/* * linux/drivers/block/cfq-iosched.c * * CFQ, or complete fairness queueing, disk scheduler. * * Based on ideas from a previously unfinished io * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli. * * Copyright (C) 2003 Jens Axboe */ #include #include #include #include #include #include #include #include #include #include #include #include #include static unsigned long max_elapsed_crq; static unsigned long max_elapsed_dispatch; /* * tunables */ static int cfq_quantum = 4; /* max queue in one round of service */ static int cfq_queued = 8; /* minimum rq allocate limit per-queue*/ static int cfq_service = HZ; /* period over which service is avg */ static int cfq_fifo_expire_r = HZ / 2; /* fifo timeout for sync requests */ static int cfq_fifo_expire_w = 5 * HZ; /* fifo timeout for async requests */ static int cfq_fifo_rate = HZ / 8; /* fifo expiry rate */ static int cfq_back_max = 16 * 1024; /* maximum backwards seek, in KiB */ static int cfq_back_penalty = 2; /* penalty of a backwards seek */ /* * for the hash of cfqq inside the cfqd */ #define CFQ_QHASH_SHIFT 6 #define CFQ_QHASH_ENTRIES (1 << CFQ_QHASH_SHIFT) #define list_entry_qhash(entry) hlist_entry((entry), struct cfq_queue, cfq_hash) /* * for the hash of crq inside the cfqq */ #define CFQ_MHASH_SHIFT 6 #define CFQ_MHASH_BLOCK(sec) ((sec) >> 3) #define CFQ_MHASH_ENTRIES (1 << CFQ_MHASH_SHIFT) #define CFQ_MHASH_FN(sec) hash_long(CFQ_MHASH_BLOCK(sec), CFQ_MHASH_SHIFT) #define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors) #define list_entry_hash(ptr) hlist_entry((ptr), struct cfq_rq, hash) #define list_entry_cfqq(ptr) list_entry((ptr), struct cfq_queue, cfq_list) #define RQ_DATA(rq) (rq)->elevator_private /* * rb-tree defines */ #define RB_NONE (2) #define RB_EMPTY(node) ((node)->rb_node == NULL) #define RB_CLEAR_COLOR(node) (node)->rb_color = RB_NONE #define RB_CLEAR(node) do { \ (node)->rb_parent = NULL; \ RB_CLEAR_COLOR((node)); \ (node)->rb_right = NULL; \ (node)->rb_left = NULL; \ } while (0) #define RB_CLEAR_ROOT(root) ((root)->rb_node = NULL) #define ON_RB(node) ((node)->rb_color != RB_NONE) #define rb_entry_crq(node) rb_entry((node), struct cfq_rq, rb_node) #define rq_rb_key(rq) (rq)->sector /* * threshold for switching off non-tag accounting */ #define CFQ_MAX_TAG (4) /* * sort key types and names */ enum { CFQ_KEY_PGID, CFQ_KEY_TGID, CFQ_KEY_UID, CFQ_KEY_GID, CFQ_KEY_LAST, }; static char *cfq_key_types[] = { "pgid", "tgid", "uid", "gid", NULL }; static kmem_cache_t *crq_pool; static kmem_cache_t *cfq_pool; static kmem_cache_t *cfq_ioc_pool; struct cfq_data { struct list_head rr_list; struct list_head empty_list; struct hlist_head *cfq_hash; struct hlist_head *crq_hash; /* queues on rr_list (ie they have pending requests */ unsigned int busy_queues; unsigned int max_queued; atomic_t ref; int key_type; mempool_t *crq_pool; request_queue_t *queue; sector_t last_sector; int rq_in_driver; /* * tunables, see top of file */ unsigned int cfq_quantum; unsigned int cfq_queued; unsigned int cfq_fifo_expire_r; unsigned int cfq_fifo_expire_w; unsigned int cfq_fifo_batch_expire; unsigned int cfq_back_penalty; unsigned int cfq_back_max; unsigned int find_best_crq; unsigned int cfq_tagged; }; struct cfq_queue { /* reference count */ atomic_t ref; /* parent cfq_data */ struct cfq_data *cfqd; /* hash of mergeable requests */ struct hlist_node cfq_hash; /* hash key */ unsigned long key; /* whether queue is on rr (or empty) list */ int on_rr; /* on either rr or empty list of cfqd */ struct list_head cfq_list; /* sorted list of pending requests */ struct rb_root sort_list; /* if fifo isn't expired, next request to serve */ struct cfq_rq *next_crq; /* requests queued in sort_list */ int queued[2]; /* currently allocated requests */ int allocated[2]; /* fifo list of requests in sort_list */ struct list_head fifo[2]; /* last time fifo expired */ unsigned long last_fifo_expire; int key_type; unsigned long service_start; unsigned long service_used; unsigned int max_rate; /* number of requests that have been handed to the driver */ int in_flight; /* number of currently allocated requests */ int alloc_limit[2]; }; struct cfq_rq { struct rb_node rb_node; sector_t rb_key; struct request *request; struct hlist_node hash; struct cfq_queue *cfq_queue; struct cfq_io_context *io_context; unsigned long service_start; unsigned long queue_start; unsigned int in_flight : 1; unsigned int accounted : 1; unsigned int is_sync : 1; unsigned int is_write : 1; }; static struct cfq_queue *cfq_find_cfq_hash(struct cfq_data *, unsigned long); static void cfq_dispatch_sort(request_queue_t *, struct cfq_rq *); static void cfq_update_next_crq(struct cfq_rq *); static void cfq_put_cfqd(struct cfq_data *cfqd); /* * what the fairness is based on (ie how processes are grouped and * differentiated) */ static inline unsigned long cfq_hash_key(struct cfq_data *cfqd, struct task_struct *tsk) { /* * optimize this so that ->key_type is the offset into the struct */ switch (cfqd->key_type) { case CFQ_KEY_PGID: return process_group(tsk); default: case CFQ_KEY_TGID: return tsk->tgid; case CFQ_KEY_UID: return tsk->uid; case CFQ_KEY_GID: return tsk->gid; } } /* * lots of deadline iosched dupes, can be