/* * acpi_processor.c - ACPI Processor Driver ($Revision: 71 $) * * Copyright (C) 2001, 2002 Andy Grover * Copyright (C) 2001, 2002 Paul Diefenbaugh * Copyright (C) 2004 Dominik Brodowski * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * TBD: * 1. Make # power states dynamic. * 2. Support duty_cycle values that span bit 4. * 3. Optimize by having scheduler determine business instead of * having us try to calculate it here. * 4. Need C1 timing -- must modify kernel (IRQ handler) to get this. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define ACPI_PROCESSOR_COMPONENT 0x01000000 #define ACPI_PROCESSOR_CLASS "processor" #define ACPI_PROCESSOR_DRIVER_NAME "ACPI Processor Driver" #define ACPI_PROCESSOR_DEVICE_NAME "Processor" #define ACPI_PROCESSOR_FILE_INFO "info" #define ACPI_PROCESSOR_FILE_POWER "power" #define ACPI_PROCESSOR_FILE_THROTTLING "throttling" #define ACPI_PROCESSOR_FILE_LIMIT "limit" #define ACPI_PROCESSOR_FILE_PERFORMANCE "performance" #define ACPI_PROCESSOR_NOTIFY_PERFORMANCE 0x80 #define ACPI_PROCESSOR_NOTIFY_POWER 0x81 #define US_TO_PM_TIMER_TICKS(t) ((t * (PM_TIMER_FREQUENCY/1000)) / 1000) #define C2_OVERHEAD 4 /* 1us (3.579 ticks per us) */ #define C3_OVERHEAD 4 /* 1us (3.579 ticks per us) */ #define ACPI_PROCESSOR_LIMIT_USER 0 #define ACPI_PROCESSOR_LIMIT_THERMAL 1 #define _COMPONENT ACPI_PROCESSOR_COMPONENT ACPI_MODULE_NAME ("acpi_processor") MODULE_AUTHOR("Paul Diefenbaugh"); MODULE_DESCRIPTION(ACPI_PROCESSOR_DRIVER_NAME); MODULE_LICENSE("GPL"); static int acpi_processor_add (struct acpi_device *device); static int acpi_processor_remove (struct acpi_device *device, int type); static int acpi_processor_info_open_fs(struct inode *inode, struct file *file); static int acpi_processor_throttling_open_fs(struct inode *inode, struct file *file); static int acpi_processor_power_open_fs(struct inode *inode, struct file *file); static int acpi_processor_limit_open_fs(struct inode *inode, struct file *file); static int acpi_processor_get_limit_info(struct acpi_processor *pr); static struct acpi_driver acpi_processor_driver = { .name = ACPI_PROCESSOR_DRIVER_NAME, .class = ACPI_PROCESSOR_CLASS, .ids = ACPI_PROCESSOR_HID, .ops = { .add = acpi_processor_add, .remove = acpi_processor_remove, }, }; struct acpi_processor_errata { u8 smp; struct { u8 throttle:1; u8 fdma:1; u8 reserved:6; u32 bmisx; } piix4; }; static struct file_operations acpi_processor_info_fops = { .open = acpi_processor_info_open_fs, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static struct file_operations acpi_processor_power_fops = { .open = acpi_processor_power_open_fs, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static struct file_operations acpi_processor_throttling_fops = { .open = acpi_processor_throttling_open_fs, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static struct file_operations acpi_processor_limit_fops = { .open = acpi_processor_limit_open_fs, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static struct acpi_processor *processors[NR_CPUS]; static struct acpi_processor_errata errata; static void (*pm_idle_save)(void); /* -------------------------------------------------------------------------- Errata Handling -------------------------------------------------------------------------- */ int acpi_processor_errata_piix4 ( struct pci_dev *dev) { u8 rev = 0; u8 value1 = 0; u8 value2 = 0; ACPI_FUNCTION_TRACE("acpi_processor_errata_piix4"); if (!dev) return_VALUE(-EINVAL); /* * Note that 'dev' references the PIIX4 ACPI Controller. */ pci_read_config_byte(dev, PCI_REVISION_ID, &rev); switch (rev) { case 0: ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found PIIX4 A-step\n")); break; case 1: ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found PIIX4 B-step\n")); break; case 2: ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found PIIX4E\n")); break; case 3: ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found PIIX4M\n")); break; default: ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found unknown PIIX4\n")); break; } switch (rev) { case 0: /* PIIX4 A-step */ case 1: /* PIIX4 B-step */ /* * See specification changes #13 ("Manual Throttle Duty Cycle") * and #14 ("Enabling and Disabling Manual Throttle"), plus * erratum #5 ("STPCLK# Deassertion Time") from the January * 2002 PIIX4 specification update. Applies to only older * PIIX4 models. */ errata.piix4.throttle = 1; case 2: /* PIIX4E */ case 3: /* PIIX4M */ /* * See erratum #18 ("C3 Power State/BMIDE and Type-F DMA * Livelock") from the January 2002 PIIX4 specification update. * Applies to all PIIX4 models. */ /* * BM-IDE * ------ * Find the PIIX4 IDE Controller and get the Bus Master IDE * Status register address. We'll use this later to read * each IDE controller's DMA status to make sure we catch all * DMA activity. */ dev = pci_find_subsys(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82371AB, PCI_ANY_ID, PCI_ANY_ID, NULL); if (dev) errata.piix4.bmisx = pci_resource_start(dev, 4); /* * Type-F DMA * ---------- * Find the PIIX4 ISA Controller and read the Motherboard * DMA controller's status to see if Type-F (Fast) DMA mode * is enabled (bit 7) on either channel. Note that we'll * disable C3 support if this is enabled, as some legacy * devices won't operate well if fast DMA is disabled. */ dev = pci_find_subsys(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82371AB_0, PCI_ANY_ID, PCI_ANY_ID, NULL); if (dev) { pci_read_config_byte(dev, 0x76, &value1); pci_read_config_byte(dev, 0x77, &value2); if ((value1 & 0x80) || (value2 & 0x80)) errata.piix4.fdma = 1; } break; } if (errata.piix4.bmisx) ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Bus master activity detection (BM-IDE) erratum enabled\n")); if (errata.piix4.fdma) ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Type-F DMA livelock erratum (C3 disabled)\n")); return_VALUE(0); } int acpi_processor_errata ( struct acpi_processor *pr) { int result = 0; struct pci_dev *dev = NULL; ACPI_FUNCTION_TRACE("acpi_processor_errata"); if (!pr) return_VALUE(-EINVAL); /* * PIIX4 */ dev = pci_find_subsys(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82371AB_3, PCI_ANY_ID, PCI_ANY_ID, NULL); if (dev) result = acpi_processor_errata_piix4(dev); return_VALUE(result); } /* -------------------------------------------------------------------------- Power Management -------------------------------------------------------------------------- */ static inline u32 ticks_elapsed ( u32 t1, u32 t2) { if (t2 >= t1) return (t2 - t1); else if (!acpi_fadt.tmr_val_ext) return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF); else return ((0xFFFFFFFF - t1) + t2); } static void acpi_processor_power_activate ( struct acpi_processor *pr, int state) { if (!pr) return; pr->power.states[pr->power.state].promotion.count = 0; pr->power.states[pr->power.state].demotion.count = 0; /* Cleanup from old state. */ switch (pr->power.state) { case ACPI_STATE_C3: /* Disable bus master reload */ acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0, ACPI_MTX_DO_NOT_LOCK); break; } /* Prepare