/* * linux/drivers/block/floppy.c * * Copyright (C) 1991, 1992 Linus Torvalds * Copyright (C) 1993, 1994 Alain Knaff * Copyright (C) 1998 Alan Cox */ /* * 02.12.91 - Changed to static variables to indicate need for reset * and recalibrate. This makes some things easier (output_byte reset * checking etc), and means less interrupt jumping in case of errors, * so the code is hopefully easier to understand. */ /* * This file is certainly a mess. I've tried my best to get it working, * but I don't like programming floppies, and I have only one anyway. * Urgel. I should check for more errors, and do more graceful error * recovery. Seems there are problems with several drives. I've tried to * correct them. No promises. */ /* * As with hd.c, all routines within this file can (and will) be called * by interrupts, so extreme caution is needed. A hardware interrupt * handler may not sleep, or a kernel panic will happen. Thus I cannot * call "floppy-on" directly, but have to set a special timer interrupt * etc. */ /* * 28.02.92 - made track-buffering routines, based on the routines written * by entropy@wintermute.wpi.edu (Lawrence Foard). Linus. */ /* * Automatic floppy-detection and formatting written by Werner Almesberger * (almesber@nessie.cs.id.ethz.ch), who also corrected some problems with * the floppy-change signal detection. */ /* * 1992/7/22 -- Hennus Bergman: Added better error reporting, fixed * FDC data overrun bug, added some preliminary stuff for vertical * recording support. * * 1992/9/17: Added DMA allocation & DMA functions. -- hhb. * * TODO: Errors are still not counted properly. */ /* 1992/9/20 * Modifications for ``Sector Shifting'' by Rob Hooft (hooft@chem.ruu.nl) * modeled after the freeware MS-DOS program fdformat/88 V1.8 by * Christoph H. Hochst\"atter. * I have fixed the shift values to the ones I always use. Maybe a new * ioctl() should be created to be able to modify them. * There is a bug in the driver that makes it impossible to format a * floppy as the first thing after bootup. */ /* * 1993/4/29 -- Linus -- cleaned up the timer handling in the kernel, and * this helped the floppy driver as well. Much cleaner, and still seems to * work. */ /* 1994/6/24 --bbroad-- added the floppy table entries and made * minor modifications to allow 2.88 floppies to be run. */ /* 1994/7/13 -- Paul Vojta -- modified the probing code to allow three or more * disk types. */ /* * 1994/8/8 -- Alain Knaff -- Switched to fdpatch driver: Support for bigger * format bug fixes, but unfortunately some new bugs too... */ /* 1994/9/17 -- Koen Holtman -- added logging of physical floppy write * errors to allow safe writing by specialized programs. */ /* 1995/4/24 -- Dan Fandrich -- added support for Commodore 1581 3.5" disks * by defining bit 1 of the "stretch" parameter to mean put sectors on the * opposite side of the disk, leaving the sector IDs alone (i.e. Commodore's * drives are "upside-down"). */ /* * 1995/8/26 -- Andreas Busse -- added Mips support. */ /* * 1995/10/18 -- Ralf Baechle -- Portability cleanup; move machine dependent * features to asm/floppy.h. */ /* * 1998/05/07 -- Russell King -- More portability cleanups; moved definition of * interrupt and dma channel to asm/floppy.h. Cleaned up some formatting & * use of '0' for NULL. */ /* * 1998/06/07 -- Alan Cox -- Merged the 2.0.34 fixes for resource allocation * failures. */ /* * 1998/09/20 -- David Weinehall -- Added slow-down code for buggy PS/2-drives. */ /* * 1999/01/19 -- N.Fujita & Linux/98 Project -- Added code for NEC PC-9800 * series. */ /* * 1999/08/13 -- Paul Slootman -- floppy stopped working on Alpha after 24 * days, 6 hours, 32 minutes and 32 seconds (i.e. MAXINT jiffies; ints were * being used to store jiffies, which are unsigned longs). */ /* * 2000/08/28 -- Arnaldo Carvalho de Melo * - get rid of check_region * - s/suser/capable/ */ /* * 2001/08/26 -- Paul Gortmaker - fix insmod oops on machines with no * floppy controller (lingering task on list after module is gone... boom.) */ /* * 2002/02/07 -- Anton Altaparmakov - Fix io ports reservation to correct range * (0x3f2-0x3f5, 0x3f7). This fix is a bit of a hack but the proper fix * requires many non-obvious changes in arch dependent code. */ /* * 2002/10/12 -- Osamu Tomita * split code from floppy.c * support NEC PC-9800 only */ #define FLOPPY_SANITY_CHECK #undef FLOPPY_SILENT_DCL_CLEAR /* #define PC9800_DEBUG_FLOPPY #define PC9800_DEBUG_FLOPPY2 */ #define REALLY_SLOW_IO #define DEBUGT 2 #define DCL_DEBUG /* debug disk change line */ /* do print messages for unexpected interrupts */ static int print_unex=1; #include #include #include #include #include #include #include #include #include #include #include /* for the compatibility eject ioctl */ #include /* * 1998/1/21 -- Richard Gooch -- devfs support */ #include #define FLOPPY98_MOTOR_MASK 0x08 #include #define FD98_STATUS (0 + FD_IOPORT ) #define FD98_DATA (2 + FD_IOPORT ) #define FD_MODE (4 + FD_IOPORT ) #define FD_MODE_CHANGE 0xbe #define FD_EMODE_CHANGE 0x4be #include #include #include #include #include #include #include #include /* CMOS defines */ #include #include #include #include #include #include /* for invalidate_buffers() */ /* * PS/2 floppies have much slower step rates than regular floppies. * It's been recommended that take about 1/4 of the default speed * in some more extreme cases. */ static int slow_floppy; #include #include #include #include #include #ifndef DEFAULT_FLOPPY_IRQ # define DEFAULT_FLOPPY_IRQ 11 #endif #ifndef DEFAULT_FLOPPY_DMA # define DEFAULT_FLOPPY_DMA 2 #endif static int FLOPPY_IRQ=DEFAULT_FLOPPY_IRQ; static int FLOPPY_DMA=DEFAULT_FLOPPY_DMA; static int can_use_virtual_dma=2; static int auto_detect_mode = 0; static int retry_auto_detect = 0; #define FD_AFTER_RESET_DELAY 1000 /* ======= * can