, there a
particular attribute that is common to all RMs. This is the critical attribute, and it is
meant to indicate to the EC how it should behave when a failure occurs during the
experiment. The critical attribute has a default value of True, since all resources are
considered critical by default. When this attribute is set to False the EC will ignore
failures on that resource and carry on with the experiment. Otherwise, the EC will
immediately interrupt the experiment.

Traces

A Trace represent a stream of data collected during the experiment and associated
to a single resource. ResourceManagers expose a list of traces, which are identified
by a name. Particular traces might or might not need activation, since some traces
are enabled by default.

It is possible to discover the list of traces exposed by an RM type as follows:

from nepi.execution.resource import ResourceFactory

type_id
rm_type

"SomeRMType"
ResourceFactory.get_resource_type(type_id)

for trace in rm_type.get_traces():

26 CHAPTER 4. THE EXPERIMENTCONTROLLER API

print " ", trace.name, ":", trace.enabled

The enable_trace method allows to enable a specific trace for a RM instance

ec.enable_trace(guid, "trace-name")

print ec.trace_enabled(guid, "trace-name")

Registering connections

In order to describe the experiment set-up, a resources need to be associated at least
to one another. Through the process of connecting resources the topology graph is
constructed. A certain application might need to be configured and executed on a
certain node, and this must be indicated to the EC by connecting the application RM
to the node RM.

Connections are registered using the register_connection method, which receives
the guids of the two RM.

ec.register_connection(node_guid, app_guid)

The order in which the guids are given is not important, since the topology_graph
is not directed, and the corresponding RMs ‘know’ internally how to interpret the
connection relationship.

Registering conditions

All ResourceMangers must go through the same sequence of state transitions. Asso-
ciated to those states are the actions that trigger the transitions. As an example, a RM
will initially be in the state NEW. When the DEPLOY action is invoked, it will tran-
sition to the DISCOVERED, then PROVISIONED, then READY states. Likewise, the
action START will make a RM pass from state READY to STARTED, and the action
STOP will change a RM from state STARTED to STOPPED.

Using these states and actions, it is possible to specify workflow dependencies
between resources. For instance, it would be possible to indicate that one application
should start after another application by registering a condition with the EC.

from nepi.execution.resource import ResourceState, ResourceActions

ec.register_condition(appl_guid, ResourceAction.START, app2_guid, ResourceState.
STARTED)

4.3. THE EXECUTION API 27

The above invocation should be read "Application 1 should START after applica-
tion 2 has STARTED". It is also possible to indicate a relative time from the moment
a state change occurs to the moment the action should be taken as follows:

from nepi.execution.resource import ResourceState, ResourceActions

ec.register_condition(appl_guid, ResourceAction.START, app2_guid, ResourceState.
STARTED, time = "5s")

This line should be read "Application 1 should START at least 5 seconds after
application 2 has STARTED".

Allowed actions are: DEPLQOY, START and STOP.

Existing states are: NEW, DISCOVERED, PROVISIONED, READY, STARTED,
STOPPED, FAILED and RELEASED.

4.3 The execution API

After registering all the resources and connections and setting attributes and traces,
once the experiment we want to conduct has been described, we can proceed to run
it. To this purpose we make use of the execution methods exposed by the EC.

Deploying an experiment

Deploying an experiment is very easy, it only requires to invoke the deploy method
of the EC.

ec.deploy()

Given the experiment description provided earlier, the EC will take care of au-
tomatically performing all necessary actions to discover, provision, configure and
start all resources registered in the experiment.

Furthermore, NEPI does not restrict deployment to only one time, it allows to
continue to register, connect and configure resources and deploy them at any mo-
ment. We call this feature interactive or dynamic deployment.

The deploy method can receive other optional arguments to customize deploy-
ment. By default, the EC will deploy all registered RMs that are in state NEW. How-
ever, it is possible to specify a subset of resources to be deployed using the guids
argument.