to use new state. */ switch (state) { case ACPI_STATE_C3: /* Enable bus master reload */ acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1, ACPI_MTX_DO_NOT_LOCK); break; } pr->power.state = state; return; } static void acpi_processor_idle (void) { struct acpi_processor *pr = NULL; struct acpi_processor_cx *cx = NULL; int next_state = 0; int sleep_ticks = 0; u32 t1, t2 = 0; pr = processors[smp_processor_id()]; if (!pr) return; /* * Interrupts must be disabled during bus mastering calculations and * for C2/C3 transitions. */ local_irq_disable(); cx = &(pr->power.states[pr->power.state]); /* * Check BM Activity * ----------------- * Check for bus mastering activity (if required), record, and check * for demotion. */ if (pr->flags.bm_check) { u32 bm_status = 0; pr->power.bm_activity <<= 1; acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status, ACPI_MTX_DO_NOT_LOCK); if (bm_status) { pr->power.bm_activity++; acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1, ACPI_MTX_DO_NOT_LOCK); } /* * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect * the true state of bus mastering activity; forcing us to * manually check the BMIDEA bit of each IDE channel. */ else if (errata.piix4.bmisx) { if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01) || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01)) pr->power.bm_activity++; } /* * Apply bus mastering demotion policy. Automatically demote * to avoid a faulty transition. Note that the processor * won't enter a low-power state during this call (to this * funciton) but should upon the next. * * TBD: A better policy might be to fallback to the demotion * state (use it for this quantum only) istead of * demoting -- and rely on duration as our sole demotion * qualification. This may, however, introduce DMA * issues (e.g. floppy DMA transfer overrun/underrun). */ if (pr->power.bm_activity & cx->demotion.threshold.bm) { local_irq_enable(); next_state = cx->demotion.state; goto end; } } cx->usage++; /* * Sleep: * ------ * Invoke the current Cx state to put the processor to sleep. */ switch (pr->power.state) { case ACPI_STATE_C1: /* Invoke C1. */ safe_halt(); /* * TBD: Can't get time duration while in C1, as resumes * go to an ISR rather than here. Need to instrument * base interrupt handler. */ sleep_ticks = 0xFFFFFFFF; break; case ACPI_STATE_C2: /* Get start time (ticks) */ t1 = inl(acpi_fadt.xpm_tmr_blk.address); /* Invoke C2 */ inb(pr->power.states[ACPI_STATE_C2].address); /* Dummy op - must do something useless after P_LVL2 read */ t2 = inl(acpi_fadt.xpm_tmr_blk.address); /* Get end time (ticks) */ t2 = inl(acpi_fadt.xpm_tmr_blk.address); /* Re-enable interrupts */ local_irq_enable(); /* Compute time (ticks) that we were actually asleep */ sleep_ticks = ticks_elapsed(t1, t2) - cx->latency_ticks - C2_OVERHEAD; break; case ACPI_STATE_C3: /* Disable bus master arbitration */ acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1, ACPI_MTX_DO_NOT_LOCK); /* Get start time (ticks) */ t1 = inl(acpi_fadt.xpm_tmr_blk.address); /* Invoke C3 */ inb(pr->power.states[ACPI_STATE_C3].address); /* Dummy op - must do something useless after P_LVL3 read */ t2 = inl(acpi_fadt.xpm_tmr_blk.address); /* Get end time (ticks) */ t2 = inl(acpi_fadt.xpm_tmr_blk.address); /* Enable bus master arbitration */ acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0, ACPI_MTX_DO_NOT_LOCK); /* Re-enable interrupts */ local_irq_enable(); /* Compute time (ticks) that we were actually asleep */ sleep_ticks = ticks_elapsed(t1, t2) - cx->latency_ticks - C3_OVERHEAD; break; default: local_irq_enable(); return; } next_state = pr->power.state; /* * Promotion? * ---------- * Track the number of longs (time asleep is greater than threshold) * and promote when the count threshold is reached. Note that bus * mastering activity may prevent promotions. */ if (cx->promotion.state) { if (sleep_ticks > cx->promotion.threshold.ticks) { cx->promotion.count++; cx->demotion.count = 0; if (cx->promotion.count >= cx->promotion.threshold.count) { if (pr->flags.bm_check) { if (!(pr->power.bm_activity & cx->promotion.threshold.bm)) { next_state = cx->promotion.state; goto end; } } else { next_state = cx->promotion.state; goto end; } } } } /* * Demotion? * --------- * Track the number of shorts (time asleep is less than time threshold) * and demote when the usage threshold is reached. */ if (cx->demotion.state) { if (sleep_ticks < cx->demotion.threshold.ticks) { cx->demotion.count++; cx->promotion.count = 0; if (cx->demotion.count >= cx->demotion.threshold.count) { next_state = cx->demotion.state; goto end; } } } end: /* * New Cx State? * ------------- * If we're going to start using a new Cx state we must clean up * from the previous and prepare to use the new. */ if (next_state != pr->power.state) acpi_processor_power_activate(pr, next_state); return; } static int acpi_processor_set_power_policy ( struct acpi_processor *pr) { ACPI_FUNCTION_TRACE("acpi_processor_set_power_policy"); /* * This function sets the default Cx state policy (OS idle handler). * Our scheme is to promote quickly to C2 but more conservatively * to C3. We're favoring C2 for its characteristics of low latency * (quick response), good power savings, and ability to allow bus * mastering activity. Note that the Cx state policy is completely * customizable and can be altered dynamically. */ if (!pr) return_VALUE(-EINVAL); /* * C0/C1 * ----- */ pr->power.state = ACPI_STATE_C1; pr->power.default_state = ACPI_STATE_C1; /* * C1/C2 * ----- * Set the default C1 promotion and C2 demotion policies, where we * promote from C1 to C2 after several (10) successive C1 transitions, * as we cannot (currently) measure the time spent in C1. Demote from * C2 to C1 anytime we experience a 'short' (time spent in C2 is less * than the C2 transtion latency). Note the simplifying assumption * that the 'cost' of a transition is amortized when we sleep for at * least as long as the transition's latency (thus the total transition * time is two times the latency). * * TBD: Measure C1 sleep times by instrumenting the core IRQ handler. * TBD: Demote to default C-State after long periods of activity. * TBD: Investigate policy's use of CPU utilization -vs- sleep duration. */ if (pr->power.states[ACPI_STATE_C2].valid) { pr->power.states[ACPI_STATE_C1].promotion.threshold.count = 10; pr->power.states[ACPI_STATE_C1].promotion.threshold.ticks = pr->power.states[ACPI_STATE_C2].latency_ticks; pr->power.states[ACPI_STATE_C1].promotion.state = ACPI_STATE_C2; pr->power.states[ACPI_STATE_C2].demotion.threshold.count = 1; pr->power.states[ACPI_STATE_C2].demotion.threshold.ticks = pr->power.states[ACPI_STATE_C2].latency_ticks; pr->power.states[ACPI_STATE_C2].demotion.state = ACPI_STATE_C1; } /* * C2/C3 * ----- * Set default C2 promotion and C3 demotion policies, where we promote * from C2 to C3 after several (4) cycles of no bus mastering activity * while maintaining sleep time criteria. Demote immediately on a * short or whenever bus mastering activity occurs. */ if ((pr->power.states[ACPI_STATE_C2].valid) && (pr->power.states[ACPI_STATE_C3].valid)) { pr->power.states[ACPI_STATE_C2].promotion.threshold.count = 4; pr->power.states[ACPI_STATE_C2].promotion.threshold.ticks = pr->power.states[ACPI_STATE_C3].latency_ticks; pr->power.states[ACPI_STATE_C2].promotion.threshold.bm = 0x0F; pr->power.states[ACPI_STATE_C2].promotion.state = ACPI_STATE_C3; pr->power.states[ACPI_STATE_C3].demotion.threshold.count = 1; pr->power.states[ACPI_STATE_C3].demotion.threshold.ticks = pr->power.states[ACPI_STATE_C3].latency_ticks; pr->power.states[ACPI_STATE_C3].demotion.threshold.bm = 0x0F; pr->power.states[ACPI_STATE_C3].demotion.state = ACPI_STATE_C2; } return_VALUE(0); } int acpi_processor_get_power_info ( struct acpi_processor *pr) { int result = 0; ACPI_FUNCTION_TRACE("acpi_processor_get_power_info"); if (!pr) return_VALUE(-EINVAL); ACPI_DEBUG_PRINT((ACPI_DB_INFO, "lvl2[0x%08x] lvl3[0x%08x]\n", pr->power.states[ACPI_STATE_C2].address, pr->power.states[ACPI_STATE_C3].address)); /* TBD: Support ACPI 2.0 objects */ /* * C0 * -- * This state exists only as filler in our array. */ pr->power.states[ACPI_STATE_C0].valid = 1; /* * C1 * -- * ACPI requires C1 support for all processors. * * TBD: What about PROC_C1? */ pr->power.states[ACPI_STATE_C1].valid = 1; /* * C2 * -- * We're (currently) only supporting C2 on UP systems. * * TBD: Support for C2 on MP (P_LVL2_UP). */ if (pr->power.states[ACPI_STATE_C2].address) { pr->power.states[ACPI_STATE_C2].latency = acpi_fadt.plvl2_lat; /* * C2 latency must be less than or equal to 100 microseconds. */ if (acpi_fadt.plvl2_lat > ACPI_PROCESSOR_MAX_C2_LATENCY) ACPI_DEBUG_PRINT((ACPI_DB_INFO, "C2 latency too large [%d]\n", acpi_fadt.plvl2_lat)); /* * Only support C2 on UP systems (see TBD above). */ else if (errata.smp) ACPI_DEBUG_PRINT((ACPI_DB_INFO, "C2 not supported in SMP mode\n")); /* * Otherwise we've met all of our C2 requirements. * Normalize the C2 latency to expidite policy. */ else { pr->power.states[ACPI_STATE_C2].valid = 1; pr->power.states[ACPI_STATE_C2].latency_ticks = US_TO_PM_TIMER_TICKS(acpi_fadt.plvl2_lat); } } /* * C3 * -- * TBD: Investigate use of WBINVD on UP/SMP system in absence of * bm_control. */ if (pr->power.states[ACPI_STATE_C3].address) { pr->power.states[ACPI_STATE_C3].latency = acpi_fadt.plvl3_lat; /* * C3 latency must be less than or equal to 1000 microseconds. */ if (acpi_fadt.plvl3_lat > ACPI_PROCESSOR_MAX_C3_LATENCY) ACPI_DEBUG_PRINT((ACPI_DB_INFO, "C3 latency too large [%d]\n", acpi_fadt.plvl3_lat)); /* * Only support C3 when bus mastering arbitration control * is present (able to disable bus mastering to maintain * cache coherency while in C3). */ else if (!pr->flags.bm_control) ACPI_DEBUG_PRINT((ACPI_DB_INFO, "C3 support requires bus mastering control\n")); /* * Only support C3 on UP systems, as bm_control is only viable * on a UP system and flushing caches (e.g. WBINVD) is simply * too costly (at this time). */ else if (errata.smp) ACPI_DEBUG_PRINT((ACPI_DB_INFO, "C3 not supported in SMP mode\n")); /* * PIIX4 Erratum #18: We don't support C3 when Type-F (fast) * DMA transfers are used by any ISA device to avoid livelock. * Note that we could disable Type-F DMA (as recommended by * the erratum), but this is known to disrupt certain ISA * devices thus we take the conservative approach. */ else if (errata.piix4.fdma) { ACPI_DEBUG_PRINT((ACPI_DB_INFO, "C3 not supported on PIIX4 with Type-F DMA\n")); } /* * Otherwise we've met all of our C3 requirements. * Normalize the C2 latency to expidite policy. Enable * checking of bus mastering status (bm_check) so we can * use this in our C3 policy. */ else { pr->power.states[ACPI_STATE_C3].valid = 1; pr->power.states[ACPI_STATE_C3].latency_ticks = US_TO_PM_TIMER_TICKS(acpi_fadt.plvl3_lat); pr->flags.bm_check = 1; } } /* * Set Default Policy * ------------------ * Now that we know which state are supported, set the default * policy. Note that this policy can be changed dynamically * (e.g. encourage deeper sleeps to conserve battery life when * not on AC). */ result = acpi_processor_set_power_policy(pr); if (result) return_VALUE(result); /* * If this processor supports C2 or C3 we denote it as being 'power * manageable'. Note that there's really no policy involved for * when only C1 is supported. */ if (pr->power.states[ACPI_STATE_C2].valid || pr->power.states[ACPI_STATE_C3].valid) pr->flags.power = 1; return_VALUE(0); } /* -------------------------------------------------------------------------- Performance Management -------------------------------------------------------------------------- */ #ifdef CONFIG_CPU_FREQ static DECLARE_MUTEX(performance_sem); /* * _PPC support is implemented as a CPUfreq policy notifier: * This means each time a CPUfreq driver registered also with * the ACPI core is asked to change the speed policy, the maximum * value is adjusted so that it is within the platform limit. * * Also, when a new platform limit value is detected, the CPUfreq * policy is adjusted accordingly. */ static int acpi_processor_ppc_is_init = 0; static int acpi_processor_ppc_notifier(struct notifier_block *nb, unsigned long event, void *data) { struct cpufreq_policy *policy = data; struct acpi_processor *pr; unsigned int ppc = 0; down(&performance_sem); if (event != CPUFREQ_INCOMPATIBLE) goto out; pr = processors[policy->cpu]; if (!pr || !pr->performance) goto out; ppc = (unsigned int) pr->performance_platform_limit; if (!ppc) goto out; if (ppc > pr->performance->state_count) goto out; cpufreq_verify_within_limits(policy, 0, pr->performance->states[ppc].core_frequency * 1000); out: up(&performance_sem); return 0; } static struct notifier_block acpi_ppc_notifier_block = { .notifier_call = acpi_processor_ppc_notifier, }; static int acpi_processor_get_platform_limit ( struct acpi_processor* pr) { acpi_status status = 0; unsigned long ppc = 0; ACPI_FUNCTION_TRACE("acpi_processor_get_platform_limit"); if (!pr) return_VALUE(-EINVAL); /* * _PPC indicates the maximum state currently supported by the platform * (e.g. 0 = states 0..n; 1 = states 1..n; etc. */ status = acpi_evaluate_integer(pr->handle, "_PPC", NULL, &ppc); if(ACPI_FAILURE(status) && status != AE_NOT_FOUND) { ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Error evaluating _PPC\n")); return_VALUE(-ENODEV); } pr->performance_platform_limit = (int) ppc; return_VALUE(0); } static int acpi_processor_ppc_has_changed( struct acpi_processor *pr) { int ret = acpi_processor_get_platform_limit(pr); if (ret < 0) return (ret); else return cpufreq_update_policy(pr->id); } static void acpi_processor_ppc_init(void) { if (!cpufreq_register_notifier(&acpi_ppc_notifier_block, CPUFREQ_POLICY_NOTIFIER)) acpi_processor_ppc_is_init = 1; else printk(KERN_DEBUG "Warning: Processor Platform Limit not supported.