use virtual DMA: * 0 = use of virtual DMA disallowed by config * 1 = use of virtual DMA prescribed by config * 2 = no virtual DMA preference configured. By default try hard DMA, * but fall back on virtual DMA when not enough memory available */ static int use_virtual_dma; /* ======= * use virtual DMA * 0 using hard DMA * 1 using virtual DMA * This variable is set to virtual when a DMA mem problem arises, and * reset back in floppy_grab_irq_and_dma. * It is not safe to reset it in other circumstances, because the floppy * driver may have several buffers in use at once, and we do currently not * record each buffers capabilities */ static spinlock_t floppy_lock = SPIN_LOCK_UNLOCKED; static struct completion device_release; static unsigned short virtual_dma_port=0x3f0; irqreturn_t floppy_interrupt(int irq, void *dev_id, struct pt_regs * regs); static int set_mode(char mask, char data); static void register_devfs_entries (int drive) __init; #define K_64 0x10000 /* 64KB */ /* the following is the mask of allowed drives. By default units 2 and * 3 of both floppy controllers are disabled, because switching on the * motor of these drives causes system hangs on some PCI computers. drive * 0 is the low bit (0x1), and drive 7 is the high bit (0x80). Bits are on if * a drive is allowed. * * NOTE: This must come before we include the arch floppy header because * some ports reference this variable from there. -DaveM */ static int allowed_drive_mask = 0x0f; #include static int irqdma_allocated; #define LOCAL_END_REQUEST #define DEVICE_NAME "floppy" #include #include /* for the compatibility eject ioctl */ #include static struct request *current_req; static struct request_queue *floppy_queue; #ifndef fd_get_dma_residue #define fd_get_dma_residue() get_dma_residue(FLOPPY_DMA) #endif /* Dma Memory related stuff */ #ifndef fd_dma_mem_free #define fd_dma_mem_free(addr, size) free_pages(addr, get_order(size)) #endif #ifndef fd_dma_mem_alloc #define fd_dma_mem_alloc(size) __get_dma_pages(GFP_KERNEL,get_order(size)) #endif static inline void fallback_on_nodma_alloc(char **addr, size_t l) { #ifdef FLOPPY_CAN_FALLBACK_ON_NODMA if (*addr) return; /* we have the memory */ if (can_use_virtual_dma != 2) return; /* no fallback allowed */ printk("DMA memory shortage. Temporarily falling back on virtual DMA\n"); *addr = (char *) nodma_mem_alloc(l); #else return; #endif } /* End dma memory related stuff */ static unsigned long fake_change; static int initialising=1; #define ITYPE(x) (((x)>>2) & 0x1f) #define TOMINOR(x) ((x & 3) | ((x & 4) << 5)) #define UNIT(x) ((x) & 0x03) /* drive on fdc */ #define FDC(x) (((x) & 0x04) >> 2) /* fdc of drive */ #define REVDRIVE(fdc, unit) ((unit) + ((fdc) << 2)) /* reverse mapping from unit and fdc to drive */ #define DP (&drive_params[current_drive]) #define DRS (&drive_state[current_drive]) #define DRWE (&write_errors[current_drive]) #define FDCS (&fdc_state[fdc]) #define CLEARF(x) (clear_bit(x##_BIT, &DRS->flags)) #define SETF(x) (set_bit(x##_BIT, &DRS->flags)) #define TESTF(x) (test_bit(x##_BIT, &DRS->flags)) #define UDP (&drive_params[drive]) #define UDRS (&drive_state[drive]) #define UDRWE (&write_errors[drive]) #define UFDCS (&fdc_state[FDC(drive)]) #define UCLEARF(x) (clear_bit(x##_BIT, &UDRS->flags)) #define USETF(x) (set_bit(x##_BIT, &UDRS->flags)) #define UTESTF(x) (test_bit(x##_BIT, &UDRS->flags)) #define DPRINT(format, args...) printk(DEVICE_NAME "%d: " format, current_drive , ## args) #define PH_HEAD(floppy,head) (((((floppy)->stretch & 2) >>1) ^ head) << 2) #define STRETCH(floppy) ((floppy)->stretch & FD_STRETCH) #define CLEARSTRUCT(x) memset((x), 0, sizeof(*(x))) /* read/write */ #define COMMAND raw_cmd->cmd[0] #define DR_SELECT raw_cmd->cmd[1] #define TRACK raw_cmd->cmd[2] #define HEAD raw_cmd->cmd[3] #define SECTOR raw_cmd->cmd[4] #define SIZECODE raw_cmd->cmd[5] #define SECT_PER_TRACK raw_cmd->cmd[6] #define GAP raw_cmd->cmd[7] #define SIZECODE2 raw_cmd->cmd[8] #define NR_RW 9 /* format */ #define F_SIZECODE raw_cmd->cmd[2] #define F_SECT_PER_TRACK raw_cmd->cmd[3] #define F_GAP raw_cmd->cmd[4] #define F_FILL raw_cmd->cmd[5] #define NR_F 6 /* * Maximum disk size (in kilobytes). This default is used whenever the * current disk size is unknown. * [Now it is rather a minimum] */ #define MAX_DISK_SIZE 4 /* 3984*/ /* * globals used by 'result()' */ #define MAX_REPLIES 16 static unsigned char reply_buffer[MAX_REPLIES]; static int inr; /* size of reply buffer, when called from interrupt */ #define ST0 (reply_buffer[0]) #define ST1 (reply_buffer[1]) #define ST2 (reply_buffer[2]) #define ST3 (reply_buffer[0]) /* result of GETSTATUS */ #define R_TRACK (reply_buffer[3]) #define R_HEAD (reply_buffer[4]) #define R_SECTOR (reply_buffer[5]) #define R_SIZECODE (reply_buffer[6]) #define SEL_DLY (2*HZ/100) /* * this struct defines the different floppy drive types. */ static struct { struct floppy_drive_params params; const char *name; /* name printed while booting */ } default_drive_params[]= { /* NOTE: the time values in jiffies should be in msec! CMOS drive type | Maximum data rate supported by drive type | | Head load time, msec | | | Head unload time, msec (not used) | | | | Step rate interval, usec | | | | | Time needed for spinup time (jiffies) | | | | | | Timeout for spinning down (jiffies) | | | | | | | Spindown offset (where disk stops) | | | | | | | | Select delay | | | | | | | | | RPS | | | | | | | | | | Max number of tracks | | | | | | | | | | | Interrupt timeout | | | | | | | | | | | | Max nonintlv. sectors | | | | | | | | | | | | | -Max Errors- flags */ {{0, 500, 16, 16, 8000, 1*HZ, 3*HZ, 0, SEL_DLY, 5, 80, 3*HZ, 20, {3,1,2,0,2}, 0, 0, { 7, 4, 8, 2, 1, 5, 3,10}, 3*HZ/2, 0 }, "unknown" }, {{1, 300, 16, 16, 8000, 1*HZ, 3*HZ, 0, SEL_DLY, 5, 40, 3*HZ, 17, {3,1,2,0,2}, 