28 CHAPTER 4. THE EXPERIMENTCONTROLLER API

ec.deploy(guids=[gquidl, gquid2, guid3])

Another useful argument of the deploy method is wait_all_ready. This argument
has a default value of True, and it is used as a barrier to force the START action to be
invoked on all RMs being deploy only after they have all reached the state READY.

ec.deploy(wait_all_ready=False)

Getting attributes

Attribute values can be retrieved at any moment during the experiment run, using
the get method. However, not all attributes can be modified after a resource has
been deployed. The possibility of changing the value of a certain attribute depends
strongly on the RM and on the attribute itself. As an example, once a hostname has
been specified for a certain Node RM, it might not be possible to change it after
deployment.

attr_value = ec.get(guid, "attr-name")

Attributes have flags that indicate whether their values can be changed and when
it is possible to change them (e.g. before or after deployment, or both). These flags
are NoFlags (the attribute value can be modified always), ReadOnly (the attribute
value can never be modified), ExecReadOnly (the attribute value can only be modi-
fied before deployment). The flags of a certain attribute can be validated as shown
in the example below, and the value of the attribute can be changed using the set
method.

from nepi.execution.attribute import Flags
attr = ec.get_attribute(gquid, "attr-name")

if not attr.has_flag(Flags.ReadOnly):
ec.set(guid, "attr-name", attr_value)

Quering the state

It is possible to query the state of any resource at any moment. The state of a resource
is requested using the state method. This method receives the optional parameter hr
to output the state in a human readable string format instead of an integer state code.

4.3. THE EXECUTION API 29

state_id = ec.state(guid)

Human readable state
state = ec.state(guid, hr = True)

Getting traces

After a ResourceManager has been deployed it is possible to get information about
the active traces and the trace streams of the generated data using the frace method.

Most traces are collected to a file in the host where they are generated, the total
trace size and the file path in the (remote) host can be retrieved as follows.

from nepi.execution.trace import TraceAttr

path
size

ec.trace(gquid, "trace-name", TraceAttr.PATH)
ec.trace(gquid, "trace-name", TraceAttr.SIZE)

The trace content can be retrieved in a stream, block by block.

trace_block = ec.trace(guid, "trace-name", TraceAttr.STREAM, block=1l, offset=0)

It is also possible to directly retrieve the complete trace content.

trace_stream = ec.trace(gquid, "trace-name")

Using the trace method it is easy to collect all traces to the local user machine.

for trace in ec.get_traces(guid):
trace_stream = ec.trace(guid, "trace-name")
f = open("trace-name", "w")
f.write(trace_stream)
f.close()

API reference

Further information about classes and method signatures can be found using the
Python help method. For this inspection work, we recommend to instantiate an
ExperimentController from an IPython console. This is an interactive console that
allows to dynamically send input to the python interpreter.

If NEPI is not installed in the system, you will need to add the NEPI sources path
to the PYTHONPATH environmental variable before invoking ipython.

30 CHAPTER 4. THE EXPERIMENTCONTROLLER API

$ PYTHONPATH=$PYTHONPATH:src ipython
Python 2.7.3 (default, Jan 2 2013, 13:56:14)
Type "copyright", "credits" or "license" for more information.

IPython 0.13.1 -- An enhanced Interactive Python.

? -> Introduction and overview of IPython’s features.
%quickref -> Quick reference.

help -> Python’s own help system.

object? -> Details about ’'object’, use ’'object??’ for extra details.

In [1]: from nepi.execution.ec import ExperimentController
In [2]: ec = ExperimentController(exp_id = "test-tap")
In [3]: help(ec.set)

The example above will show the following information related to the set method
of the EC API.

Help on method set in module nepi.execution.ec:

set(self, guid, name, value) method of nepi.execution.ec.ExperimentController
instance
Modifies the value of the attribute with name ’'name’ on the RM with guid ’guid

’

:param guid: Guid of the RM
:type guid: int

:param name: Name of the attribute
:type name: str

:param value: Value of the attribute

Supported resources

5.1 Linux resources

* Linux Node (Clean home, etc)

* SSH

e The directory structure

* Traces and collection

* Linux Application

* LinuxPing, LinuxTraceroute, etc

¢ CCNx

5.2 Planetlab resources

The Planetlab node resource inherits every feature of the Linux node, but adds the
ability to choose for your experiment, healthy nodes from the Planetlab testbed. By
healthy we mean alive nodes, accessible via ssh using your authentication informa-
tion, with a checked filesystem in order to discard future problems during run-time.