\n"); } static void acpi_processor_ppc_exit(void) { if (acpi_processor_ppc_is_init) cpufreq_unregister_notifier(&acpi_ppc_notifier_block, CPUFREQ_POLICY_NOTIFIER); acpi_processor_ppc_is_init = 0; } /* * when registering a cpufreq driver with this ACPI processor driver, the * _PCT and _PSS structures are read out and written into struct * acpi_processor_performance. */ static int acpi_processor_set_pdc (struct acpi_processor *pr) { acpi_status status = AE_OK; u32 arg0_buf[3]; union acpi_object arg0 = {ACPI_TYPE_BUFFER}; struct acpi_object_list no_object = {1, &arg0}; struct acpi_object_list *pdc; ACPI_FUNCTION_TRACE("acpi_processor_set_pdc"); arg0.buffer.length = 12; arg0.buffer.pointer = (u8 *) arg0_buf; arg0_buf[0] = ACPI_PDC_REVISION_ID; arg0_buf[1] = 0; arg0_buf[2] = 0; pdc = (pr->performance->pdc) ? pr->performance->pdc : &no_object; status = acpi_evaluate_object(pr->handle, "_PDC", pdc, NULL); if ((ACPI_FAILURE(status)) && (pr->performance->pdc)) ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Error evaluating _PDC, using legacy perf. control...\n")); return_VALUE(status); } static int acpi_processor_get_performance_control ( struct acpi_processor *pr) { int result = 0; acpi_status status = 0; struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL}; union acpi_object *pct = NULL; union acpi_object obj = {0}; ACPI_FUNCTION_TRACE("acpi_processor_get_performance_control"); status = acpi_evaluate_object(pr->handle, "_PCT", NULL, &buffer); if(ACPI_FAILURE(status)) { ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Error evaluating _PCT\n")); return_VALUE(-ENODEV); } pct = (union acpi_object *) buffer.pointer; if (!pct || (pct->type != ACPI_TYPE_PACKAGE) || (pct->package.count != 2)) { ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Invalid _PCT data\n")); result = -EFAULT; goto end; } /* * control_register */ obj = pct->package.elements[0]; if ((obj.type != ACPI_TYPE_BUFFER) || (obj.buffer.length < sizeof(struct acpi_pct_register)) || (obj.buffer.pointer == NULL)) { ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Invalid _PCT data (control_register)\n")); result = -EFAULT; goto end; } memcpy(&pr->performance->control_register, obj.buffer.pointer, sizeof(struct acpi_pct_register)); /* * status_register */ obj = pct->package.elements[1]; if ((obj.type != ACPI_TYPE_BUFFER) || (obj.buffer.length < sizeof(struct acpi_pct_register)) || (obj.buffer.pointer == NULL)) { ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Invalid _PCT data (status_register)\n")); result = -EFAULT; goto end; } memcpy(&pr->performance->status_register, obj.buffer.pointer, sizeof(struct acpi_pct_register)); end: acpi_os_free(buffer.pointer); return_VALUE(result); } static int acpi_processor_get_performance_states ( struct acpi_processor *pr) { int result = 0; acpi_status status = AE_OK; struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL}; struct acpi_buffer format = {sizeof("NNNNNN"), "NNNNNN"}; struct acpi_buffer state = {0, NULL}; union acpi_object *pss = NULL; int i = 0; ACPI_FUNCTION_TRACE("acpi_processor_get_performance_states"); status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer); if(ACPI_FAILURE(status)) { ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Error evaluating _PSS\n")); return_VALUE(-ENODEV); } pss = (union acpi_object *) buffer.pointer; if (!pss || (pss->type != ACPI_TYPE_PACKAGE)) { ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Invalid _PSS data\n")); result = -EFAULT; goto end; } ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d performance states\n", pss->package.count)); pr->performance->state_count = pss->package.count; pr->performance->states = kmalloc(sizeof(struct acpi_processor_px) * pss->package.count, GFP_KERNEL); if (!pr->performance->states) { result = -ENOMEM; goto end; } for (i = 0; i < pr->performance->state_count; i++) { struct acpi_processor_px *px = &(pr->performance->states[i]); state.length = sizeof(struct acpi_processor_px); state.pointer = px; ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Extracting state %d\n", i)); status = acpi_extract_package(&(pss->package.elements[i]), &format, &state); if (ACPI_FAILURE(status)) { ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Invalid _PSS data\n")); result = -EFAULT; kfree(pr->performance->states); goto end; } ACPI_DEBUG_PRINT((ACPI_DB_INFO, "State [%d]: core_frequency[%d] power[%d] transition_latency[%d] bus_master_latency[%d] control[0x%x] status[0x%x]\n", i, (u32) px->core_frequency, (u32) px->power, (u32) px->transition_latency, (u32) px->bus_master_latency, (u32) px->control, (u32) px->status)); if (!px->core_frequency) { ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Invalid _PSS data: freq is zero\n")); result = -EFAULT; kfree(pr->performance->states); goto end; } } end: acpi_os_free(buffer.pointer); return_VALUE(result); } static int acpi_processor_get_performance_info ( struct acpi_processor *pr) { int result = 0; acpi_status status = AE_OK; acpi_handle handle = NULL; ACPI_FUNCTION_TRACE("acpi_processor_get_performance_info"); if (!pr || !pr->performance || !pr->handle) return_VALUE(-EINVAL); status = acpi_get_handle(pr->handle, "_PCT", &handle); if (ACPI_FAILURE(status)) { ACPI_DEBUG_PRINT((ACPI_DB_INFO, "ACPI-based processor performance control unavailable\n")); return_VALUE(-ENODEV); } acpi_processor_set_pdc(pr); result = acpi_processor_get_performance_control(pr); if (result) return_VALUE(result); result = acpi_processor_get_performance_states(pr); if (result) return_VALUE(result); result = acpi_processor_get_platform_limit(pr); if (result) return_VALUE(result); return_VALUE(0); } #ifdef CONFIG_X86_ACPI_CPUFREQ_PROC_INTF /* /proc/acpi/processor/../performance interface (DEPRECATED) */ static int acpi_processor_perf_open_fs(struct inode *inode, struct file *file); static struct file_operations acpi_processor_perf_fops = { .open = acpi_processor_perf_open_fs, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static int acpi_processor_perf_seq_show(struct seq_file *seq, void *offset) { struct acpi_processor *pr = (struct acpi_processor *)seq->private; int i = 0; ACPI_FUNCTION_TRACE("acpi_processor_perf_seq_show"); if (!pr) goto end; if (!pr->performance) { seq_puts(seq, "\n"); goto end; } seq_printf(seq, "state count: %d\n" "active state: P%d\n", pr->performance->state_count, pr->performance->state); seq_puts(seq, "states:\n"); for (i = 0; i < pr->performance->state_count; i++) seq_printf(seq, " %cP%d: %d MHz, %d mW, %d uS\n", (i == pr->performance->state?'