abstracted later... */ static inline void cfq_del_crq_hash(struct cfq_rq *crq) { hlist_del_init(&crq->hash); } static void cfq_remove_merge_hints(request_queue_t *q, struct cfq_rq *crq) { cfq_del_crq_hash(crq); if (q->last_merge == crq->request) q->last_merge = NULL; cfq_update_next_crq(crq); } static inline void cfq_add_crq_hash(struct cfq_data *cfqd, struct cfq_rq *crq) { const int hash_idx = CFQ_MHASH_FN(rq_hash_key(crq->request)); BUG_ON(!hlist_unhashed(&crq->hash)); hlist_add_head(&crq->hash, &cfqd->crq_hash[hash_idx]); } static struct request *cfq_find_rq_hash(struct cfq_data *cfqd, sector_t offset) { struct hlist_head *hash_list = &cfqd->crq_hash[CFQ_MHASH_FN(offset)]; struct hlist_node *entry, *next; hlist_for_each_safe(entry, next, hash_list) { struct cfq_rq *crq = list_entry_hash(entry); struct request *__rq = crq->request; BUG_ON(hlist_unhashed(&crq->hash)); if (!rq_mergeable(__rq)) { cfq_del_crq_hash(crq); continue; } if (rq_hash_key(__rq) == offset) return __rq; } return NULL; } /* * Lifted from AS - choose which of crq1 and crq2 that is best served now. * We choose the request that is closest to the head right now. Distance * behind the head are penalized and only allowed to a certain extent. */ static struct cfq_rq * cfq_choose_req(struct cfq_data *cfqd, struct cfq_rq *crq1, struct cfq_rq *crq2) { sector_t last, s1, s2, d1 = 0, d2 = 0; int r1_wrap = 0, r2_wrap = 0; /* requests are behind the disk head */ unsigned long back_max; if (crq1 == NULL || crq1 == crq2) return crq2; if (crq2 == NULL) return crq1; s1 = crq1->request->sector; s2 = crq2->request->sector; last = cfqd->last_sector; #if 0 if (!list_empty(&cfqd->queue->queue_head)) { struct list_head *entry = &cfqd->queue->queue_head; unsigned long distance = ~0UL; struct request *rq; while ((entry = entry->prev) != &cfqd->queue->queue_head) { rq = list_entry_rq(entry); if (blk_barrier_rq(rq)) break; if (distance < abs(s1 - rq->sector + rq->nr_sectors)) { distance = abs(s1 - rq->sector +rq->nr_sectors); last = rq->sector + rq->nr_sectors; } if (distance < abs(s2 - rq->sector + rq->nr_sectors)) { distance = abs(s2 - rq->sector +rq->nr_sectors); last = rq->sector + rq->nr_sectors; } } } #endif /* * by definition, 1KiB is 2 sectors */ back_max = cfqd->cfq_back_max * 2; /* * Strict one way elevator _except_ in the case where we allow * short backward seeks which are biased as twice the cost of a * similar forward seek. */ if (s1 >= last) d1 = s1 - last; else if (s1 + back_max >= last) d1 = (last - s1) * cfqd->cfq_back_penalty; else r1_wrap = 1; if (s2 >= last) d2 = s2 - last; else if (s2 + back_max >= last) d2 = (last - s2) * cfqd->cfq_back_penalty; else r2_wrap = 1; /* Found required data */ if (!r1_wrap && r2_wrap) return crq1; else if (!r2_wrap && r1_wrap) return crq2; else if (r1_wrap && r2_wrap) { /* both behind the head */ if (s1 <= s2) return crq1; else return crq2; } /* Both requests in front of the head */ if (d1 < d2) return crq1; else if (d2 < d1) return crq2; else { if (s1 >= s2) return crq1; else return crq2; } } /* * would be nice to take fifo expire time into account as well */ static struct cfq_rq * cfq_find_next_crq(struct cfq_data *cfqd, struct cfq_queue *cfqq, struct cfq_rq *last) { struct cfq_rq *crq_next = NULL, *crq_prev = NULL; struct rb_node *rbnext, *rbprev; if (!ON_RB(&last->rb_node)) return NULL; if ((rbnext = rb_next(&last->rb_node)) == NULL) rbnext = rb_first(&cfqq->sort_list); rbprev = rb_prev(&last->rb_node); if (rbprev) crq_prev = rb_entry_crq(rbprev); if (rbnext) crq_next = rb_entry_crq(rbnext); return cfq_choose_req(cfqd, crq_next, crq_prev); } static void cfq_update_next_crq(struct cfq_rq *crq) { struct cfq_queue *cfqq = crq->cfq_queue; if (cfqq->next_crq == crq) cfqq->next_crq = cfq_find_next_crq(cfqq->cfqd, cfqq, crq); } static int cfq_check_sort_rr_list(struct cfq_queue *cfqq) { struct list_head *head = &cfqq->cfqd->rr_list; struct list_head *next, *prev; /* * list might still be ordered */ next = cfqq->cfq_list.next; if (next != head) { struct cfq_queue *cnext = list_entry_cfqq(next); if (cfqq->service_used > cnext->service_used) return 1; } prev = cfqq->cfq_list.prev; if (prev != head) { struct cfq_queue *cprev = list_entry_cfqq(prev); if (cfqq->service_used < cprev->service_used) return 1; } return 0; } static void cfq_sort_rr_list(struct cfq_queue *cfqq, int new_queue) { struct list_head *entry = &cfqq->cfqd->rr_list; if (!cfqq->on_rr) return; if (!new_queue && !cfq_check_sort_rr_list(cfqq)) return; list_del(&cfqq->cfq_list); /* * sort by our mean service_used, sub-sort by in-flight requests */ while ((entry = entry->prev) != &cfqq->cfqd->rr_list) { struct cfq_queue *__cfqq = list_entry_cfqq(entry); if (cfqq->service_used > __cfqq->service_used) break; else if (cfqq->service_used == __cfqq->service_used) { struct list_head *prv; while ((prv = entry->prev) != &cfqq->cfqd->rr_list) { __cfqq = list_entry_cfqq(prv); WARN_ON(__cfqq->service_used > cfqq->service_used); if (cfqq->service_used != __cfqq->service_used) break; if (cfqq->in_flight > __cfqq->in_flight) break; entry = prv; } } } list_add(&cfqq->cfq_list, entry); } /* * add to busy list of queues for service, trying to be fair in ordering * the pending