0, 0, { 1, 0, 0, 0, 0, 0, 0, 0}, 3*HZ/2, 1 }, "360K PC" }, /*5 1/4 360 KB PC*/ {{2, 500, 16, 16, 6000, 4*HZ/10, 3*HZ, 14, SEL_DLY, 6, 83, 3*HZ, 17, {3,1,2,0,2}, 0, 0, { 2, 6, 4, 0, 0, 0, 0, 0}, 3*HZ/2, 2 }, "1.2M" }, /*5 1/4 HD AT*/ {{3, 250, 16, 16, 3000, 1*HZ, 3*HZ, 0, SEL_DLY, 5, 83, 3*HZ, 20, {3,1,2,0,2}, 0, 0, { 4, 6, 0, 0, 0, 0, 0, 0}, 3*HZ/2, 4 }, "720k" }, /*3 1/2 DD*/ {{4, 500, 16, 16, 4000, 4*HZ/10, 3*HZ, 10, SEL_DLY, 5, 83, 3*HZ, 20, {3,1,2,0,2}, 0, 0, { 7,10, 2, 4, 6, 0, 0, 0}, 3*HZ/2, 7 }, "1.44M" }, /*3 1/2 HD*/ {{5, 1000, 15, 8, 3000, 4*HZ/10, 3*HZ, 10, SEL_DLY, 5, 83, 3*HZ, 40, {3,1,2,0,2}, 0, 0, { 7, 8, 4,25,28,22,31,21}, 3*HZ/2, 8 }, "2.88M AMI BIOS" }, /*3 1/2 ED*/ {{6, 1000, 15, 8, 3000, 4*HZ/10, 3*HZ, 10, SEL_DLY, 5, 83, 3*HZ, 40, {3,1,2,0,2}, 0, 0, { 7, 8, 4,25,28,22,31,21}, 3*HZ/2, 8 }, "2.88M" } /*3 1/2 ED*/ /* | --autodetected formats--- | | | * read_track | | Name printed when booting * | Native format * Frequency of disk change checks */ }; static struct floppy_drive_params drive_params[N_DRIVE]; static struct floppy_drive_struct drive_state[N_DRIVE]; static struct floppy_write_errors write_errors[N_DRIVE]; static struct timer_list motor_off_timer[N_DRIVE]; static struct gendisk *disks[N_DRIVE]; static struct block_device *opened_bdev[N_DRIVE]; static DECLARE_MUTEX(open_lock); static struct floppy_raw_cmd *raw_cmd, default_raw_cmd; /* * This struct defines the different floppy types. * * Bit 0 of 'stretch' tells if the tracks need to be doubled for some * types (e.g. 360kB diskette in 1.2MB drive, etc.). Bit 1 of 'stretch' * tells if the disk is in Commodore 1581 format, which means side 0 sectors * are located on side 1 of the disk but with a side 0 ID, and vice-versa. * This is the same as the Sharp MZ-80 5.25" CP/M disk format, except that the * 1581's logical side 0 is on physical side 1, whereas the Sharp's logical * side 0 is on physical side 0 (but with the misnamed sector IDs). * 'stretch' should probably be renamed to something more general, like * 'options'. Other parameters should be self-explanatory (see also * setfdprm(8)). */ /* Size | Sectors per track | | Head | | | Tracks | | | | Stretch | | | | | Gap 1 size | | | | | | Data rate, | 0x40 for perp | | | | | | | Spec1 (stepping rate, head unload | | | | | | | | /fmt gap (gap2) */ static struct floppy_struct floppy_type[32] = { { 0, 0,0, 0,0,0x00,0x00,0x00,0x00,NULL }, /* 0 no testing */ #if 0 { 720, 9,2,40,0,0x2A,0x02,0xDF,0x50,"d360" }, /* 1 360KB PC */ #else { 2464,16,2,77,0,0x35,0x48,0xDF,0x74,"d360" }, /* 1 1.25MB 98 */ #endif { 2400,15,2,80,0,0x1B,0x00,0xDF,0x54,"h1200" }, /* 2 1.2MB AT */ { 720, 9,1,80,0,0x2A,0x02,0xDF,0x50,"D360" }, /* 3 360KB SS 3.5" */ { 1440, 9,2,80,0,0x2A,0x02,0xDF,0x50,"D720" }, /* 4 720KB 3.5" */ { 720, 9,2,40,1,0x23,0x01,0xDF,0x50,"h360" }, /* 5 360KB AT */ { 1440, 9,2,80,0,0x23,0x01,0xDF,0x50,"h720" }, /* 6 720KB AT */ { 2880,18,2,80,0,0x1B,0x00,0xCF,0x6C,"H1440" }, /* 7 1.44MB 3.5" */ { 5760,36,2,80,0,0x1B,0x43,0xAF,0x54,"E2880" }, /* 8 2.88MB 3.5" */ { 6240,39,2,80,0,0x1B,0x43,0xAF,0x28,"E3120" }, /* 9 3.12MB 3.5" */ { 2880,18,2,80,0,0x25,0x00,0xDF,0x02,"h1440" }, /* 10 1.44MB 5.25" */ { 3360,21,2,80,0,0x1C,0x00,0xCF,0x0C,"H1680" }, /* 11 1.68MB 3.5" */ { 820,10,2,41,1,0x25,0x01,0xDF,0x2E,"h410" }, /* 12 410KB 5.25" */ { 1640,10,2,82,0,0x25,0x02,0xDF,0x2E,"H820" }, /* 13 820KB 3.5" */ { 2952,18,2,82,0,0x25,0x00,0xDF,0x02,"h1476" }, /* 14 1.48MB 5.25" */ { 3444,21,2,82,0,0x25,0x00,0xDF,0x0C,"H1722" }, /* 15 1.72MB 3.5" */ { 840,10,2,42,1,0x25,0x01,0xDF,0x2E,"h420" }, /* 16 420KB 5.25" */ { 1660,10,2,83,0,0x25,0x02,0xDF,0x2E,"H830" }, /* 17 830KB 3.5" */ { 2988,18,2,83,0,0x25,0x00,0xDF,0x02,"h1494" }, /* 18 1.49MB 5.25" */ { 3486,21,2,83,0,0x25,0x00,0xDF,0x0C,"H1743" }, /* 19 1.74 MB 3.5" */ { 1760,11,2,80,0,0x1C,0x09,0xCF,0x00,"h880" }, /* 20 880KB 5.25" */ { 2080,13,2,80,0,0x1C,0x01,0xCF,0x00,"D1040" }, /* 21 1.04MB 3.5" */ { 2240,14,2,80,0,0x1C,0x19,0xCF,0x00,"D1120" }, /* 22 1.12MB 3.5" */ { 3200,20,2,80,0,0x1C,0x20,0xCF,0x2C,"h1600" }, /* 23 1.6MB 5.25" */ { 3520,22,2,80,0,0x1C,0x08,0xCF,0x2e,"H1760" }, /* 24 1.76MB 3.5" */ { 3840,24,2,80,0,0x1C,0x20,0xCF,0x00,"H1920" }, /* 25 1.92MB 3.5" */ { 6400,40,2,80,0,0x25,0x5B,0xCF,0x00,"E3200" }, /* 26 3.20MB 3.5" */ { 7040,44,2,80,0,0x25,0x5B,0xCF,0x00,"E3520" }, /* 27 3.52MB 3.5" */ { 7680,48,2,80,0,0x25,0x63,0xCF,0x00,"E3840" }, /* 28 3.84MB 3.5" */ { 3680,23,2,80,0,0x1C,0x10,0xCF,0x00,"H1840" }, /* 29 1.84MB 3.5" */ { 1600,10,2,80,0,0x25,0x02,0xDF,0x2E,"D800" }, /* 30 800KB 3.5" */ { 3200,20,2,80,0,0x1C,0x00,0xCF,0x2C,"H1600" }, /* 31 1.6MB 3.5" */ }; #define NUMBER(x) (sizeof(x) / sizeof(*(x))) #define SECTSIZE (_FD_SECTSIZE(*floppy)) /* Auto-detection: Disk type used until the next media change occurs. */ static struct floppy_struct *current_type[N_DRIVE]; /* * User-provided type information. current_type points to * the respective entry of this array. */ static struct floppy_struct user_params[N_DRIVE]; static sector_t floppy_sizes[256]; /* * The driver is trying to determine the correct media format * while probing is set. rw_interrupt() clears it after a * successful access. */ static int probing; /* Synchronization of FDC access. */ #define FD_COMMAND_NONE -1 #define FD_COMMAND_ERROR 2 #define FD_COMMAND_OKAY 3 static volatile int command_status = FD_COMMAND_NONE; static unsigned long fdc_busy; static DECLARE_WAIT_QUEUE_HEAD(fdc_wait); static DECLARE_WAIT_QUEUE_HEAD(command_done); #define NO_SIGNAL (!interruptible || !signal_pending(current)) #define CALL(x) if ((x) == -EINTR) return -EINTR #define ECALL(x) if ((ret = (x))) return ret; #define _WAIT(x,i) CALL(ret=wait_til_done((x),i)) #define WAIT(x) _WAIT((x),interruptible) #define IWAIT(x) _WAIT((x),1) /* Errors during formatting are counted here. */ static