*':' '), i, (u32) pr->performance->states[i].core_frequency, (u32) pr->performance->states[i].power, (u32) pr->performance->states[i].transition_latency); end: return 0; } static int acpi_processor_perf_open_fs(struct inode *inode, struct file *file) { return single_open(file, acpi_processor_perf_seq_show, PDE(inode)->data); } static int acpi_processor_write_performance ( struct file *file, const char __user *buffer, size_t count, loff_t *data) { int result = 0; struct seq_file *m = (struct seq_file *) file->private_data; struct acpi_processor *pr = (struct acpi_processor *) m->private; struct acpi_processor_performance *perf; char state_string[12] = {'\0'}; unsigned int new_state = 0; struct cpufreq_policy policy; ACPI_FUNCTION_TRACE("acpi_processor_write_performance"); if (!pr || (count > sizeof(state_string) - 1)) return_VALUE(-EINVAL); perf = pr->performance; if (!perf) return_VALUE(-EINVAL); if (copy_from_user(state_string, buffer, count)) return_VALUE(-EFAULT); state_string[count] = '\0'; new_state = simple_strtoul(state_string, NULL, 0); if (new_state >= perf->state_count) return_VALUE(-EINVAL); cpufreq_get_policy(&policy, pr->id); policy.cpu = pr->id; policy.min = perf->states[new_state].core_frequency * 1000; policy.max = perf->states[new_state].core_frequency * 1000; result = cpufreq_set_policy(&policy); if (result) return_VALUE(result); return_VALUE(count); } static void acpi_cpufreq_add_file ( struct acpi_processor *pr) { struct proc_dir_entry *entry = NULL; struct acpi_device *device = NULL; ACPI_FUNCTION_TRACE("acpi_cpufreq_addfile"); if (acpi_bus_get_device(pr->handle, &device)) return_VOID; /* add file 'performance' [R/W] */ entry = create_proc_entry(ACPI_PROCESSOR_FILE_PERFORMANCE, S_IFREG|S_IRUGO|S_IWUSR, acpi_device_dir(device)); if (!entry) ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Unable to create '%s' fs entry\n", ACPI_PROCESSOR_FILE_PERFORMANCE)); else { entry->proc_fops = &acpi_processor_perf_fops; entry->proc_fops->write = acpi_processor_write_performance; entry->data = acpi_driver_data(device); entry->owner = THIS_MODULE; } return_VOID; } static void acpi_cpufreq_remove_file ( struct acpi_processor *pr) { struct acpi_device *device = NULL; ACPI_FUNCTION_TRACE("acpi_cpufreq_addfile"); if (acpi_bus_get_device(pr->handle, &device)) return_VOID; /* remove file 'performance' */ remove_proc_entry(ACPI_PROCESSOR_FILE_PERFORMANCE, acpi_device_dir(device)); return_VOID; } #else static void acpi_cpufreq_add_file (struct acpi_processor *pr) { return; } static void acpi_cpufreq_remove_file (struct acpi_processor *pr) { return; } #endif /* CONFIG_X86_ACPI_CPUFREQ_PROC_INTF */ int acpi_processor_register_performance ( struct acpi_processor_performance * performance, unsigned int cpu) { struct acpi_processor *pr; ACPI_FUNCTION_TRACE("acpi_processor_register_performance"); if (!acpi_processor_ppc_is_init) return_VALUE(-EINVAL); down(&performance_sem); pr = processors[cpu]; if (!pr) { up(&performance_sem); return_VALUE(-ENODEV); } if (pr->performance) { up(&performance_sem); return_VALUE(-EBUSY); } pr->performance = performance; if (acpi_processor_get_performance_info(pr)) { pr->performance = NULL; up(&performance_sem); return_VALUE(-EIO); } acpi_cpufreq_add_file(pr); up(&performance_sem); return_VALUE(0); } EXPORT_SYMBOL(acpi_processor_register_performance); void acpi_processor_unregister_performance ( struct acpi_processor_performance * performance, unsigned int cpu) { struct acpi_processor *pr; ACPI_FUNCTION_TRACE("acpi_processor_unregister_performance"); if (!acpi_processor_ppc_is_init) return_VOID; down(&performance_sem); pr = processors[cpu]; if (!pr) { up(&performance_sem); return_VOID; } kfree(pr->performance->states); pr->performance = NULL; acpi_cpufreq_remove_file(pr); up(&performance_sem); return_VOID; } EXPORT_SYMBOL(acpi_processor_unregister_performance); /* for the rest of it, check arch/i386/kernel/cpu/cpufreq/acpi.c */ #else /* !CONFIG_CPU_FREQ */ static void acpi_processor_ppc_init(void) { return; } static void acpi_processor_ppc_exit(void) { return; } static int acpi_processor_ppc_has_changed(struct acpi_processor *pr) { static unsigned int printout = 1; if (printout) { printk(KERN_WARNING "Warning: Processor Platform Limit event detected, but not handled.\n"); printk(KERN_WARNING "Consider compiling CPUfreq support into your kernel.\n"); printout = 0; } return 0; } #endif /* CONFIG_CPU_FREQ */ /* -------------------------------------------------------------------------- Throttling Control -------------------------------------------------------------------------- */ static int acpi_processor_get_throttling ( struct acpi_processor *pr) { int state = 0; u32 value = 0; u32 duty_mask = 0; u32 duty_value = 0; ACPI_FUNCTION_TRACE("acpi_processor_get_throttling"); if (!pr) return_VALUE(-EINVAL); if (!pr->flags.throttling) return_VALUE(-ENODEV); pr->throttling.state = 0; local_irq_disable(); duty_mask = pr->throttling.state_count - 1; duty_mask <<= pr->throttling.duty_offset; value = inl(pr->throttling.address); /* * Compute the current throttling state when throttling is enabled * (bit 4 is on). */ if (value & 0x10) { duty_value = value & duty_mask; duty_value >>= pr->throttling.duty_offset; if (duty_value) state = pr->throttling.state_count-duty_value; } pr->throttling.state = state; local_irq_enable(); ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Throttling state is T%d (%d%% throttling applied)\n", state, pr->throttling.states[state].performance)); return_VALUE(0); } static int acpi_processor_set_throttling ( struct acpi_processor *pr, int state) { u32 value = 0; u32 duty_mask = 0; u32 duty_value = 0; ACPI_FUNCTION_TRACE("acpi_processor_set_throttling"); if (!pr) return_VALUE(-EINVAL); if ((state < 0) || (state > (pr->throttling.state_count - 1))) return_VALUE(-EINVAL); if (!pr->flags.throttling) return_VALUE(-ENODEV); if (state == pr->throttling.state) return_VALUE(0); local_irq_disable(); /* * Calculate the duty_value and duty_mask. */ if (state) { duty_value = pr->throttling.state_count - state; duty_value <<= pr->throttling.duty_offset; /* Used to clear all duty_value bits */ duty_mask = pr->throttling.state_count - 1; duty_mask <<= acpi_fadt.duty_offset; duty_mask = ~duty_mask; } /* * Disable throttling by writing a 0 to bit 4. Note that we must * turn it off before you can change the duty_value. */ value = inl(pr->throttling.address); if (value & 0x10) { value &= 0xFFFFFFEF; outl(value, pr->throttling.address); } /* * Write the new duty_value and then enable throttling. Note * that a state value of 0 leaves throttling disabled. */ if (state) { value &= duty_mask; value |= duty_value; outl(value, pr->throttling.address); value |= 0x00000010; outl(value, pr->throttling.address); } pr->throttling.state = state; local_irq_enable(); ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Throttling state set to T%d (%d%%)\n", state, (pr->throttling.states[state].performance?pr->throttling.states[state].performance/10:0))); return_VALUE(0); } static int acpi_processor_get_throttling_info ( struct acpi_processor *pr) { int result = 0; int step = 0; int i = 0; ACPI_FUNCTION_TRACE("acpi_processor_get_throttling_info"); ACPI_DEBUG_PRINT((ACPI_DB_INFO, "pblk_address[0x%08x] duty_offset[%d] duty_width[%d]\n", pr->throttling.address, pr->throttling.duty_offset, pr->throttling.duty_width)); if (!pr) return_VALUE(-EINVAL); /* TBD: Support ACPI 2.0 objects */ if (!pr->throttling.address) { ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No throttling register\n")); return_VALUE(0); } else if (!pr->throttling.duty_width) { ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No throttling states\n")); return_VALUE(0); } /* TBD: Support duty_cycle values that span bit 4. */ else if ((pr->throttling.duty_offset + pr->throttling.duty_width) > 