list according to requests serviced */ static inline void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq) { /* * it's currently on the empty list */ cfqq->on_rr = 1; cfqd->busy_queues++; if (time_after(jiffies, cfqq->service_start + cfq_service)) cfqq->service_used >>= 3; cfq_sort_rr_list(cfqq, 1); } static inline void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq) { list_move(&cfqq->cfq_list, &cfqd->empty_list); cfqq->on_rr = 0; BUG_ON(!cfqd->busy_queues); cfqd->busy_queues--; } /* * rb tree support functions */ static inline void cfq_del_crq_rb(struct cfq_rq *crq) { struct cfq_queue *cfqq = crq->cfq_queue; if (ON_RB(&crq->rb_node)) { struct cfq_data *cfqd = cfqq->cfqd; BUG_ON(!cfqq->queued[crq->is_sync]); cfq_update_next_crq(crq); cfqq->queued[crq->is_sync]--; rb_erase(&crq->rb_node, &cfqq->sort_list); RB_CLEAR_COLOR(&crq->rb_node); if (RB_EMPTY(&cfqq->sort_list) && cfqq->on_rr) cfq_del_cfqq_rr(cfqd, cfqq); } } static struct cfq_rq * __cfq_add_crq_rb(struct cfq_rq *crq) { struct rb_node **p = &crq->cfq_queue->sort_list.rb_node; struct rb_node *parent = NULL; struct cfq_rq *__crq; while (*p) { parent = *p; __crq = rb_entry_crq(parent); if (crq->rb_key < __crq->rb_key) p = &(*p)->rb_left; else if (crq->rb_key > __crq->rb_key) p = &(*p)->rb_right; else return __crq; } rb_link_node(&crq->rb_node, parent, p); return NULL; } static void cfq_add_crq_rb(struct cfq_rq *crq) { struct cfq_queue *cfqq = crq->cfq_queue; struct cfq_data *cfqd = cfqq->cfqd; struct request *rq = crq->request; struct cfq_rq *__alias; crq->rb_key = rq_rb_key(rq); cfqq->queued[crq->is_sync]++; /* * looks a little odd, but the first insert might return an alias. * if that happens, put the alias on the dispatch list */ while ((__alias = __cfq_add_crq_rb(crq)) != NULL) cfq_dispatch_sort(cfqd->queue, __alias); rb_insert_color(&crq->rb_node, &cfqq->sort_list); if (!cfqq->on_rr) cfq_add_cfqq_rr(cfqd, cfqq); /* * check if this request is a better next-serve candidate */ cfqq->next_crq = cfq_choose_req(cfqd, cfqq->next_crq, crq); } static inline void cfq_reposition_crq_rb(struct cfq_queue *cfqq, struct cfq_rq *crq) { if (ON_RB(&crq->rb_node)) { rb_erase(&crq->rb_node, &cfqq->sort_list); cfqq->queued[crq->is_sync]--; } cfq_add_crq_rb(crq); } static struct request * cfq_find_rq_rb(struct cfq_data *cfqd, sector_t sector) { const unsigned long key = cfq_hash_key(cfqd, current); struct cfq_queue *cfqq = cfq_find_cfq_hash(cfqd, key); struct rb_node *n; if (!cfqq) goto out; n = cfqq->sort_list.rb_node; while (n) { struct cfq_rq *crq = rb_entry_crq(n); if (sector < crq->rb_key) n = n->rb_left; else if (sector > crq->rb_key) n = n->rb_right; else return crq->request; } out: return NULL; } /* * make sure the service time gets corrected on reissue of this request */ static void cfq_requeue_request(request_queue_t *q, struct request *rq) { struct cfq_rq *crq = RQ_DATA(rq); if (crq) { struct cfq_queue *cfqq = crq->cfq_queue; if (cfqq->cfqd->cfq_tagged) { cfqq->service_used--; cfq_sort_rr_list(cfqq, 0); } if (crq->accounted) { crq->accounted = 0; cfqq->cfqd->rq_in_driver--; } } list_add(&rq->queuelist, &q->queue_head); } static void cfq_remove_request(request_queue_t *q, struct request *rq) { struct cfq_rq *crq = RQ_DATA(rq); if (crq) { cfq_remove_merge_hints(q, crq); list_del_init(&rq->queuelist); if (crq->cfq_queue) cfq_del_crq_rb(crq); } } static int cfq_merge(request_queue_t *q, struct request **req, struct bio *bio) { struct cfq_data *cfqd = q->elevator->elevator_data; struct request *__rq; int ret; ret = elv_try_last_merge(q, bio); if (ret != ELEVATOR_NO_MERGE) { __rq = q->last_merge; goto out_insert; } __rq = cfq_find_rq_hash(cfqd, bio->bi_sector); if (__rq) { BUG_ON(__rq->sector + __rq->nr_sectors != bio->bi_sector); if (elv_rq_merge_ok(__rq, bio)) { ret = ELEVATOR_BACK_MERGE; goto out; } } __rq = cfq_find_rq_rb(cfqd, bio->bi_sector + bio_sectors(bio)); if (__rq) { if (elv_rq_merge_ok(__rq, bio)) { ret = ELEVATOR_FRONT_MERGE; goto out; } } return ELEVATOR_NO_MERGE; out: q->last_merge = __rq; out_insert: *req = __rq; return ret; } static void cfq_merged_request(request_queue_t *q, struct request *req) { struct cfq_data *cfqd = q->elevator->elevator_data; struct cfq_rq *crq = RQ_DATA(req); cfq_del_crq_hash(crq); cfq_add_crq_hash(cfqd, crq); if (ON_RB(&crq->rb_node) && (rq_rb_key(req) != crq->rb_key)) { struct cfq_queue *cfqq = crq->cfq_queue; cfq_update_next_crq(crq); cfq_reposition_crq_rb(cfqq, crq); } q->last_merge = req; } static void cfq_merged_requests(request_queue_t *q, struct request *rq, struct request *next) { struct cfq_rq *crq = RQ_DATA(rq); struct cfq_rq *cnext = RQ_DATA(next); cfq_merged_request(q, rq); if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist)) { if (time_before(cnext->queue_start, crq->queue_start)) { list_move(&rq->queuelist, &next->queuelist); crq->queue_start = cnext->queue_start; } } cfq_update_next_crq(cnext); cfq_remove_request(q, next); } /* * we dispatch cfqd->cfq_quantum requests in total from the rr_list queues, * this function sector sorts the selected request to minimize seeks. we start * at cfqd->last_sector, not 0. */ static void cfq_dispatch_sort(request_queue_t *q, struct cfq_rq *crq) { struct cfq_data *cfqd = q->elevator->elevator_data; struct cfq_queue *cfqq = crq->cfq_queue; struct list_head *head = &q->queue_head, *entry = head; struct request *__rq; sector_t last; cfq_del_crq_rb(crq); cfq_remove_merge_hints(q, crq); list_del(&crq->request->queuelist); last = cfqd->last_sector; while ((entry = entry->prev) != head) { __rq = list_entry_rq(entry); if (blk_barrier_rq(crq->request)) break; if (!blk_fs_request(crq->request)) break; if (crq->request->sector > __rq->sector) break; if (__rq->sector > last && crq->request->sector < last) { last = crq->request->sector; break; } } cfqd->last_sector = last; crq->in_flight = 1; cfqq->in_flight++; list_add(&crq->request->queuelist, entry); } /* * return expired entry, or NULL to just start from scratch in rbtree */ static inline struct cfq_rq *cfq_check_fifo(struct cfq_queue *cfqq) { struct cfq_data *cfqd = cfqq->cfqd; const int reads = !list_empty(&cfqq->fifo[0]); const int writes = !list_empty(&cfqq->fifo[1]); unsigned long now = jiffies; struct cfq_rq *crq; if (time_before(now, cfqq->last_fifo_expire + cfqd->cfq_fifo_batch_expire)) return NULL; crq = RQ_DATA(list_entry(cfqq->fifo[0].next, struct request, queuelist)); if (reads && time_after(now, crq->queue_start + cfqd->cfq_fifo_expire_r)) { cfqq->last_fifo_expire = now; return crq; } crq = RQ_DATA(list_entry(cfqq->fifo[1].next, struct request, queuelist)); if (writes && time_after(now, crq->queue_start + cfqd->cfq_fifo_expire_w)) { cfqq->last_fifo_expire = now; return crq; } return NULL; } /* * dispatch a single request from given queue */ static inline void cfq_dispatch_request(request_queue_t *q, struct cfq_data *cfqd, struct cfq_queue *cfqq) { struct cfq_rq *crq; /* * follow expired path, else get first next available */ if ((crq = cfq_check_fifo(cfqq)) == NULL) { if (cfqd->find_best_crq) crq = cfqq->next_crq; else crq = rb_entry_crq(rb_first(&cfqq->sort_list)); } cfqd->last_sector = crq->request->sector + crq->request->nr_sectors; /* * finally, insert request into driver list */ cfq_dispatch_sort(q, crq); } static int cfq_dispatch_requests(request_queue_t *q, int max_dispatch) { struct cfq_data *cfqd = q->elevator->elevator_data; struct cfq_queue *cfqq; struct list_head *entry, *tmp; int queued, busy_queues, first_round; if (list_empty(&cfqd->rr_list)) return 0; queued = 0; first_round = 1; restart: busy_queues = 0; list_for_each_safe(entry, tmp, &cfqd->rr_list) { cfqq = list_entry_cfqq(entry); BUG_ON(RB_EMPTY(&cfqq->sort_list)); /* * first round of queueing, only select from queues that * don't already have io in-flight */ if (first_round && cfqq->in_flight) continue; cfq_dispatch_request(q, cfqd, cfqq); if (!RB_EMPTY(&cfqq->sort_list)) busy_queues++; queued++; } if ((queued < max_dispatch) && (busy_queues || first_round)) { first_round = 0; goto restart; } return queued; } static inline void cfq_account_dispatch(struct cfq_rq *crq) { struct cfq_queue *cfqq = crq->cfq_queue; struct cfq_data *cfqd = cfqq->cfqd; unsigned long now, elapsed; if (!blk_fs_request(crq->request)) return; /* * accounted bit is necessary since some drivers will call * elv_next_request() many times for the same request (eg ide) */ if (crq->accounted) return; now = jiffies; if (cfqq->service_start == ~0UL) cfqq->service_start = now; /* * on drives with tagged command queueing, command turn-around time * doesn't necessarily reflect the time spent processing this very * command inside the drive. so do the accounting differently there, * by just sorting on the number of requests */ if (cfqd->cfq_tagged) { if (time_after(now, cfqq->service_start + cfq_service)) { cfqq->service_start = now; cfqq->service_used /= 10; } cfqq->service_used++; cfq_sort_rr_list(cfqq, 0); } elapsed = now - crq->queue_start; if (elapsed > max_elapsed_dispatch) max_elapsed_dispatch = elapsed; crq->accounted = 1; crq->service_start = now; if (++cfqd->rq_in_driver >= CFQ_MAX_TAG && !cfqd->cfq_tagged) { cfqq->cfqd->cfq_tagged = 1; printk("cfq: depth %d reached, tagging now on\n", CFQ_MAX_TAG); } } static inline void cfq_account_completion(struct cfq_queue *cfqq, struct cfq_rq *crq) { struct cfq_data *cfqd = cfqq->cfqd; if (!crq->accounted) return; WARN_ON(!cfqd->rq_in_driver); cfqd->rq_in_driver--; if (!cfqd->cfq_tagged) { unsigned long now = jiffies; unsigned long duration = now - crq->service_start; if (time_after(now, cfqq->service_start + cfq_service)) { cfqq->service_start = now; cfqq->service_used >>= 3; } cfqq->service_used += duration; cfq_sort_rr_list(cfqq, 0); if (duration > max_elapsed_crq) max_elapsed_crq = duration; } } static struct request *cfq_next_request(request_queue_t *q) { struct cfq_data *cfqd = q->elevator->elevator_data; struct request *rq; if (!list_empty(&q->queue_head)) { struct cfq_rq *crq; dispatch: rq = list_entry_rq(q->queue_head.next); if ((crq = RQ_DATA(rq)) != NULL) { cfq_remove_merge_hints(q, crq); cfq_account_dispatch(crq); } return rq; } if (cfq_dispatch_requests(q, cfqd->cfq_quantum)) goto dispatch; return NULL; } /* * task holds one reference to the queue, dropped when task exits. each crq * in-flight on this queue also holds a reference, dropped when crq is freed. * * queue lock must be held here. */ static void cfq_put_queue(struct