int format_errors; /* Format request descriptor. */ static struct format_descr format_req; /* * Rate is 0 for 500kb/s, 1 for 300kbps, 2 for 250kbps * Spec1 is 0xSH, where S is stepping rate (F=1ms, E=2ms, D=3ms etc), * H is head unload time (1=16ms, 2=32ms, etc) */ /* * Track buffer * Because these are written to by the DMA controller, they must * not contain a 64k byte boundary crossing, or data will be * corrupted/lost. */ static char *floppy_track_buffer; static int max_buffer_sectors; static int *errors; typedef void (*done_f)(int); static struct cont_t { void (*interrupt)(void); /* this is called after the interrupt of the * main command */ void (*redo)(void); /* this is called to retry the operation */ void (*error)(void); /* this is called to tally an error */ done_f done; /* this is called to say if the operation has * succeeded/failed */ } *cont; static void floppy_ready(void); static void floppy_start(void); static void process_fd_request(void); static void recalibrate_floppy(void); static void floppy_shutdown(unsigned long); static int floppy_grab_irq_and_dma(void); static void floppy_release_irq_and_dma(void); /* * The "reset" variable should be tested whenever an interrupt is scheduled, * after the commands have been sent. This is to ensure that the driver doesn't * get wedged when the interrupt doesn't come because of a failed command. * reset doesn't need to be tested before sending commands, because * output_byte is automatically disabled when reset is set. */ #define CHECK_RESET { if (FDCS->reset){ reset_fdc(); return; } } static void reset_fdc(void); /* * These are global variables, as that's the easiest way to give * information to interrupts. They are the data used for the current * request. */ #define NO_TRACK -1 #define NEED_1_RECAL -2 #define NEED_2_RECAL -3 static int usage_count; /* buffer related variables */ static int buffer_track = -1; static int buffer_drive = -1; static int buffer_min = -1; static int buffer_max = -1; /* fdc related variables, should end up in a struct */ static struct floppy_fdc_state fdc_state[N_FDC]; static int fdc; /* current fdc */ static struct floppy_struct *_floppy = floppy_type; static unsigned char current_drive; static long current_count_sectors; static unsigned char fsector_t; /* sector in track */ static unsigned char in_sector_offset; /* offset within physical sector, * expressed in units of 512 bytes */ #ifndef fd_eject static inline int fd_eject(int drive) { return -EINVAL; } #endif #ifdef DEBUGT static long unsigned debugtimer; #endif /* * Debugging * ========= */ static inline void set_debugt(void) { #ifdef DEBUGT debugtimer = jiffies; #endif } static inline void debugt(const char *message) { #ifdef DEBUGT if (DP->flags & DEBUGT) printk("%s dtime=%lu\n", message, jiffies-debugtimer); #endif } typedef void (*timeout_fn)(unsigned long); static struct timer_list fd_timeout = TIMER_INITIALIZER(floppy_shutdown, 0, 0); static const char *timeout_message; #ifdef FLOPPY_SANITY_CHECK static void is_alive(const char *message) { /* this routine checks whether the floppy driver is "alive" */ if (fdc_busy && command_status < 2 && !timer_pending(&fd_timeout)){ DPRINT("timeout handler died: %s\n",message); } } #endif static void (*do_floppy)(void) = NULL; #ifdef FLOPPY_SANITY_CHECK #define OLOGSIZE 20 static void (*lasthandler)(void); static unsigned long interruptjiffies; static unsigned long resultjiffies; static int resultsize; static unsigned long lastredo; static struct output_log { unsigned char data; unsigned char status; unsigned long jiffies; } output_log[OLOGSIZE]; static int output_log_pos; #endif #define current_reqD -1 #define MAXTIMEOUT -2 static void reschedule_timeout(int drive, const char *message, int marg) { if (drive == current_reqD) drive = current_drive; del_timer(&fd_timeout); if (drive < 0 || drive > N_DRIVE) { fd_timeout.expires = jiffies + 20UL*HZ; drive=0; } else fd_timeout.expires = jiffies + UDP->timeout; add_timer(&fd_timeout); if (UDP->flags & FD_DEBUG){ DPRINT("reschedule timeout "); printk(message, marg); printk("\n"); } timeout_message = message; } static int maximum(int a, int b) { if (a > b) return a; else return b; } #define INFBOUND(a,b) (a)=maximum((a),(b)); static int minimum(int a, int b) { if (a < b) return a; else return b; } #define SUPBOUND(a,b) (a)=minimum((a),(b)); /* * Bottom half floppy driver. * ========================== * * This part of the file contains the code talking directly to the hardware, * and also the main service loop (seek-configure-spinup-command) */ /* * disk change. * This routine is responsible for maintaining the FD_DISK_CHANGE flag, * and the last_checked date. * * last_checked is the date of the last check which showed 'no disk change' * FD_DISK_CHANGE is set under two conditions: * 1. The floppy has been changed after some i/o to that floppy already * took place. * 2. No floppy disk is in the drive. This is done in order to ensure that * requests are quickly flushed in case there is no disk in the drive. It * follows that FD_DISK_CHANGE can only be cleared if there is a disk in * the drive. * * For 1., maxblock is observed. Maxblock is 0 if no i/o has taken place yet. * For 2., FD_DISK_NEWCHANGE is watched. FD_DISK_NEWCHANGE is cleared on * each seek. If a disk is present, the disk change line should also be * cleared on each seek. Thus, if FD_DISK_NEWCHANGE is clear, but the disk * change line is set, this means either that no disk is in the drive, or * that it has been removed since the last seek. * * This means that we really have a third possibility too: * The floppy has been changed after the last seek. */ static int disk_change(int drive) { return UTESTF(FD_DISK_CHANGED); } static int set_mode(char mask, char data) { register unsigned char newdor, olddor; olddor = FDCS->dor; newdor = (olddor & mask) | data; if (newdor != olddor) { FDCS->dor = newdor; fd_outb(newdor, FD_MODE); } if (newdor & FLOPPY98_MOTOR_MASK) floppy_grab_irq_and_dma(); if (olddor & FLOPPY98_MOTOR_MASK) floppy_release_irq_and_dma(); return olddor; } static void twaddle(void) { if (DP->select_delay) return; fd_outb(FDCS->dor & 0xf7, FD_MODE); fd_outb(FDCS->dor, FD_MODE); DRS->select_date = jiffies; } /* reset all driver information about the current fdc. This is needed after * a reset, and after a raw command. */ static void reset_fdc_info(int mode) { int drive; FDCS->spec1 = FDCS->spec2 = -1; FDCS->need_configure = 1; FDCS->perp_mode = 1; FDCS->rawcmd = 0; for (drive = 0; drive < N_DRIVE; drive++) if (FDC(drive) == fdc && (mode || UDRS->track != NEED_1_RECAL)) UDRS->track = NEED_2_RECAL; } /* selects the fdc and drive, and enables the fdc's input/dma. */ static void set_fdc(int drive) { fdc = 0; current_drive = drive; set_mode(~0, 0x10); if (FDCS->rawcmd == 2) reset_fdc_info(1); if (fd_inb(FD98_STATUS) != STATUS_READY) FDCS->reset = 1; } /* locks the driver */ static int _lock_fdc(int drive, int interruptible, int line) { if (!usage_count){ printk(KERN_ERR "Trying to lock fdc while usage count=0 at line %d\n", line); return -1; } if(floppy_grab_irq_and_dma()==-1) return -EBUSY; if (test_and_set_bit(0, &fdc_busy)) { DECLARE_WAITQUEUE(wait, current); add_wait_queue(&fdc_wait, &wait); for (;;) { set_current_state(TASK_INTERRUPTIBLE); if (!test_and_set_bit(0, &fdc_busy)) break; schedule(); if (!NO_SIGNAL) { remove_wait_queue(&fdc_wait, &wait); return -EINTR; } } set_current_state(TASK_RUNNING); remove_wait_queue(&fdc_wait, &wait); } command_status = FD_COMMAND_NONE; reschedule_timeout(drive, "lock fdc", 0); set_fdc(drive); return 0; } #define lock_fdc(drive,interruptible) _lock_fdc(drive,interruptible, __LINE__) #define LOCK_FDC(drive,interruptible) \ if (lock_fdc(drive,interruptible)) return -EINTR; /* unlocks the driver */ static inline void unlock_fdc(void) { raw_cmd = 0; if (!fdc_busy) DPRINT("FDC access conflict!\n"); if (do_floppy) DPRINT("device interrupt still active at FDC release: %p!\n", do_floppy); command_status = FD_COMMAND_NONE; del_timer(&fd_timeout); cont = NULL; clear_bit(0, &fdc_busy); floppy_release_irq_and_dma(); wake_up(&fdc_wait); } #ifndef CONFIG_PC9800_MOTOR_OFF /* tomita */ /* switches the motor off after a given timeout */ static void motor_off_callback(unsigned long nr) { printk(KERN_DEBUG "fdc%lu: turn off motor\n", nr); } /* schedules motor off */ static void floppy_off(unsigned int drive) { } #else /* CONFIG_PC9800_MOTOR_OFF */ /* switches the motor off after a given timeout */ static void motor_off_callback(unsigned long fdc) { printk(KERN_DEBUG "fdc%u: turn off motor\n", (unsigned int) fdc); fd_outb(0, FD_MODE); /* MTON = 0 */ } static struct timer_list motor_off_timer[N_FDC] = { { data: 0, function: motor_off_callback }, #if N_FDC > 1 { data: 1, function: motor_off_callback }, #endif #if N_FDC > 2 # error "N_FDC > 2; please fix initializer for motor_off_timer[]" #endif }; /* schedules motor off */ static void floppy_off(unsigned int drive) { unsigned long volatile delta; register int fdc = FDC(drive); if (!(FDCS->dor & (0x10 << UNIT(drive)))) return; del_timer(motor_off_timer + fdc); #if 0 /* make spindle stop in a position which minimizes spinup time * next time */ if (UDP->rps){ delta = jiffies - UDRS->first_read_date + HZ - UDP->spindown_offset; delta = ((delta * UDP->rps) % HZ) / UDP->rps; motor_off_timer[drive].expires = jiffies + UDP->spindown - delta; } #else if (UDP->rps) motor_off_timer[drive].expires = jiffies + UDP->spindown; #endif add_timer(motor_off_timer + fdc); } #endif /* CONFIG_PC9800_MOTOR_OFF */ /* * cycle through all N_DRIVE floppy drives, for disk change testing. * stopping at current drive. This is done before any long operation, to * be sure to have up to date disk change information. */ static void scandrives(void) { int i, drive, saved_drive; if (DP->select_delay) return; saved_drive = current_drive; for (i=0; i < N_DRIVE; i++){ drive = (saved_drive + i + 1) % N_DRIVE; if (UDRS->fd_ref == 0 || UDP->select_delay != 0) continue; /* skip closed drives */ set_fdc(drive); } set_fdc(saved_drive); } static void empty(void) { } static DECLARE_WORK(floppy_work, NULL, NULL); static void schedule_bh(void (*handler) (void)) { PREPARE_WORK(&floppy_work, (void (*)(void *))handler, NULL); schedule_work(&floppy_work); } static struct timer_list fd_timer = TIMER_INITIALIZER(NULL, 0, 0); static void cancel_activity(void) { do_floppy = NULL; PREPARE_WORK(&floppy_work, (void*)(void*)empty, NULL); del_timer(&fd_timer); } /* this function makes sure that the disk stays in the drive during the * transfer */ static void fd_watchdog(void) { #ifdef DCL_DEBUG if (DP->flags & FD_DEBUG){ DPRINT("calling disk change from watchdog\n"); } #endif if (disk_change(current_drive)){ DPRINT("disk removed during i/o\n"); cancel_activity(); cont->done(0); reset_fdc(); } else { del_timer(&fd_timer); fd_timer.function = (timeout_fn) fd_watchdog; fd_timer.expires = jiffies + HZ / 10; add_timer(&fd_timer); } } static void main_command_interrupt(void) { del_timer(&fd_timer); cont->interrupt(); } /* waits for a delay (spinup or select) to pass */ static int fd_wait_for_completion(unsigned long delay, timeout_fn function) { if (FDCS->reset){ reset_fdc(); /* do the reset during sleep to win time * if we don't need to sleep, it's a good * occasion anyways */ return 1; } if ((signed) (jiffies - delay) < 0){ del_timer(&fd_timer); fd_timer.function = function; fd_timer.expires = delay; add_timer(&fd_timer); return 1; } return 0; } static spinlock_t floppy_hlt_lock = SPIN_LOCK_UNLOCKED; static int hlt_disabled; static void floppy_disable_hlt(void) { unsigned long