4) { ACPI_DEBUG_PRINT((ACPI_DB_WARN, "duty_cycle spans bit 4\n")); return_VALUE(0); } /* * PIIX4 Errata: We don't support throttling on the original PIIX4. * This shouldn't be an issue as few (if any) mobile systems ever * used this part. */ if (errata.piix4.throttle) { ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Throttling not supported on PIIX4 A- or B-step\n")); return_VALUE(0); } pr->throttling.state_count = 1 << acpi_fadt.duty_width; /* * Compute state values. Note that throttling displays a linear power/ * performance relationship (at 50% performance the CPU will consume * 50% power). Values are in 1/10th of a percent to preserve accuracy. */ step = (1000 / pr->throttling.state_count); for (i=0; ithrottling.state_count; i++) { pr->throttling.states[i].performance = step * i; pr->throttling.states[i].power = step * i; } ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d throttling states\n", pr->throttling.state_count)); pr->flags.throttling = 1; /* * Disable throttling (if enabled). We'll let subsequent policy (e.g. * thermal) decide to lower performance if it so chooses, but for now * we'll crank up the speed. */ result = acpi_processor_get_throttling(pr); if (result) goto end; if (pr->throttling.state) { ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Disabling throttling (was T%d)\n", pr->throttling.state)); result = acpi_processor_set_throttling(pr, 0); if (result) goto end; } end: if (result) pr->flags.throttling = 0; return_VALUE(result); } /* -------------------------------------------------------------------------- Limit Interface -------------------------------------------------------------------------- */ static int acpi_processor_apply_limit ( struct acpi_processor* pr) { int result = 0; u16 px = 0; u16 tx = 0; ACPI_FUNCTION_TRACE("acpi_processor_apply_limit"); if (!pr) return_VALUE(-EINVAL); if (!pr->flags.limit) return_VALUE(-ENODEV); if (pr->flags.throttling) { if (pr->limit.user.tx > tx) tx = pr->limit.user.tx; if (pr->limit.thermal.tx > tx) tx = pr->limit.thermal.tx; result = acpi_processor_set_throttling(pr, tx); if (result) goto end; } pr->limit.state.px = px; pr->limit.state.tx = tx; ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Processor [%d] limit set to (P%d:T%d)\n", pr->id, pr->limit.state.px, pr->limit.state.tx)); end: if (result) ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Unable to set limit\n")); return_VALUE(result); } #ifdef CONFIG_CPU_FREQ /* If a passive cooling situation is detected, primarily CPUfreq is used, as it * offers (in most cases) voltage scaling in addition to frequency scaling, and * thus a cubic (instead of linear) reduction of energy. Also, we allow for * _any_ cpufreq driver and not only the acpi-cpufreq driver. */ static unsigned int cpufreq_thermal_reduction_pctg[NR_CPUS]; static unsigned int acpi_thermal_cpufreq_is_init = 0; static int cpu_has_cpufreq(unsigned int cpu) { struct cpufreq_policy policy; if (!acpi_thermal_cpufreq_is_init) return -ENODEV; if (!cpufreq_get_policy(&policy, cpu)) return -ENODEV; return 0; } static int acpi_thermal_cpufreq_increase(unsigned int cpu) { if (!cpu_has_cpufreq(cpu)) return -ENODEV; if (cpufreq_thermal_reduction_pctg[cpu] < 60) { cpufreq_thermal_reduction_pctg[cpu] += 20; cpufreq_update_policy(cpu); return 0; } return -ERANGE; } static int acpi_thermal_cpufreq_decrease(unsigned int cpu) { if (!cpu_has_cpufreq(cpu)) return -ENODEV; if (cpufreq_thermal_reduction_pctg[cpu] >= 20) { cpufreq_thermal_reduction_pctg[cpu] -= 20; cpufreq_update_policy(cpu); return 0; } return -ERANGE; } static int acpi_thermal_cpufreq_notifier( struct notifier_block *nb, unsigned long event, void *data) { struct cpufreq_policy *policy = data; unsigned long max_freq = 0; if (event != CPUFREQ_ADJUST) goto out; max_freq = (policy->cpuinfo.max_freq * (100 - cpufreq_thermal_reduction_pctg[policy->cpu])) / 100; cpufreq_verify_within_limits(policy, 0, max_freq); out: return 0; } static struct notifier_block acpi_thermal_cpufreq_notifier_block = { .notifier_call = acpi_thermal_cpufreq_notifier, }; static void acpi_thermal_cpufreq_init(void) { int i; for (i=0; i ACPI_PROCESSOR_LIMIT_DECREMENT)) return_VALUE(-EINVAL); result = acpi_bus_get_device(handle, &device); if (result) return_VALUE(result); pr = (struct acpi_processor *) acpi_driver_data(device); if (!pr) return_VALUE(-ENODEV); /* Thermal limits are always relative to the current Px/Tx state. */ if (pr->flags.throttling) pr->limit.thermal.tx = pr->throttling.state; /* * Our default policy is to only use throttling at the lowest * performance state. */ tx = pr->limit.thermal.tx; switch (type) { case ACPI_PROCESSOR_LIMIT_NONE: do { result = acpi_thermal_cpufreq_decrease(pr->id); } while (!result); tx = 0; break; case ACPI_PROCESSOR_LIMIT_INCREMENT: /* if going up: P-states first, T-states later */ result = acpi_thermal_cpufreq_increase(pr->id); if (!result) goto end; else if (result == -ERANGE) ACPI_DEBUG_PRINT((ACPI_DB_INFO, "At maximum performance state\n")); if (pr->flags.throttling) { if (tx == (pr->throttling.state_count - 1)) ACPI_DEBUG_PRINT((ACPI_DB_INFO, "At maximum throttling state\n")); else tx++; } break; case ACPI_PROCESSOR_LIMIT_DECREMENT: /* if going down: T-states first, P-states later */ if (pr->flags.throttling) { if (tx == 0) ACPI_DEBUG_PRINT((ACPI_DB_INFO, "At minimum throttling state\n")); else { tx--; goto end; } } result = acpi_thermal_cpufreq_decrease(pr->id); if (result == -ERANGE) ACPI_DEBUG_PRINT((ACPI_DB_INFO, "At minimum performance state\n")); break; } end: if (pr->flags.throttling) { pr->limit.thermal.px = 0; pr->limit.thermal.tx = tx; result = acpi_processor_apply_limit(pr); if (result) ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Unable to set thermal limit\n")); ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Thermal limit now (P%d:T%d)\n", pr->limit.thermal.px, pr->limit.thermal.tx)); } else result = 0; return_VALUE(result); } static int acpi_processor_get_limit_info ( struct acpi_processor *pr) { ACPI_FUNCTION_TRACE("acpi_processor_get_limit_info"); if (!pr) return_VALUE(-EINVAL); if (pr->flags.throttling) pr->flags.limit = 1; return_VALUE(0); } /* -------------------------------------------------------------------------- FS Interface (/proc) -------------------------------------------------------------------------- */ struct proc_dir_entry *acpi_processor_dir = NULL; static int acpi_processor_info_seq_show(struct seq_file *seq, void *offset) { struct acpi_processor *pr = (struct acpi_processor *)seq->private; ACPI_FUNCTION_TRACE("acpi_processor_info_seq_show"); if (!pr) goto end; seq_printf(seq, "processor id: %d\n" "acpi id: %d\n" "bus mastering control: %s\n" "power management: %s\n" "throttling control: %s\n" "limit interface: %s\n", pr->id, pr->acpi_id, pr->flags.bm_control ? "yes" : "no", pr->flags.power ? "yes" : "no", pr->flags.throttling ? "yes" : "no", pr->flags.limit ? "yes" : "no"); end: return 0; } static int acpi_processor_info_open_fs(struct inode *inode, struct file *file) { return single_open(file, acpi_processor_info_seq_show, PDE(inode)->data); } static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset) { struct acpi_processor *pr = (struct acpi_processor *)seq->private; int i = 0; ACPI_FUNCTION_TRACE("acpi_processor_power_seq_show"); if (!pr) goto end; seq_printf(seq, "active state: C%d\n" "default state: C%d\n" "bus master activity: %08x\n", pr->power.state, pr->power.default_state, pr->power.bm_activity); seq_puts(seq, "states:\n"); for (i = 1; i < ACPI_C_STATE_COUNT; i++) { seq_printf(seq, " %cC%d: ", (i == pr->power.state?'