cfq_queue *cfqq) { BUG_ON(!atomic_read(&cfqq->ref)); if (!atomic_dec_and_test(&cfqq->ref)) return; BUG_ON(rb_first(&cfqq->sort_list)); BUG_ON(cfqq->on_rr); cfq_put_cfqd(cfqq->cfqd); /* * it's on the empty list and still hashed */ list_del(&cfqq->cfq_list); hlist_del(&cfqq->cfq_hash); kmem_cache_free(cfq_pool, cfqq); } static inline struct cfq_queue * __cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned long key, const int hashval) { struct hlist_head *hash_list = &cfqd->cfq_hash[hashval]; struct hlist_node *entry, *next; hlist_for_each_safe(entry, next, hash_list) { struct cfq_queue *__cfqq = list_entry_qhash(entry); if (__cfqq->key == key) return __cfqq; } return NULL; } static struct cfq_queue * cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned long key) { return __cfq_find_cfq_hash(cfqd, key, hash_long(key, CFQ_QHASH_SHIFT)); } static inline void cfq_rehash_cfqq(struct cfq_data *cfqd, struct cfq_queue **cfqq, struct cfq_io_context *cic) { unsigned long hashkey = cfq_hash_key(cfqd, current); unsigned long hashval = hash_long(hashkey, CFQ_QHASH_SHIFT); struct cfq_queue *__cfqq; unsigned long flags; spin_lock_irqsave(cfqd->queue->queue_lock, flags); hlist_del(&(*cfqq)->cfq_hash); __cfqq = __cfq_find_cfq_hash(cfqd, hashkey, hashval); if (!__cfqq || __cfqq == *cfqq) { __cfqq = *cfqq; hlist_add_head(&__cfqq->cfq_hash, &cfqd->cfq_hash[hashval]); __cfqq->key_type = cfqd->key_type; } else { atomic_inc(&__cfqq->ref); cic->cfqq = __cfqq; cfq_put_queue(*cfqq); *cfqq = __cfqq; } cic->cfqq = __cfqq; spin_unlock_irqrestore(cfqd->queue->queue_lock, flags); } static void cfq_free_io_context(struct cfq_io_context *cic) { kmem_cache_free(cfq_ioc_pool, cic); } /* * locking hierarchy is: io_context lock -> queue locks */ static void cfq_exit_io_context(struct cfq_io_context *cic) { struct cfq_queue *cfqq = cic->cfqq; struct list_head *entry = &cic->list; request_queue_t *q; unsigned long flags; /* * put the reference this task is holding to the various queues */ spin_lock_irqsave(&cic->ioc->lock, flags); while ((entry = cic->list.next) != &cic->list) { struct cfq_io_context *__cic; __cic = list_entry(entry, struct cfq_io_context, list); list_del(entry); q = __cic->cfqq->cfqd->queue; spin_lock(q->queue_lock); cfq_put_queue(__cic->cfqq); spin_unlock(q->queue_lock); } q = cfqq->cfqd->queue; spin_lock(q->queue_lock); cfq_put_queue(cfqq); spin_unlock(q->queue_lock); cic->cfqq = NULL; spin_unlock_irqrestore(&cic->ioc->lock, flags); } static struct cfq_io_context *cfq_alloc_io_context(int gfp_flags) { struct cfq_io_context *cic = kmem_cache_alloc(cfq_ioc_pool, gfp_flags); if (cic) { cic->dtor = cfq_free_io_context; cic->exit = cfq_exit_io_context; INIT_LIST_HEAD(&cic->list); cic->cfqq = NULL; } return cic; } /* * Setup general io context and cfq io context. There can be several cfq * io contexts per general io context, if this process is doing io to more * than one device managed by cfq. Note that caller is holding a reference to * cfqq, so we don't need to worry about it disappearing */ static struct cfq_io_context * cfq_get_io_context(struct cfq_queue **cfqq, int gfp_flags) { struct cfq_data *cfqd = (*cfqq)->cfqd; struct cfq_queue *__cfqq = *cfqq; struct cfq_io_context *cic; struct io_context *ioc; might_sleep_if(gfp_flags & __GFP_WAIT); ioc = get_io_context(gfp_flags); if (!ioc) return NULL; if ((cic = ioc->cic) == NULL) { cic = cfq_alloc_io_context(gfp_flags); if (cic == NULL) goto err; ioc->cic = cic; cic->ioc = ioc; cic->cfqq = __cfqq; atomic_inc(&__cfqq->ref); } else { struct cfq_io_context *__cic; unsigned long flags; /* * since the first cic on the list is actually the head * itself, need to check this here or we'll duplicate an * cic per ioc for no reason */ if (cic->cfqq == __cfqq) goto out; /* * cic exists, check if we already are there. linear search * should be ok here, the list will usually not be more than * 1 or a few entries long */ spin_lock_irqsave(&ioc->lock, flags); list_for_each_entry(__cic, &cic->list, list) { /* * this process is already holding a reference to * this queue, so no need to get one more */ if (__cic->cfqq == __cfqq) { cic = __cic; spin_unlock_irqrestore(&ioc->lock, flags); goto out; } } spin_unlock_irqrestore(&ioc->lock, flags); /* * nope, process doesn't have a cic assoicated with this * cfqq yet. get a new one and add to list */ __cic = cfq_alloc_io_context(gfp_flags); if (__cic == NULL) goto err; __cic->ioc = ioc; __cic->cfqq = __cfqq; atomic_inc(&__cfqq->ref); spin_lock_irqsave(&ioc->lock, flags); list_add(&__cic->list, &cic->list); spin_unlock_irqrestore(&ioc->lock, flags); cic = __cic; *cfqq = __cfqq; } out: /* * if key_type has been changed on the fly, we lazily rehash * each queue at lookup time */ if ((*cfqq)->key_type != cfqd->key_type) cfq_rehash_cfqq(cfqd, cfqq, cic); return cic; err: put_io_context(ioc); return NULL; } static struct cfq_queue * __cfq_get_queue(struct cfq_data *cfqd, unsigned long key, int gfp_mask) { const int hashval = hash_long(key, CFQ_QHASH_SHIFT); struct cfq_queue *cfqq, *new_cfqq = NULL; retry: cfqq = __cfq_find_cfq_hash(cfqd, key, hashval); if (!cfqq) { if (new_cfqq) { cfqq = new_cfqq; new_cfqq = NULL; } else if (gfp_mask & __GFP_WAIT) { spin_unlock_irq(cfqd->queue->queue_lock); new_cfqq = kmem_cache_alloc(cfq_pool, gfp_mask); spin_lock_irq(cfqd->queue->queue_lock); goto retry; } else goto out; memset(cfqq, 0, sizeof(*cfqq)); INIT_HLIST_NODE(&cfqq->cfq_hash); INIT_LIST_HEAD(&cfqq->cfq_list); RB_CLEAR_ROOT(&cfqq->sort_list); INIT_LIST_HEAD(&cfqq->fifo[0]); INIT_LIST_HEAD(&cfqq->fifo[1]); cfqq->key = key; hlist_add_head(&cfqq->cfq_hash, &cfqd->cfq_hash[hashval]); atomic_set(&cfqq->ref, 0); cfqq->cfqd = cfqd; atomic_inc(&cfqd->ref); cfqq->key_type = cfqd->key_type; cfqq->service_start = ~0UL; } if (new_cfqq) kmem_cache_free(cfq_pool, new_cfqq); atomic_inc(&cfqq->ref); out: WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq); return cfqq; } static void cfq_enqueue(struct cfq_data *cfqd, struct cfq_rq *crq) { crq->is_sync = 0; if (rq_data_dir(crq->request) == READ || current->flags & PF_SYNCWRITE) crq->is_sync = 1; cfq_add_crq_rb(crq); crq->queue_start = jiffies; list_add_tail(&crq->request->queuelist, &crq->cfq_queue->fifo[crq->is_sync]); } static void cfq_insert_request(request_queue_t *q, struct request *rq, int where) { struct cfq_data *cfqd = q->elevator->elevator_data; struct cfq_rq *crq = RQ_DATA(rq); switch (where) { case ELEVATOR_INSERT_BACK: while (cfq_dispatch_requests(q, cfqd->cfq_quantum)) ; list_add_tail(&rq->queuelist, &q->queue_head); break; case ELEVATOR_INSERT_FRONT: list_add(&rq->queuelist, &q->queue_head); break; case ELEVATOR_INSERT_SORT: BUG_ON(!blk_fs_request(rq)); cfq_enqueue(cfqd, crq); break; default: printk("%s: bad insert point %d\n", __FUNCTION__,where); return; } if (rq_mergeable(rq)) { cfq_add_crq_hash(cfqd, crq); if (!q->last_merge) q->last_merge = rq; } } static int cfq_queue_empty(request_queue_t *q) { struct cfq_data *cfqd = q->elevator->elevator_data; return list_empty(&q->queue_head) && list_empty(&cfqd->rr_list); } static void cfq_completed_request(request_queue_t *q, struct request *rq) { struct cfq_rq *crq = RQ_DATA(rq); struct cfq_queue *cfqq; if (unlikely(!blk_fs_request(rq))) return; cfqq = crq->cfq_queue; if (crq->in_flight) { WARN_ON(!cfqq->in_flight); cfqq->in_flight--; } cfq_account_completion(cfqq, crq); } static struct request * cfq_former_request(request_queue_t *q, struct request *rq) { struct cfq_rq *crq = RQ_DATA(rq); struct rb_node *rbprev = rb_prev(&crq->rb_node); if (rbprev) return rb_entry_crq(rbprev)->request; return NULL; } static struct request * cfq_latter_request(request_queue_t *q, struct request *rq) { struct cfq_rq *crq = RQ_DATA(rq); struct rb_node *rbnext = rb_next(&crq->rb_node); if (rbnext) return rb_entry_crq(rbnext)->request; return NULL; } static int cfq_may_queue(request_queue_t *q, int rw) { struct cfq_data *cfqd = q->elevator->elevator_data; struct cfq_queue *cfqq; int ret = ELV_MQUEUE_MAY; if (current->flags & PF_MEMALLOC) return ELV_MQUEUE_MAY; cfqq = cfq_find_cfq_hash(cfqd, cfq_hash_key(cfqd, current)); if (cfqq) { int limit = cfqd->max_queued; if (cfqq->allocated[rw] < cfqd->cfq_queued) return ELV_MQUEUE_MUST; if (cfqd->busy_queues) limit = q->nr_requests / cfqd->busy_queues; if (limit < cfqd->cfq_queued) limit = cfqd->cfq_queued; else if (limit > cfqd->max_queued) limit = cfqd->max_queued; if (cfqq->allocated[rw] >= limit) { if (limit > cfqq->alloc_limit[rw]) cfqq->alloc_limit[rw] = limit; ret = ELV_MQUEUE_NO; } } return ret; } static void cfq_check_waiters(request_queue_t *q, struct cfq_queue *cfqq) { struct request_list *rl = &q->rq; const int write = waitqueue_active(&rl->wait[WRITE]); const int read = waitqueue_active(&rl->wait[READ]); if (read && cfqq->allocated[READ] < cfqq->alloc_limit[READ]) wake_up(&rl->wait[READ]); if (write && cfqq->allocated[WRITE] < cfqq->alloc_limit[WRITE]) wake_up(&rl->wait[WRITE]); } /* * queue lock held here */ static void cfq_put_request(request_queue_t *q, struct request *rq) { struct cfq_data *cfqd = q->elevator->elevator_data; struct cfq_rq *crq = RQ_DATA(rq); if (crq) { struct cfq_queue *cfqq = crq->cfq_queue; BUG_ON(q->last_merge == rq); BUG_ON(!hlist_unhashed(&crq->hash)); if (crq->io_context) put_io_context(crq->io_context->ioc); BUG_ON(!cfqq->allocated[crq->is_write]); cfqq->allocated[crq->is_write]--; mempool_free(crq, cfqd->crq_pool); rq->elevator_private = NULL; smp_mb(); cfq_check_waiters(q, cfqq); cfq_put_queue(cfqq); } } /* * Allocate cfq data structures associated with this request. A queue and */ static int cfq_set_request(request_queue_t *q, struct request *rq, int gfp_mask) { struct cfq_data *cfqd = q->elevator->elevator_data; struct cfq_io_context *cic; const int rw = rq_data_dir(rq); struct cfq_queue *cfqq, *saved_cfqq; struct cfq_rq *crq; unsigned long flags; might_sleep_if(gfp_mask & __GFP_WAIT); spin_lock_irqsave(q->queue_lock, flags); cfqq = __cfq_get_queue(cfqd, cfq_hash_key(cfqd, current), gfp_mask); if (!cfqq) goto out_lock; repeat: if (cfqq->allocated[rw] >= cfqd->max_queued) goto out_lock; cfqq->allocated[rw]++; spin_unlock_irqrestore(q->queue_lock, flags); /* * if hashing type has changed, the cfq_queue might change here. */ saved_cfqq = cfqq; cic = cfq_get_io_context(&cfqq, gfp_mask); if (!cic) goto err; /* * repeat allocation checks on queue change */ if (unlikely(saved_cfqq != cfqq)) { spin_lock_irqsave(q->queue_lock, flags); saved_cfqq->allocated[rw]--; goto repeat; } crq = mempool_alloc(cfqd->crq_pool, gfp_mask); if (crq) { RB_CLEAR(&crq->rb_node); crq->rb_key = 0; crq->request = rq; INIT_HLIST_NODE(&crq->hash); crq->cfq_queue = cfqq; crq->io_context = cic; crq->service_start = crq->queue_start = 0; crq->in_flight = crq->accounted = crq->is_sync = 0; crq->is_write = rw; rq->elevator_private = crq; cfqq->alloc_limit[rw] = 0; return 0; } put_io_context(cic->ioc); err: spin_lock_irqsave(q->queue_lock, flags); cfqq->allocated[rw]--; cfq_put_queue(cfqq); out_lock: spin_unlock_irqrestore(q->queue_lock, flags); return 1; } static void cfq_put_cfqd(struct cfq_data *cfqd) { request_queue_t *q = cfqd->queue; if (!atomic_dec_and_test(&cfqd->ref)) return; blk_put_queue(q); mempool_destroy(cfqd->crq_pool); kfree(cfqd->crq_hash); kfree(cfqd->cfq_hash); kfree(cfqd); } static void cfq_exit_queue(elevator_t *e) { cfq_put_cfqd(e->elevator_data); } static int cfq_init_queue(request_queue_t *q, elevator_t *e) { struct cfq_data *cfqd; int i; cfqd = kmalloc(sizeof(*cfqd), GFP_KERNEL); if (!cfqd) return -ENOMEM; memset(cfqd, 0, sizeof(*cfqd)); INIT_LIST_HEAD(&cfqd->rr_list); INIT_LIST_HEAD(&cfqd->empty_list); cfqd->crq_hash = kmalloc(sizeof(struct hlist_head) * CFQ_MHASH_ENTRIES, GFP_KERNEL); if (!cfqd->crq_hash) goto out_crqhash; cfqd->cfq_hash = kmalloc(sizeof(struct hlist_head) * CFQ_QHASH_ENTRIES, GFP_KERNEL); if (!cfqd->cfq_hash) goto out_cfqhash; cfqd->crq_pool = mempool_create(BLKDEV_MIN_RQ, mempool_alloc_slab, mempool_free_slab, crq_pool); if (!cfqd->crq_pool) goto out_crqpool; for (i = 0; i < CFQ_MHASH_ENTRIES; i++) INIT_HLIST_HEAD(&cfqd->crq_hash[i]); for (i = 0; i < CFQ_QHASH_ENTRIES; i++) INIT_HLIST_HEAD(&cfqd->cfq_hash[i]); e->elevator_data = cfqd; cfqd->queue = q; atomic_inc(&q->refcnt); /* * just set it to some high value, we want anyone to be able to queue * some requests. fairness is handled differently */ q->nr_requests = 1024; cfqd->max_queued = q->nr_requests / 16; q->nr_batching = cfq_queued; cfqd->key_type = CFQ_KEY_TGID; cfqd->find_best_crq = 1; atomic_set(&cfqd->ref, 1); cfqd->cfq_queued = cfq_queued; cfqd->cfq_quantum = cfq_quantum; cfqd->cfq_fifo_expire_r = cfq_fifo_expire_r; cfqd->cfq_fifo_expire_w = cfq_fifo_expire_w; cfqd->cfq_fifo_batch_expire = cfq_fifo_rate; cfqd->cfq_back_max = cfq_back_max; cfqd->cfq_back_penalty = cfq_back_penalty; return 0; out_crqpool: kfree(cfqd->cfq_hash); out_cfqhash: kfree(cfqd->crq_hash); out_crqhash: kfree(cfqd); return -ENOMEM; } static void cfq_slab_kill(void) { if (crq_pool) kmem_cache_destroy(crq_pool); if (cfq_pool) kmem_cache_destroy(cfq_pool); if (cfq_ioc_pool) kmem_cache_destroy(cfq_ioc_pool); } static int __init cfq_slab_setup(void) { crq_pool = kmem_cache_create("crq_pool", sizeof(struct cfq_rq), 0, 0, NULL, NULL); if (!crq_pool) goto fail; cfq_pool = kmem_cache_create("cfq_pool", sizeof(struct cfq_queue), 0, 0, NULL, NULL); if (!cfq_pool) goto fail; cfq_ioc_pool = kmem_cache_create("cfq_ioc_pool", sizeof(struct cfq_io_context), 0, 0, NULL, NULL); if (!cfq_ioc_pool) goto fail; return 0; fail: cfq_slab_kill(); return -ENOMEM; } /* * sysfs parts below --> */ struct cfq_fs_entry { struct attribute attr; ssize_t (*show)(struct cfq_data *, char *); ssize_t (*store)(struct cfq_data *, const char *, size_t); }; static ssize_t cfq_var_show(unsigned int var, char *page) { return sprintf(page, "%d\n", var); } static ssize_t cfq_var_store(unsigned int *var, const char *page, size_t count) { char *p = (char *) page; *var = simple_strtoul(p, &p, 10); return count; } static ssize_t cfq_clear_elapsed(struct cfq_data *cfqd, const char *page, size_t count) { max_elapsed_dispatch = max_elapsed_crq = 0; return count; } static ssize_t cfq_set_key_type(struct cfq_data *cfqd, const char *page, size_t count) { spin_lock_irq(cfqd->queue->queue_lock); if (!strncmp(page, "pgid", 4)) cfqd->key_type = CFQ_KEY_PGID; else if (!strncmp(page, "tgid", 4)) cfqd->key_type = CFQ_KEY_TGID; else if (!strncmp(page, "uid", 3)) cfqd->key_type = CFQ_KEY_UID; else if (!strncmp(page, "gid", 3)) cfqd->key_type = CFQ_KEY_GID; spin_unlock_irq(cfqd->queue->queue_lock); return count; } static ssize_t cfq_read_key_type(struct cfq_data *cfqd, char *page) { ssize_t len = 0; int i; for (i = CFQ_KEY_PGID; i < CFQ_KEY_LAST; i++) { if (cfqd->key_type == i) len += sprintf(page+len, "[%s] ", cfq_key_types[i]); else len += sprintf(page+len, "%s ", cfq_key_types[i]); } len += sprintf(page+len, "\n"); return len; } #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \ static ssize_t __FUNC(struct cfq_data *cfqd, char *page) \ { \ unsigned int __data = __VAR; \ if (__CONV) \ __data = jiffies_to_msecs(__data); \ return cfq_var_show(__data, (page)); \ } SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0); SHOW_FUNCTION(cfq_queued_show, cfqd->cfq_queued, 0); SHOW_FUNCTION(cfq_fifo_expire_r_show, cfqd->cfq_fifo_expire_r, 1); SHOW_FUNCTION(cfq_fifo_expire_w_show, cfqd->cfq_fifo_expire_w, 1); SHOW_FUNCTION(cfq_fifo_batch_expire_show, cfqd->cfq_fifo_batch_expire, 1); SHOW_FUNCTION(cfq_find_best_show, cfqd->find_best_crq, 0); SHOW_FUNCTION(cfq_back_max_show, cfqd->cfq_back_max, 0); SHOW_FUNCTION(cfq_back_penalty_show, cfqd->cfq_back_penalty, 