How to get an account
Register

If you want to use nodes from the Planetlab testbed, first you need to have an
account, if you don’t have one, you can register on the planetlab europe portal
www.planet-lab.eu (see Create an account).

31

32 CHAPTER 5. SUPPORTED RESOURCES

Add your account to a Slice

Then, in order to have access to the nodes needed for your experiment, you will
need a slice. A slice is a subset of the planetlab resources, capable of running an
experiment. Usually, once you own an account, you ask someone from your institue
for a slice creation. The granted person (called PI) can then create a slice for you or
associate you to an already existing slice.

Differences between PLE and PLC

Different instamces of PlanetLab exist like PlanetLab Central, PlanetLab Europe,
PlanetLab Japan,... PlanetLab Europe (PLE) is the European portion of the publicly
available PlanetLab (PLC) testbed. They main operational difference is related to
credentials. If the testbed that issues the credentials is the european testbed, then
for the PlanetLab Europe nodes the user can query more status information. Having
more information can be beneficial when defining selection filters for the nodes.
Anyway, PLE and PLC are federated, meaning the discovery and provisioning is
always possible.

The Planetlab Node RM

In order for NEPI to select healthy nodes for your experiment and add them to your
slice, it is necessary to set three attributes after resource registration : username,
pluser and plpassword. username is the name to ssh login in your nodes, for Plan-
etlab testbed it will always be your slice name. pluser and plpassword are the user
and password used for authenticate yourself in the Planetlab web page (www.planet-
lab.eu). For example, when registering a Planetlab node for your experiment, the
experiment description will look a lot like this:

node = ec.register_resource("PlanetlabNode")

ec.set(node, "username", "institute_project")
ec.set(node, "pluser", "&ANaANjohn.doe@institute.edu")
ec.set(node, "plpassword", "guessit")

When you log in with your credential to the Planetlab testbed portal (www.planet-
lab.eu), you should be able to see the slices associated to your user as well as the
set of nodes currently in your slices, and all the nodes provided by the testbed.
Moreover, the web page allows the user to browse these resources and find out more
characteristics about them. However, using the web site is not really convenient for
large experiment involving hundreds of nodes. NEPI can do this job for you.

The portal retrieves the node’s information by quering a service called MyPLC,
NEPI queries the same service to efficiently select the most suitable nodes for the

5.2. PLANETLAB RESOURCES 33

experiment. The user and password to query this service are the ones introduced
before as pluser, and plpassword.

NEPI allows the user to filter among the Planetlab nodes according to different
criterias, aiming to select a specific set of nodes for the experiment. For example,
one experiment could only require nodes with OS Fedora 14, so the user should use
the OS filter available for the Planetlab node resource when describing the node.

Current list of filters available :

* city

* country

* region

e architecture

* operating_system
e min_reliability
* max_reliability
e min_bandwidth
* max_bandwidth
* min_load

e max_load

* min_cpu

* max_cpu

We have already mentionned that, in order to use MyPLC service, it is necessary
to set the attributes pluser and plpassword. Filters are also represented by attributes
and can be set by the user. Different type of filter exist, each one corresponding to a
specific kind of value (String, Enumerate, ...). For each attribute, more information
can be found in the help associated to this attribute as well as in its definition.

For example, for the attribute operating system, one can find the help, type, val-
ues allowed, etc. in its definition (src/nepi/resources/planetlab/node.py):
operating_system = Attribute("operatingSystem",

"Constraint operating system during resource discovery.",
type = Types.Enumerate,

allowed = ["f8",
Ilflzll ,

34 CHAPTER 5. SUPPORTED RESOURCES

"f14",

"centos",

"other"],

flags = Flags.Filter)

Now we know how to add a filter to the node description:

node = ec.register_resource("PlanetlabNode??")
ec.set(node, "username", "institute_project")
ec.set(node, "pluser", "aAN&ANjhon.doe@institute.edu")
ec.set(node, "plpassword", "guessit")

ec.set(node, "operatingSystem", "f14")

In case of more filters, an AND between the filters will be applied:

node = ec.register_resource("PlanetlabNode??")
ec.set(node, "username", "institute project")
ec.set(node, "pluser", "4AN&ANjhon.doe@institute.edu")
ec.set

ec.set(node, "operatingSystem", "f14")

(
(
(node, "plpassword", '"guessit")
(
ec.set(node, "minCpu", 50)

Note that minCpu = 50 means that at least 50% of the CPU has to be free in the
node, to make the node suitable for the experiment.