*':' '), i); if (!pr->power.states[i].valid) { seq_puts(seq, "\n"); continue; } if (pr->power.states[i].promotion.state) seq_printf(seq, "promotion[C%d] ", pr->power.states[i].promotion.state); else seq_puts(seq, "promotion[--] "); if (pr->power.states[i].demotion.state) seq_printf(seq, "demotion[C%d] ", pr->power.states[i].demotion.state); else seq_puts(seq, "demotion[--] "); seq_printf(seq, "latency[%03d] usage[%08d]\n", pr->power.states[i].latency, pr->power.states[i].usage); } end: return 0; } static int acpi_processor_power_open_fs(struct inode *inode, struct file *file) { return single_open(file, acpi_processor_power_seq_show, PDE(inode)->data); } static int acpi_processor_throttling_seq_show(struct seq_file *seq, void *offset) { struct acpi_processor *pr = (struct acpi_processor *)seq->private; int i = 0; int result = 0; ACPI_FUNCTION_TRACE("acpi_processor_throttling_seq_show"); if (!pr) goto end; if (!(pr->throttling.state_count > 0)) { seq_puts(seq, "\n"); goto end; } result = acpi_processor_get_throttling(pr); if (result) { seq_puts(seq, "Could not determine current throttling state.\n"); goto end; } seq_printf(seq, "state count: %d\n" "active state: T%d\n", pr->throttling.state_count, pr->throttling.state); seq_puts(seq, "states:\n"); for (i = 0; i < pr->throttling.state_count; i++) seq_printf(seq, " %cT%d: %02d%%\n", (i == pr->throttling.state?'*':' '), i, (pr->throttling.states[i].performance?pr->throttling.states[i].performance/10:0)); end: return 0; } static int acpi_processor_throttling_open_fs(struct inode *inode, struct file *file) { return single_open(file, acpi_processor_throttling_seq_show, PDE(inode)->data); } static ssize_t acpi_processor_write_throttling ( struct file *file, const char __user *buffer, size_t count, loff_t *data) { int result = 0; struct seq_file *m = (struct seq_file *)file->private_data; struct acpi_processor *pr = (struct acpi_processor *)m->private; char state_string[12] = {'\0'}; ACPI_FUNCTION_TRACE("acpi_processor_write_throttling"); if (!pr || (count > sizeof(state_string) - 1)) return_VALUE(-EINVAL); if (copy_from_user(state_string, buffer, count)) return_VALUE(-EFAULT); state_string[count] = '\0'; result = acpi_processor_set_throttling(pr, simple_strtoul(state_string, NULL, 0)); if (result) return_VALUE(result); return_VALUE(count); } static int acpi_processor_limit_seq_show(struct seq_file *seq, void *offset) { struct acpi_processor *pr = (struct acpi_processor *)seq->private; ACPI_FUNCTION_TRACE("acpi_processor_limit_seq_show"); if (!pr) goto end; if (!pr->flags.limit) { seq_puts(seq, "\n"); goto end; } seq_printf(seq, "active limit: P%d:T%d\n" "user limit: P%d:T%d\n" "thermal limit: P%d:T%d\n", pr->limit.state.px, pr->limit.state.tx, pr->limit.user.px, pr->limit.user.tx, pr->limit.thermal.px, pr->limit.thermal.tx); end: return 0; } static int acpi_processor_limit_open_fs(struct inode *inode, struct file *file) { return single_open(file, acpi_processor_limit_seq_show, PDE(inode)->data); } static ssize_t acpi_processor_write_limit ( struct file *file, const char __user *buffer, size_t count, loff_t *data) { int result = 0; struct seq_file *m = (struct seq_file *)file->private_data; struct acpi_processor *pr = (struct acpi_processor *)m->private; char limit_string[25] = {'\0'}; int px = 0; int tx = 0; ACPI_FUNCTION_TRACE("acpi_processor_write_limit"); if (!pr || (count > sizeof(limit_string) - 1)) { ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Invalid argument\n")); return_VALUE(-EINVAL); } if (copy_from_user(limit_string, buffer, count)) { ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Invalid data\n")); return_VALUE(-EFAULT); } limit_string[count] = '\0'; if (sscanf(limit_string, "%d:%d", &px, &tx) != 2) { ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Invalid data format\n")); return_VALUE(-EINVAL); } if (pr->flags.throttling) { if ((tx < 0) || (tx > (pr->throttling.state_count - 1))) { ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Invalid tx\n")); return_VALUE(-EINVAL); } pr->limit.user.tx = tx; } result = acpi_processor_apply_limit(pr); return_VALUE(count); } static int acpi_processor_add_fs ( struct acpi_device *device) { struct proc_dir_entry *entry = NULL; ACPI_FUNCTION_TRACE("acpi_processor_add_fs"); if (!acpi_device_dir(device)) { acpi_device_dir(device) = proc_mkdir(acpi_device_bid(device), acpi_processor_dir); if (!acpi_device_dir(device)) return_VALUE(-ENODEV); } acpi_device_dir(device)->owner = THIS_MODULE; /* 'info' [R] */ entry = create_proc_entry(ACPI_PROCESSOR_FILE_INFO, S_IRUGO, acpi_device_dir(device)); if (!entry) ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Unable to create '%s' fs entry\n", ACPI_PROCESSOR_FILE_INFO)); else { entry->proc_fops = &acpi_processor_info_fops; entry->data = acpi_driver_data(device); entry->owner = THIS_MODULE; } /* 'power' [R] */ entry = create_proc_entry(ACPI_PROCESSOR_FILE_POWER, S_IRUGO, acpi_device_dir(device)); if (!entry) ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Unable to create '%s' fs entry\n", ACPI_PROCESSOR_FILE_POWER)); else { entry->proc_fops = &acpi_processor_power_fops; entry->data = acpi_driver_data(device); entry->owner = THIS_MODULE; } /* 'throttling' [R/W] */ entry = create_proc_entry(ACPI_PROCESSOR_FILE_THROTTLING, S_IFREG|S_IRUGO|S_IWUSR, acpi_device_dir(device)); if (!entry) ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Unable to create '%s' fs entry\n", ACPI_PROCESSOR_FILE_THROTTLING)); else { entry->proc_fops = &acpi_processor_throttling_fops; entry->proc_fops->write = acpi_processor_write_throttling; entry->data = acpi_driver_data(device); entry->owner = THIS_MODULE; } /* 'limit' [R/W] */ entry = create_proc_entry(ACPI_PROCESSOR_FILE_LIMIT, S_IFREG|S_IRUGO|S_IWUSR, acpi_device_dir(device)); if (!entry) ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Unable to create '%s' fs entry\n", ACPI_PROCESSOR_FILE_LIMIT)); else { entry->proc_fops = &acpi_processor_limit_fops; entry->proc_fops->write = acpi_processor_write_limit; entry->data = acpi_driver_data(device); entry->owner = THIS_MODULE; } return_VALUE(0); } static int acpi_processor_remove_fs ( struct acpi_device *device) { ACPI_FUNCTION_TRACE("acpi_processor_remove_fs"); if (acpi_device_dir(device)) { remove_proc_entry(ACPI_PROCESSOR_FILE_INFO,acpi_device_dir(device)); remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,acpi_device_dir(device)); remove_proc_entry(ACPI_PROCESSOR_FILE_THROTTLING, acpi_device_dir(device)); remove_proc_entry(ACPI_PROCESSOR_FILE_LIMIT,acpi_device_dir(device)); remove_proc_entry(acpi_device_bid(device), acpi_processor_dir); acpi_device_dir(device) = NULL; } return_VALUE(0); } /* -------------------------------------------------------------------------- Driver