0); #undef SHOW_FUNCTION #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \ static ssize_t __FUNC(struct cfq_data *cfqd, const char *page, size_t count) \ { \ unsigned int __data; \ int ret = cfq_var_store(&__data, (page), count); \ if (__data < (MIN)) \ __data = (MIN); \ else if (__data > (MAX)) \ __data = (MAX); \ if (__CONV) \ *(__PTR) = msecs_to_jiffies(__data); \ else \ *(__PTR) = __data; \ return ret; \ } STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0); STORE_FUNCTION(cfq_queued_store, &cfqd->cfq_queued, 1, UINT_MAX, 0); STORE_FUNCTION(cfq_fifo_expire_r_store, &cfqd->cfq_fifo_expire_r, 1, UINT_MAX, 1); STORE_FUNCTION(cfq_fifo_expire_w_store, &cfqd->cfq_fifo_expire_w, 1, UINT_MAX, 1); STORE_FUNCTION(cfq_fifo_batch_expire_store, &cfqd->cfq_fifo_batch_expire, 0, UINT_MAX, 1); STORE_FUNCTION(cfq_find_best_store, &cfqd->find_best_crq, 0, 1, 0); STORE_FUNCTION(cfq_back_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0); STORE_FUNCTION(cfq_back_penalty_store, &cfqd->cfq_back_penalty, 1, UINT_MAX, 0); #undef STORE_FUNCTION static struct cfq_fs_entry cfq_quantum_entry = { .attr = {.name = "quantum", .mode = S_IRUGO | S_IWUSR }, .show = cfq_quantum_show, .store = cfq_quantum_store, }; static struct cfq_fs_entry cfq_queued_entry = { .attr = {.name = "queued", .mode = S_IRUGO | S_IWUSR }, .show = cfq_queued_show, .store = cfq_queued_store, }; static struct cfq_fs_entry cfq_fifo_expire_r_entry = { .attr = {.name = "fifo_expire_sync", .mode = S_IRUGO | S_IWUSR }, .show = cfq_fifo_expire_r_show, .store = cfq_fifo_expire_r_store, }; static struct cfq_fs_entry cfq_fifo_expire_w_entry = { .attr = {.name = "fifo_expire_async", .mode = S_IRUGO | S_IWUSR }, .show = cfq_fifo_expire_w_show, .store = cfq_fifo_expire_w_store, }; static struct cfq_fs_entry cfq_fifo_batch_expire_entry = { .attr = {.name = "fifo_batch_expire", .mode = S_IRUGO | S_IWUSR }, .show = cfq_fifo_batch_expire_show, .store = cfq_fifo_batch_expire_store, }; static struct cfq_fs_entry cfq_find_best_entry = { .attr = {.name = "find_best_crq", .mode = S_IRUGO | S_IWUSR }, .show = cfq_find_best_show, .store = cfq_find_best_store, }; static struct cfq_fs_entry cfq_back_max_entry = { .attr = {.name = "back_seek_max", .mode = S_IRUGO | S_IWUSR }, .show = cfq_back_max_show, .store = cfq_back_max_store, }; static struct cfq_fs_entry cfq_back_penalty_entry = { .attr = {.name = "back_seek_penalty", .mode = S_IRUGO | S_IWUSR }, .show = cfq_back_penalty_show, .store = cfq_back_penalty_store, }; static struct cfq_fs_entry cfq_clear_elapsed_entry = { .attr = {.name = "clear_elapsed", .mode = S_IWUSR }, .store = cfq_clear_elapsed, }; static struct cfq_fs_entry cfq_key_type_entry = { .attr = {.name = "key_type", .mode = S_IRUGO | S_IWUSR }, .show = cfq_read_key_type, .store = cfq_set_key_type, }; static struct attribute *default_attrs[] = { &cfq_quantum_entry.attr, &cfq_queued_entry.attr, &cfq_fifo_expire_r_entry.attr, &cfq_fifo_expire_w_entry.attr, &cfq_fifo_batch_expire_entry.attr, &cfq_key_type_entry.attr, &cfq_find_best_entry.attr, &cfq_back_max_entry.attr, &cfq_back_penalty_entry.attr, &cfq_clear_elapsed_entry.attr, NULL, }; #define to_cfq(atr) container_of((atr), struct cfq_fs_entry, attr) static ssize_t cfq_attr_show(struct kobject *kobj, struct attribute *attr, char *page) { elevator_t *e = container_of(kobj, elevator_t, kobj); struct cfq_fs_entry *entry = to_cfq(attr); if (!entry->show) return 0; return entry->show(e->elevator_data, page); } static ssize_t cfq_attr_store(struct kobject *kobj, struct attribute *attr, const char *page, size_t length) { elevator_t *e = container_of(kobj, elevator_t, kobj); struct cfq_fs_entry *entry = to_cfq(attr); if (!entry->store) return -EINVAL; return entry->store(e->elevator_data, page, length); } static struct sysfs_ops cfq_sysfs_ops = { .show = cfq_attr_show, .store = cfq_attr_store, }; struct kobj_type cfq_ktype = { .sysfs_ops = &cfq_sysfs_ops, .default_attrs = default_attrs, }; static struct elevator_type iosched_cfq = { .ops = { .elevator_merge_fn = cfq_merge, .elevator_merged_fn = cfq_merged_request, .elevator_merge_req_fn = cfq_merged_requests, .elevator_next_req_fn = cfq_next_request, .elevator_add_req_fn = cfq_insert_request, .elevator_remove_req_fn = cfq_remove_request, .elevator_requeue_req_fn = cfq_requeue_request, .elevator_queue_empty_fn = cfq_queue_empty, .elevator_completed_req_fn = cfq_completed_request, .elevator_former_req_fn = cfq_former_request, .elevator_latter_req_fn = cfq_latter_request, .elevator_set_req_fn = cfq_set_request, .elevator_put_req_fn = cfq_put_request, .elevator_may_queue_fn = cfq_may_queue, .elevator_init_fn = cfq_init_queue, .elevator_exit_fn = cfq_exit_queue, }, .elevator_ktype = &cfq_ktype, .elevator_name = "cfq", .elevator_owner = THIS_MODULE, }; static int __init cfq_init(void) { int ret; if (cfq_slab_setup()) return -ENOMEM; ret = elv_register(&iosched_cfq); if (!ret) { __module_get(THIS_MODULE); return 0; } cfq_slab_kill(); return ret; } static void __exit cfq_exit(void) { cfq_slab_kill(); elv_unregister(&iosched_cfq); } module_init(cfq_init); module_exit(cfq_exit); MODULE_AUTHOR("Jens Axboe"); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");