flags; spin_lock_irqsave(&floppy_hlt_lock, flags); if (!hlt_disabled) { hlt_disabled=1; #ifdef HAVE_DISABLE_HLT disable_hlt(); #endif } spin_unlock_irqrestore(&floppy_hlt_lock, flags); } static void floppy_enable_hlt(void) { unsigned long flags; spin_lock_irqsave(&floppy_hlt_lock, flags); if (hlt_disabled){ hlt_disabled=0; #ifdef HAVE_DISABLE_HLT enable_hlt(); #endif } spin_unlock_irqrestore(&floppy_hlt_lock, flags); } static void setup_DMA(void) { unsigned long f; #ifdef FLOPPY_SANITY_CHECK if (raw_cmd->length == 0){ int i; printk("zero dma transfer size:"); for (i=0; i < raw_cmd->cmd_count; i++) printk("%x,", raw_cmd->cmd[i]); printk("\n"); cont->done(0); FDCS->reset = 1; return; } if (((unsigned long) raw_cmd->kernel_data) % 512){ printk("non aligned address: %p\n", raw_cmd->kernel_data); cont->done(0); FDCS->reset=1; return; } #endif f=claim_dma_lock(); fd_disable_dma(); #ifdef fd_dma_setup if (fd_dma_setup(raw_cmd->kernel_data, raw_cmd->length, (raw_cmd->flags & FD_RAW_READ)? DMA_MODE_READ : DMA_MODE_WRITE, FDCS->address) < 0) { release_dma_lock(f); cont->done(0); FDCS->reset=1; return; } release_dma_lock(f); #else fd_clear_dma_ff(); fd_cacheflush(raw_cmd->kernel_data, raw_cmd->length); fd_set_dma_mode((raw_cmd->flags & FD_RAW_READ)? DMA_MODE_READ : DMA_MODE_WRITE); fd_set_dma_addr(raw_cmd->kernel_data); fd_set_dma_count(raw_cmd->length); virtual_dma_port = FDCS->address; fd_enable_dma(); release_dma_lock(f); #endif floppy_disable_hlt(); } static void show_floppy(void); /* waits until the fdc becomes ready */ #ifdef PC9800_DEBUG_FLOPPY #define READY_DELAY 10000000 #else #define READY_DELAY 100000 #endif static int wait_til_ready(void) { int counter, status; if (FDCS->reset) return -1; for (counter = 0; counter < READY_DELAY; counter++) { status = fd_inb(FD98_STATUS); if (status & STATUS_READY) return status; } if (!initialising) { DPRINT("Getstatus times out (%x) on fdc %d\n", status, fdc); show_floppy(); } FDCS->reset = 1; return -1; } /* sends a command byte to the fdc */ static int output_byte(char byte) { int status; if ((status = wait_til_ready()) < 0) return -1; if ((status & (STATUS_READY|STATUS_DIR|STATUS_DMA)) == STATUS_READY){ fd_outb(byte,FD98_DATA); #ifdef FLOPPY_SANITY_CHECK output_log[output_log_pos].data = byte; output_log[output_log_pos].status = status; output_log[output_log_pos].jiffies = jiffies; output_log_pos = (output_log_pos + 1) % OLOGSIZE; #endif return 0; } FDCS->reset = 1; if (!initialising) { DPRINT("Unable to send byte %x to FDC. Fdc=%x Status=%x\n", byte, fdc, status); show_floppy(); } return -1; } #define LAST_OUT(x) if (output_byte(x)<0){ reset_fdc();return;} /* gets the response from the fdc */ static int result(void) { int i, status=0; for(i=0; i < MAX_REPLIES; i++) { if ((status = wait_til_ready()) < 0) break; status &= STATUS_DIR|STATUS_READY|STATUS_BUSY|STATUS_DMA; if ((status & ~STATUS_BUSY) == STATUS_READY){ #ifdef FLOPPY_SANITY_CHECK resultjiffies = jiffies; resultsize = i; #endif return i; } if (status == (STATUS_DIR|STATUS_READY|STATUS_BUSY)) reply_buffer[i] = fd_inb(FD98_DATA); else break; } if (!initialising) { DPRINT("get result error. Fdc=%d Last status=%x Read bytes=%d\n", fdc, status, i); show_floppy(); } FDCS->reset = 1; return -1; } static int fifo_depth = 0xa; static int no_fifo; #define NOMINAL_DTR 500 /* Issue a "SPECIFY" command to set the step rate time, head unload time, * head load time, and DMA disable flag to values needed by floppy. * * The value "dtr" is the data transfer rate in Kbps. It is needed * to account for the data rate-based scaling done by the 82072 and 82077 * FDC types. This parameter is ignored for other types of FDCs (i.e. * 8272a). * * Note that changing the data transfer rate has a (probably deleterious) * effect on the parameters subject to scaling for 82072/82077 FDCs, so * fdc_specify is called again after each data transfer rate * change. * * srt: 1000 to 16000 in microseconds * hut: 16 to 240 milliseconds * hlt: 2 to 254 milliseconds * * These values are rounded up to the next highest available delay time. */ static void fdc_specify(void) { output_byte(FD_SPECIFY); output_byte(FDCS->spec1 = 0xdf); output_byte(FDCS->spec2 = 0x24); } static void tell_sector(void) { printk(": track %d, head %d, sector %d, size %d", R_TRACK, R_HEAD, R_SECTOR, R_SIZECODE); } /* tell_sector */ static int auto_detect_mode_pc9800(void) { #ifdef PC9800_DEBUG_FLOPPY printk("auto_detect_mode_pc9800: retry_auto_detect=%d\n", retry_auto_detect); #endif if (retry_auto_detect > 4) { retry_auto_detect = 0; return 1; } switch ((int)(_floppy - floppy_type)) { case 2: _floppy = floppy_type + 4; break; case 4: case 6: _floppy = floppy_type + 7; break; case 7: case 10: _floppy = floppy_type + 2; break; default: _floppy = floppy_type + 7; } retry_auto_detect++; return 0; } static void access_mode_change_pc9800(void); /* * OK, this error interpreting routine is called after a * DMA read/write has succeeded * or failed, so we check the results, and copy any buffers. * hhb: Added better error reporting. * ak: Made this into a separate routine. */ static int interpret_errors(void) { char bad; if (inr!