The hostname attribute

Another attribute that the user can define for the node is the hostname. This at-
tribute has priority over the others filters. When the experiment needs more than
one node, it is necessary to register conditions in order to ensure that the nodes
identified by its hostname are selected before the others nodes (the ones identified
by filters or just not identified at all).

For example, imagine we need two nodes for our experiment : Current list of
filters available :

 For one of them, we are completly sure that we want to use a specific one, so
we identify it by its hostname

* For the other one, we just want to fulfill the restriction of OS fedora 8 and
country France.

In this case, our experiment description will look like this:

nodel = ec.register_resource("PlanetlabNode")

ec.set(nodel, "username", "institute_project")

ec.set(nodel, "pluser", "&ANaANjohn.doe@institute.edu")
(

ec.set(nodel, "plpassword", "guessit")

5.2. PLANETLAB RESOURCES 35

ec.set(nodel, "hostname", "planetlab2.utt.fr")
planetlab2.utt.fr is the specific node we want to use

node2 = ec.register_resource("PlanetlabNode")
ec.set(node2, "username", "institute_project")
ec.set(node2, "pluser", "4AN&ANjohn.doe@institute.edu")
ec.set(node2, "plpassword", "guessit")

ec.set(node2, "operatingSystem", "f8")

ec.set(node2, "country", "France")

The nodes that are identified by their hostnames have to be provisioned before the
rest of the nodes. This assures that no other resource will use the identified node
even if the constraints matchs. Meaning that, even if the host "planetlab2.utt.fr"
fulfills the conditions OS fedora 8 and country France, the node2 resource should
not select from the planetlab testbed "planetlab2.utt.fr", the nodel must select it. We
can enforce this to happen using the register_condition method of the ec. Therefore,
after registering the node and setting its attributes, we need to add this line:

ec.register_condition(node2,ResourceAction.DEPLOY, nodel, ResourceState.
PROVISIONED)

For a better example on how to use filters and register conditions, there is the ping
experiment example (examples/planetlab/ping_experiment.py). In this example we
define 5 nodes, and 4 ping applications running in 4 of the nodes, with the 5th one
as destination. Then we collect the traces in our local machine.

Persist blacklisted nodes

PlanetLab nodes may fail for different reasons, ssh authentication failure, file system
corrupted, nodes unreachable, between others. Moreover, the mal functioning nodes
can vary from one experiment run to the next one. In NEPI there is the ability to
register these mal functioning nodes in order run the experiment in a more efficient
way. Also, this information can be use to evaluate the performance of the experiment
and the nodes themselves.

The PlanetlabNode resource, is instantiated for each Planetlab node defined in
the experiment. The node discovery and provisioning occurs in parallel for every
node defined, so a list of the nodes failures is needed while deploying, in order
to avoid to repeat the provision of mal functioning nodes. This list of blacklisted
nodes during the experiment, can be saved and maintain for following run of the
same experiment or others experiments. This list it is called blacklist. Moreover, the
nodes in the blacklist in the moment the experiment is started, can be use to directly
discard from the node discover and provision the unwanted nodes.

36 CHAPTER 5. SUPPORTED RESOURCES

There is an attribute available for this matter, is called ’persist_blacklist’ and is a
global attribute, meaning that if set, is set for every resource of type PlanetlabNode.
The blacklist file is stored in /.nepi/plblacklist.txt.

Example on how to use the attribute:

Two Planetlab nodes that read from the blacklist at the beginning of the experi-
ment, and write new blacklisted nodes (if any) at the end.

nodel = ec.register_resource("PlanetlabNode")
ec.set(nodel, "username", username)
ec.set(nodel, "pluser", pl_user)
ec.set(nodel, "plpassword", pl_password)
ec.set(nodel, "cleanHome", True)
ec.set(nodel, "cleanProcesses", True)

node2 = ec.register_resource("PlanetlabNode")
ec.set(node2, "username", username)
ec.set(node2, "pluser", pl_user)
ec.set(node2, "plpassword", pl_password)
ec.set(node2, "cleanHome", True)
ec.set(node2, "cleanProcesses", True)

ec.set_global(’'PlanetlabNode’, ’'persist_blacklist’, True)

The attribute can be retrieved with the method get_global :

ec.get_global(’'PlanetlabNode’, ’'persist_blacklist’).