Interface -------------------------------------------------------------------------- */ static int acpi_processor_get_info ( struct acpi_processor *pr) { acpi_status status = 0; union acpi_object object = {0}; struct acpi_buffer buffer = {sizeof(union acpi_object), &object}; static int cpu_index = 0; ACPI_FUNCTION_TRACE("acpi_processor_get_info"); if (!pr) return_VALUE(-EINVAL); if (num_online_cpus() > 1) errata.smp = TRUE; /* * Extra Processor objects may be enumerated on MP systems with * less than the max # of CPUs. They should be ignored. */ if ((cpu_index + 1) > num_online_cpus()) return_VALUE(-ENODEV); acpi_processor_errata(pr); /* * Check to see if we have bus mastering arbitration control. This * is required for proper C3 usage (to maintain cache coherency). */ if (acpi_fadt.V1_pm2_cnt_blk && acpi_fadt.pm2_cnt_len) { pr->flags.bm_control = 1; ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Bus mastering arbitration control present\n")); } else ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No bus mastering arbitration control\n")); /* * Evalute the processor object. Note that it is common on SMP to * have the first (boot) processor with a valid PBLK address while * all others have a NULL address. */ status = acpi_evaluate_object(pr->handle, NULL, NULL, &buffer); if (ACPI_FAILURE(status)) { ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Error evaluating processor object\n")); return_VALUE(-ENODEV); } /* * TBD: Synch processor ID (via LAPIC/LSAPIC structures) on SMP. * >>> 'acpi_get_processor_id(acpi_id, &id)' in arch/xxx/acpi.c */ pr->id = cpu_index++; pr->acpi_id = object.processor.proc_id; ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Processor [%d:%d]\n", pr->id, pr->acpi_id)); if (!object.processor.pblk_address) ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No PBLK (NULL address)\n")); else if (object.processor.pblk_length != 6) ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Invalid PBLK length [%d]\n", object.processor.pblk_length)); else { pr->throttling.address = object.processor.pblk_address; pr->throttling.duty_offset = acpi_fadt.duty_offset; pr->throttling.duty_width = acpi_fadt.duty_width; pr->power.states[ACPI_STATE_C2].address = object.processor.pblk_address + 4; pr->power.states[ACPI_STATE_C3].address = object.processor.pblk_address + 5; /* * We don't care about error returns - we just try to mark * these reserved so that nobody else is confused into thinking * that this region might be unused.. * * (In particular, allocating the IO range for Cardbus) */ request_region(pr->throttling.address, 6, "ACPI CPU throttle"); request_region(acpi_fadt.xpm_tmr_blk.address, 4, "ACPI timer"); } acpi_processor_get_power_info(pr); #ifdef CONFIG_CPU_FREQ acpi_processor_ppc_has_changed(pr); #endif acpi_processor_get_throttling_info(pr); acpi_processor_get_limit_info(pr); return_VALUE(0); } static void acpi_processor_notify ( acpi_handle handle, u32 event, void *data) { struct acpi_processor *pr = (struct acpi_processor *) data; struct acpi_device *device = NULL; ACPI_FUNCTION_TRACE("acpi_processor_notify"); if (!pr) return_VOID; if (acpi_bus_get_device(pr->handle, &device)) return_VOID; switch (event) { case ACPI_PROCESSOR_NOTIFY_PERFORMANCE: acpi_processor_ppc_has_changed(pr); acpi_bus_generate_event(device, event, pr->performance_platform_limit); break; case ACPI_PROCESSOR_NOTIFY_POWER: /* TBD */ acpi_bus_generate_event(device, event, 0); break; default: ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Unsupported event [0x%x]\n", event)); break; } return_VOID; } static int acpi_processor_add ( struct acpi_device *device) { int result = 0; acpi_status status = AE_OK; struct acpi_processor *pr = NULL; u32 i = 0; ACPI_FUNCTION_TRACE("acpi_processor_add"); if (!device) return_VALUE(-EINVAL); pr = kmalloc(sizeof(struct acpi_processor), GFP_KERNEL); if (!pr) return_VALUE(-ENOMEM); memset(pr, 0, sizeof(struct acpi_processor)); pr->handle = device->handle; strcpy(acpi_device_name(device), ACPI_PROCESSOR_DEVICE_NAME); strcpy(acpi_device_class(device), ACPI_PROCESSOR_CLASS); acpi_driver_data(device) = pr; result = acpi_processor_get_info(pr); if (result) goto end; result = acpi_processor_add_fs(device); if (result) goto end; status = acpi_install_notify_handler(pr->handle, ACPI_DEVICE_NOTIFY, acpi_processor_notify, pr); if (ACPI_FAILURE(status)) { ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Error installing notify handler\n")); result = -ENODEV; goto end; } processors[pr->id] = pr; /* * Install the idle handler if processor power management is supported. * Note that the default idle handler (default_idle) will be used on * platforms that only support C1. */ if ((pr->id == 0) && (pr->flags.power)) { pm_idle_save = pm_idle; pm_idle = acpi_processor_idle; } printk(KERN_INFO PREFIX "%s [%s] (supports", acpi_device_name(device), acpi_device_bid(device)); for (i=1; ipower.states[i].valid) printk(" C%d", i); if (pr->flags.throttling) printk(", %d throttling states", pr->throttling.state_count); printk(")\n"); end: if (result) { acpi_processor_remove_fs(device); kfree(pr); } return_VALUE(result); } static int acpi_processor_remove ( struct acpi_device *device, int type) { acpi_status status = AE_OK; struct acpi_processor *pr = NULL; ACPI_FUNCTION_TRACE("acpi_processor_remove"); if (!device || !acpi_driver_data(device)) return_VALUE(-EINVAL); pr = (struct acpi_processor *) acpi_driver_data(device); /* Unregister the idle handler when processor #0 is removed. */ if (pr->id == 0) pm_idle = pm_idle_save; status = acpi_remove_notify_handler(pr->handle, ACPI_DEVICE_NOTIFY, acpi_processor_notify); if (ACPI_FAILURE(status)) { ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Error removing notify handler\n")); } acpi_processor_remove_fs(device); processors[pr->id] = NULL; kfree(pr); return_VALUE(0); } static int __init acpi_processor_init (void) { int result = 0; ACPI_FUNCTION_TRACE("acpi_processor_init"); memset(&processors, 0, sizeof(processors)); memset(&errata, 0, sizeof(errata)); acpi_processor_dir = proc_mkdir(ACPI_PROCESSOR_CLASS, acpi_root_dir); if (!acpi_processor_dir) return_VALUE(-ENODEV); acpi_processor_dir->owner = THIS_MODULE; result = acpi_bus_register_driver(&acpi_processor_driver); if (result < 0) { remove_proc_entry(ACPI_PROCESSOR_CLASS, acpi_root_dir); return_VALUE(-ENODEV); } acpi_thermal_cpufreq_init(); acpi_processor_ppc_init(); return_VALUE(0); } static void __exit acpi_processor_exit (void) { ACPI_FUNCTION_TRACE("acpi_processor_exit"); acpi_processor_ppc_exit(); acpi_thermal_cpufreq_exit(); acpi_bus_unregister_driver(&acpi_processor_driver); remove_proc_entry(ACPI_PROCESSOR_CLASS, acpi_root_dir); return_VOID; } module_init(acpi_processor_init); module_exit(acpi_processor_exit); EXPORT_SYMBOL(acpi_processor_set_thermal_limit);