=7) { DPRINT("-- FDC reply error"); FDCS->reset = 1; return 1; } /* check IC to find cause of interrupt */ switch (ST0 & ST0_INTR) { case 0x40: /* error occurred during command execution */ if (ST1 & ST1_EOC) return 0; /* occurs with pseudo-DMA */ bad = 1; if (ST1 & ST1_WP) { DPRINT("Drive is write protected\n"); CLEARF(FD_DISK_WRITABLE); cont->done(0); bad = 2; } else if (ST1 & ST1_ND) { SETF(FD_NEED_TWADDLE); } else if (ST1 & ST1_OR) { if (DP->flags & FTD_MSG) DPRINT("Over/Underrun - retrying\n"); bad = 0; }else if (*errors >= DP->max_errors.reporting){ if (ST0 & ST0_ECE) { printk("Recalibrate failed!"); } else if (ST2 & ST2_CRC) { printk("data CRC error"); tell_sector(); } else if (ST1 & ST1_CRC) { printk("CRC error"); tell_sector(); } else if ((ST1 & (ST1_MAM|ST1_ND)) || (ST2 & ST2_MAM)) { if (auto_detect_mode) { bad = (char)auto_detect_mode_pc9800(); access_mode_change_pc9800(); } if (bad) { printk("floppy error: MA: _floppy - floppy_type=%d\n", (int)(_floppy - floppy_type)); printk("bad=%d\n", (int)bad); if (!probing) { printk("sector not found"); tell_sector(); } else printk("probe failed..."); } } else if (ST2 & ST2_WC) { /* seek error */ printk("wrong cylinder"); } else if (ST2 & ST2_BC) { /* cylinder marked as bad */ printk("bad cylinder"); } else { printk("unknown error. ST[0..2] are: 0x%x 0x%x 0x%x", ST0, ST1, ST2); tell_sector(); } printk("\n"); } if (ST2 & ST2_WC || ST2 & ST2_BC) /* wrong cylinder => recal */ DRS->track = NEED_2_RECAL; return bad; case 0x80: /* invalid command given */ DPRINT("Invalid FDC command given!\n"); cont->done(0); return 2; case 0xc0: SETF(FD_DISK_CHANGED); SETF(FD_DISK_WRITABLE); DPRINT("Abnormal termination caused by polling\n"); cont->error(); return 2; default: /* (0) Normal command termination */ auto_detect_mode = 0; return 0; } } /* * This routine is called when everything should be correctly set up * for the transfer (i.e. floppy motor is on, the correct floppy is * selected, and the head is sitting on the right track). */ static void setup_rw_floppy(void) { int i,r, flags,dflags; unsigned long ready_date; timeout_fn function; access_mode_change_pc9800(); flags = raw_cmd->flags; if (flags & (FD_RAW_READ | FD_RAW_WRITE)) flags |= FD_RAW_INTR; if ((flags & FD_RAW_SPIN) && !(flags & FD_RAW_NO_MOTOR)){ ready_date = DRS->spinup_date + DP->spinup; /* If spinup will take a long time, rerun scandrives * again just before spinup completion. Beware that * after scandrives, we must again wait for selection. */ if ((signed) (ready_date - jiffies) > DP->select_delay){ ready_date -= DP->select_delay; function = (timeout_fn) floppy_start; } else function = (timeout_fn) setup_rw_floppy; /* wait until the floppy is spinning fast enough */ if (fd_wait_for_completion(ready_date,function)) return; } dflags = DRS->flags; if ((flags & FD_RAW_READ) || (flags & FD_RAW_WRITE)) setup_DMA(); if (flags & FD_RAW_INTR) do_floppy = main_command_interrupt; r=0; for (i=0; i< raw_cmd->cmd_count; i++) r|=output_byte(raw_cmd->cmd[i]); #ifdef DEBUGT debugt("rw_command: "); #endif if (r){ cont->error(); reset_fdc(); return; } if (!(flags & FD_RAW_INTR)){ inr = result(); cont->interrupt(); } else if (flags & FD_RAW_NEED_DISK) fd_watchdog(); } static int blind_seek; /* * This is the routine called after every seek (or recalibrate) interrupt * from the floppy controller. */ static void seek_interrupt(void) { #ifdef DEBUGT debugt("seek interrupt:"); #endif if (inr != 2 || (ST0 & 0xF8) != 0x20) { DRS->track = NEED_2_RECAL; cont->error(); cont->redo(); return; } if (DRS->track >= 0 && DRS->track != ST1 && !blind_seek){ #ifdef DCL_DEBUG if (DP->flags & FD_DEBUG){ DPRINT("clearing NEWCHANGE flag because of effective seek\n"); DPRINT("jiffies=%lu\n", jiffies); } #endif CLEARF(FD_DISK_NEWCHANGE); /* effective seek */ CLEARF(FD_DISK_CHANGED); /* effective seek */ DRS->select_date = jiffies; } DRS->track = ST1; floppy_ready(); } static void check_wp(void) { if (TESTF(FD_VERIFY)) { /* check write protection */ output_byte(FD_GETSTATUS); output_byte(UNIT(current_drive)); if (result() != 1){ FDCS->reset = 1; return; } CLEARF(FD_VERIFY); CLEARF(FD_NEED_TWADDLE); #ifdef DCL_DEBUG if (DP->flags & FD_DEBUG){ DPRINT("checking whether disk is write protected\n"); DPRINT("wp=%x\n",ST3 & 0x40); } #endif if (!(ST3 & 0x40)) SETF(FD_DISK_WRITABLE); else CLEARF(FD_DISK_WRITABLE); } } static void seek_floppy(void) { int track; blind_seek=0; #ifdef DCL_DEBUG if (DP->flags & FD_DEBUG){ DPRINT("calling disk change from seek\n"); } #endif if (!TESTF(FD_DISK_NEWCHANGE) && disk_change(current_drive) && (raw_cmd->flags & FD_RAW_NEED_DISK)){ /* the media changed flag should be cleared after the seek. * If it isn't, this means that there is really no disk in * the drive. */ SETF(FD_DISK_CHANGED); cont->done(0); cont->redo(); return; } if (DRS->track <= NEED_1_RECAL){ recalibrate_floppy(); return; } else if (TESTF(FD_DISK_NEWCHANGE) && (raw_cmd->flags & FD_RAW_NEED_DISK) && (DRS->track <= NO_TRACK || DRS->track == raw_cmd->track)) { /* we seek to clear the media-changed condition. Does anybody * know a more elegant way, which works on all drives? */ if (raw_cmd->track) track = raw_cmd->track - 1; else { if (DP->flags & FD_SILENT_DCL_CLEAR){ blind_seek = 1; raw_cmd->flags |= FD_RAW_NEED_SEEK; } track = 1; } } else { check_wp(); if (raw_cmd->track != DRS->track && (raw_cmd->flags & FD_RAW_NEED_SEEK)) track = raw_cmd->track; else { setup_rw_floppy(); return; } } do_floppy = seek_interrupt; output_byte(FD_SEEK); output_byte(UNIT(current_drive)); LAST_OUT(track); #ifdef DEBUGT debugt("seek command:"); #endif } static void recal_interrupt(void) { #ifdef DEBUGT debugt("recal interrupt:"); #endif if (inr !