SFA Support
Why using SFA for discovery and provision of resources in NEPI?

In order to be able to reserve resources for cross testbed experiments without hav-
ing to deal with different types of credentials, is important that testbed adopt the
SFA interface and the users have at least one set of credentials in one testbed. With
the SFA user credential, slice credential and authority credential, the user can list
resources, allocate them, provision them, delete them from his slice, plus, add or
remove slices when is allowed, in any SFA compliant testbed that trust each others
registry. The last assures an uniform control plane operation layer (discovery, reser-
vation, and provisioning) for every type of resource in any SFA compliant testbed.
NEPI developed the appropriate framework to be able to solve control plane op-
erations through SFA. Based on the sfi client, NEPI developed an API that implement
for the user, the corresponding SFA AM calls to handle the first steps of the exper-
iment lifecycle. This is transparent for the user, who doesn’t need to deal with SFA
calls specifics, or understanding RSpecs (Resource specification). Moreover, NEPI
implemented functions to assist in the selection of a set of reservable resources.

5.2. PLANETLAB RESOURCES 37

The use of SFA then, requires that the user installs the sfi client (version_tag="3.1-
4"), you can check http://svn.planet-lab.org/wiki/SFATutorial#SFATutorial for more
information.

SFA in PlanetLab

This should not add complexity for the user, for example, for the Planetlab node,
the experiment description is very similar:

from nepi.execution.ec import ExperimentController
import os

Create the EC
exp_id = "sfa_test"
ec = ExperimentController(exp_id)

username = os.environ.get(’SFA_SLICE’') --- for example 'inria_lguevgeo’

sfauser = os.environ.get(’'SFA_USER’) --- for example ’'ple.inria.
lucia_guevgeozian_odizzio'’

sfaPrivateKey = os.environ.get(’'SFA_PK’) --- for example ’'/home/.sfi/

lucia_guevgeozian_odizzio.pkey’

nodel
ec.set(nodel, "hostname", ’'planetlabl.cs.vu.nl’)
ec.set(nodel, "username", username)

= ec.register_resource("PlanetlabSfaNode")
(
(
ec.set(nodel, "sfauser", sfauser)
(
(
(

ec.set(nodel, "sfaPrivateKey", sfaPrivateKey)
ec.set(nodel, "cleanHome", True)
ec.set(nodel, "cleanProcesses", True)

SFA with iMinds Testbed (w-iLab.t)

The control and management software running in w-iLab.t is OMF 6, but its re-
sources can be discover and provisioned using SFA, the experiment description for
the WilabtSfaNode in NEPI is similar to the one in PlanetlabNode. Below is an ex-
ample :

from nepi.execution.ec import ExperimentController
import os

Create the EC
exp_id = "sfa_test"
ec = ExperimentController(exp_id)

slicename = ’'ple.inria.lguevgeo’
sfauser = os.environ.get(’'SFA_USER")

38 CHAPTER 5. SUPPORTED RESOURCES

sfaPrivateKey = os.environ.get(’'SFA_PK")

nodes
nodel
ec.set(nodel, "hostname", ’'zotacM20’)
ec.set(nodel, "slicename", slicename)
ec.set(nodel, "sfauser", sfauser)

= ec.register_resource("WilabtSfaNode")
(
(
(

ec.set(nodel, "sfaPrivateKey", sfaPrivateKey)
(
(
(
(

ec.set(nodel, "gatewayUser", "nepi")

ec.set(nodel, "gateway", "bastion.test.iminds.be")
ec.set(nodel, "cleanHome", True)

ec.set(nodel, "cleanProcesses", True)

Note that the w-iLab.t testbed is a private testbed, and resources can be accessed
only through a gateway. The node description must have two attributes defined as
gatewayUser and gateway. The appropriate ssh key settings in the gateway must be
pre-arranged with the testbed administrators, in order to enable the ssh access.

The gateway feature is not only possible for the w-iLab.t testbed, but for any
testbed that allow ssh key authentication. The ability to store the blacklisted nodes
is also possible for the w-iLab.t testbed.

The vsys system
TO DO

Python Vsys
TO DO

TAP/TUN/TUNNEL

TO DO

5.3 OMEF resources

This section aims at providing some information about OMF and its implementa-
tion in NEPI. Regarding to OMF itself, this user manual is not the official OMF
Documenation and must be considered only as a complement to the official one
(https://mytestbed.net/), gathering information collected during few years working
with OMFE.

5.3. OMF RESOURCES 39

OMEF 5.4 vs OMF 6

Two versions really different of OMF exists and are already deployed in different
testbed. OMF 5.4.x is the oldest one and is not anymore under development. Many
testbed use this version in their testbed and start step by step to migrate towards
OMEF 6. This latter is still under development. Some projects, as Fed4Fire, want to
use this technology and put many efforts to deploy this new version.

Among the main differences between these two versions, we can noticed :

* OMF 5.4 use a Resource Controller (RC) that handles messages received throught
XMPP. OMF 6 use a Resource Proxy (RP) that allow the posibility to create a
Resource Controller to control an entity. So There is only one RP but one RC
for each entity involved in the experiment.

* The message protocol in OMF 5.4 use some specific keywords to create action,
or configure data. It is not really flexible and was not prepared for extension.
In OMF6, the protocol is well-defined and highly thought to be extensible as
mush as possible. It is base on 5 routines that allow any action. This protocol
is called FRCP.

* Both of them use OEDL as description language.

Available OMF Testbed

This subsection gather some information about well-known OMF Testbed. This list
is not exhaustive and many others OMF-testbeds are under deployment.

Nicta Testbed : Norbit

Nicta is the main developers institute of OMF. It has also its own testbed, called Nor-
bit, containing around 40 nodes deployed on a building. These nodes are usually
ALIX nodes, with small power consumption and CPU performance. More details
can be found on their website : http://mytestbed.net/projects/1/wiki/OMFatNICTA

Nitos Testbed : NitLab

Nitos is deployed in Greece on a 4th, 5th and 6th floor of a building in the city.
Different nodes are deployed as commell or diskless node, but some new powerful
nodes will be deployed soon, called Icarus Node, with high CPU performance. The
total number of nodes deployed on this testbed is around 50.

More details can be found on their website : http://nitlab.inf.uth.gr/NITlab/

40 CHAPTER 5. SUPPORTED RESOURCES

iMinds Testbed : W-ilab.t

iMinds is deployed in Belgium. The W-ilab.t testbed gather more that one testbed.
Among them, there is one in Zwijnaarde that use OMF. Around 60 nodes are de-
ployed on the ceil of their building and one room is reserved for mobile nodes (
using Roomba). Around 10 mobile nodes will be deployed and operationnal in
2014.
More details can be found on their website : http://www.crew-project.eu/portal/wilab/basic-
tutorial-your-first-experiment-w-ilabt

How to get an Account

Usually, the creation of the account need to be asked by email. Specific instructions
are provided below about how to request an account :

* Nicta : Ask thierry.rakotoarivelo@nicta.com.au

* Nitos : Use your onelab account (if you already have one) or create a new ac-
count directly on their website (http://nitlab.inf.uth.gr/NITlab/index.php/testbed

)

e iMinds : You need a VPN access and a Testbed Account. For the VPN Account,
ask stefan.bouckaert@iminds.be and check the tips below to install OpenVPN.
For the Testbed Account, ask pieter.becue@intec.ugent.be or directly on the
w-iLabt.t web interface (It will required the VPN Access)

Tips about OpenVPN

To install OpenVPN from the sources, be sure that lib-1zo and lib-ssl are installed. If
not, ./configure will allow to disable it by doing —disable-1zo or —disable-crypto. You
should NOT do it unless you know what you are doing. To install the components,
follow these commands :

e For Lzo:

— sudo apt-get install liblzo2-2 liblzo2-dev

— OR from the 4ANsource (http://www.oberhumer.com/opensource/lzo/#download)
following these instructions (http://www.linuxfromscratch.org/blfs/view/6.3/general /LZ

* For Openssl : sudo apt-get install libssl-dev

Finally, You will have to launch OpenVPN using the credentials you received from
the testbed owner. The command will be something like : sudo openvpn file.ovpn

5.3. OMF RESOURCES 41

How to reserve some nodes

After creating your account, you need to reserve some nodes to deploy your exper-
iment on them. Different policies are used until now but it will move toward a
common policy called Broker.

This is the list of the current reservation method :

* Nicta : Use google calendar for a gentleman’s agreement. Add your reserva-
tions directly in the google calendar. This functionality is enable only after
asking the Nicta team to add your Gmail address.

* Nitos : While logged into the website, you can use the Nitos 4ANScheduler to
reserve some nodes and some channels for a maximum period of 4hours

* iMinds: Reserve your experiment on their website http://boss.wilab2.ilabt.iminds.be/reservati
Your experiment should be swapped in automatically. If it is not the case, turn
on your experiment on their website (https://www.wilab2.ilabt.iminds.be/)
and the provisionning will be done by their tools. The number of nodes you
required through the interfaces will be allocated for you with the image you
declare (default image is Ubuntu 12.04 if nothing has been specified)

XMPP

The default communication layer used in OMF is XMPP. Xmpp is a PubSub com-
munication system based on group. A group respresent a set of resource that can
subscribe to this group. Each resource can then publish to this group and conse-
quently send some messages to each resource that also subscribed. Even if AMQP
is supported by OMEF, NEPI support only XMPP as it is mainly deployed on all the
testbed.

The implementation of the XMPP client is based on the library SleekXmpp. Each
method has been overwritten to fit the requirement we need to OMEF.

Finally, There is an OMF XMPP Factory that allow for each OMF Resource Man-
ager to share the same Xmpp Client. Based on some credentials as the user or the
password, the OMF XMPP factory store the different XMPP Client. When an OMF
RM wants to communicate, it ask the Factory to retrieve one XMPP Client using the
credentials it has or to create one if it doesn’t exists. The factory store the number of
RM that use each XMPP Client and delete it when no RM use it.

Debbuging

TODO

42

Release Cycle

Releases in NEPI do not occur in strictly regular periods. Usually a new release will
be done every 4 or 5 months.

7.1 The development branch

The main development branch for NEPI 3 is nepi-3-dev. There might be other branches
to develop new features, but they will eventually end up being merged into the nepi-
3-dev branch.

7.2 Versioning

Releases are named following the major.minor.revision convention. The major num-
ber reflects a major change in functionality or architecture. It is to be expected that
this number will remind in 3 for a long period.

The minor number reflects the incorporation of new features into NEPI. This
number is expected to be increased on each release.

The revision number is incremented when a considerable number of bugs have
been fixed. No release will be done when only the revision number is incremented.

7.3 The release process

The creation of a new NEPI release will always follow the same sequence of steps.

1. A new nepi-3.<minor>-pre-release branch will be created from the nepi-3-dev
branch

2. During two to three weeks intensive work on testing will be carried out on
the new branch. No new functionality will be added on this branch and only
changes that fix bugs will be accepted.

43

44 CHAPTER 7. RELEASE CYCLE
3. At the end of this period, the pre-release branch will be branched again into
the release branch, named nepi-3.<minor>-release

4. A tag will be added to this new branch including the revision number (i.e.
release-3.<minor>.<revision>)

5. Finally, the pre-release branch will be merged into the development branch,
nepi-3-dev, to incorporate to it all the bug fixes.

	Contents
	FAQ
	What is NEPI?
	What does a NEPI script look like ?
	What does NEPI stands for?
	Who developed NEPI?
	Is it free?
	How can I contribute?
	How can I report a bug ?
	Where can I get more information ?

	Getting started
	Dependencies
	The source code
	Install NEPI in your system
	Run experiments

	Introduction to NEPI
	Experiment Description
	Experiment Life Cycle
	Resource Management: The EC & The RMs

	The ExperimentController API
	The experiment script
	The design API
	The execution API

	Supported resources
	Linux resources
	Planetlab resources
	OMF resources

	Debbuging
	Release Cycle
	The development branch
	Versioning
	The release process