=2) FDCS->reset = 1; else if (ST0 & ST0_ECE) { switch(DRS->track){ case NEED_1_RECAL: #ifdef DEBUGT debugt("recal interrupt need 1 recal:"); #endif /* after a second recalibrate, we still haven't * reached track 0. Probably no drive. Raise an * error, as failing immediately might upset * computers possessed by the Devil :-) */ cont->error(); cont->redo(); return; case NEED_2_RECAL: #ifdef DEBUGT debugt("recal interrupt need 2 recal:"); #endif /* If we already did a recalibrate, * and we are not at track 0, this * means we have moved. (The only way * not to move at recalibration is to * be already at track 0.) Clear the * new change flag */ #ifdef DCL_DEBUG if (DP->flags & FD_DEBUG){ DPRINT("clearing NEWCHANGE flag because of second recalibrate\n"); } #endif CLEARF(FD_DISK_NEWCHANGE); DRS->select_date = jiffies; /* fall through */ default: #ifdef DEBUGT debugt("recal interrupt default:"); #endif /* Recalibrate moves the head by at * most 80 steps. If after one * recalibrate we don't have reached * track 0, this might mean that we * started beyond track 80. Try * again. */ DRS->track = NEED_1_RECAL; break; } } else DRS->track = ST1; floppy_ready(); } static void print_result(char *message, int inr) { int i; DPRINT("%s ", message); if (inr >= 0) for (i=0; i= N_FDC || FDCS->address == -1){ /* we don't even know which FDC is the culprit */ printk("DOR0=%x\n", fdc_state[0].dor); printk("floppy interrupt on bizarre fdc %d\n",fdc); printk("handler=%p\n", handler); is_alive("bizarre fdc"); return IRQ_NONE; } FDCS->reset = 0; /* We have to clear the reset flag here, because apparently on boxes * with level triggered interrupts (PS/2, Sparc, ...), it is needed to * emit SENSEI's to clear the interrupt line. And FDCS->reset blocks the * emission of the SENSEI's. * It is OK to emit floppy commands because we are in an interrupt * handler here, and thus we have to fear no interference of other * activity. */ do_print = !handler && print_unex && !initialising; inr = result(); if (inr && do_print) print_result("unexpected interrupt", inr); if (inr == 0){ do { output_byte(FD_SENSEI); inr = result(); if ((ST0 & ST0_INTR) == 0xC0) { int drive = ST0 & ST0_DS; /* Attention Interrupt. */ if (ST0 & ST0_NR) { #ifdef PC9800_DEBUG_FLOPPY if (do_print) printk(KERN_DEBUG "floppy debug: floppy ejected (drive %d)\n", drive); #endif USETF(FD_DISK_CHANGED); USETF(FD_VERIFY); } else { #ifdef PC9800_DEBUG_FLOPPY if (do_print) printk(KERN_DEBUG "floppy debug: floppy inserted (drive %d)\n", drive); #endif } } /* Attention Interrupt */ #ifdef PC9800_DEBUG_FLOPPY else { printk(KERN_DEBUG "floppy debug : unknown interrupt\n"); } #endif } while ((ST0 & 0x83) != UNIT(current_drive) && inr == 2); } if (handler) { schedule_bh(handler); } else { #if 0 FDCS->reset = 1; #endif } is_alive("normal interrupt end"); /* FIXME! Was it really for us? */ return IRQ_HANDLED; } static void recalibrate_floppy(void) { #ifdef DEBUGT debugt("recalibrate floppy:"); #endif do_floppy = recal_interrupt; output_byte(FD_RECALIBRATE); LAST_OUT(UNIT(current_drive)); } /* * Must do 4 FD_SENSEIs after reset because of ``drive polling''. */ static void reset_interrupt(void) { #ifdef PC9800_DEBUG_FLOPPY printk("floppy debug: reset interrupt\n"); #endif #ifdef DEBUGT debugt("reset interrupt:"); #endif result(); /* get the status ready for set_fdc */ if (FDCS->reset) { printk("reset set in interrupt, calling %p\n", cont->error); cont->error(); /* a reset just after a reset. BAD! */ } cont->redo(); } /* * reset is done by pulling bit 2 of DOR low for a while (old FDCs), * or by setting the self clearing bit 7 of STATUS (newer FDCs) */ static void reset_fdc(void) { unsigned long flags; #ifdef PC9800_DEBUG_FLOPPY printk("floppy debug: reset_fdc\n"); #endif do_floppy = reset_interrupt; FDCS->reset = 0; reset_fdc_info(0); /* Pseudo-DMA may intercept 'reset finished' interrupt. */ /* Irrelevant for systems with true DMA (i386). */ flags=claim_dma_lock(); fd_disable_dma(); release_dma_lock(flags); fd_outb(FDCS->dor | 0x80, FD_MODE); udelay(FD_RESET_DELAY); fd_outb(FDCS->dor, FD_MODE); udelay(FD_AFTER_RESET_DELAY); } static void show_floppy(void) { int i; printk("\n"); printk("floppy driver state\n"); printk("-------------------\n"); printk("now=%lu last interrupt=%lu diff=%lu last called handler=%p\n", jiffies, interruptjiffies, jiffies-interruptjiffies, lasthandler); #ifdef FLOPPY_SANITY_CHECK printk("timeout_message=%s\n", timeout_message); printk("last output bytes:\n"); for (i=0; i < OLOGSIZE; i++) printk("%2x %2x %lu\n", output_log[(i+output_log_pos) % OLOGSIZE].data, output_log[(i+output_log_pos) % OLOGSIZE].status, output_log[(i+output_log_pos) % OLOGSIZE].jiffies); printk("last result at %lu\n", resultjiffies); printk("last redo_fd_request at %lu\n", lastredo); for (i=0; ireset = 1; if (cont){ cont->done(0); cont->redo(); /* this will recall reset when needed */ } else { printk("no cont in shutdown!\n"); process_fd_request(); } is_alive("floppy shutdown"); } /*typedef void (*timeout_fn)(unsigned long);*/ static void access_mode_change_pc9800(void) { static int access_mode, mode_change_now, old_mode, new_set = 1; #ifdef PC9800_DEBUG_FLOPPY2 printk("enter access_mode_change\n"); #endif access_mode = mode_change_now = 0; if (DP->cmos==4) { switch ((int)(_floppy - &floppy_type[0])) { case 1: case 2: new_set = 1; access_mode = 2; break; case 4: case 6: new_set = 1; access_mode = 3; break; case 7: case 10: new_set = 1; access_mode = 1; break; default: access_mode = 1; break; } old_mode = fd_inb(FD_MODE_CHANGE) & 3; switch (access_mode) { case 1: if ((old_mode & 2) == 0) { fd_outb(old_mode | 2, FD_MODE_CHANGE); mode_change_now = 1; } else { fd_outb(current_drive << 5, FD_EMODE_CHANGE); if (fd_inb(FD_EMODE_CHANGE) == 0xff) return; } fd_outb((current_drive << 5) | 0x11, FD_EMODE_CHANGE); mode_change_now = 1; break; case 2: if ((old_mode & 2) == 0) { fd_outb(old_mode | 2, FD_MODE_CHANGE); mode_change_now = 1; } else { fd_outb(current_drive << 5, FD_EMODE_CHANGE); if ((fd_inb(FD_EMODE_CHANGE) & 1) == 0) return; fd_outb((current_drive << 5) | 0x10, FD_EMODE_CHANGE); mode_change_now = 1; } break; case 3: if ((old_mode & 2) == 0) return; fd_outb(current_drive << 5, FD_EMODE_CHANGE); if (fd_inb(FD_EMODE_CHANGE) & 1) fd_outb((current_drive << 5) | 0x10, FD_EMODE_CHANGE); fd_outb(old_mode & 0xfd, FD_MODE_CHANGE); mode_change_now = 1; break; default: break; } } else { switch ((int)(_floppy - &floppy_type[0])) { case 1: case 2: new_set = 1; access_mode = 2; break; case 4: case 6: new_set = 1; access_mode = 3; break; default: switch (DP->cmos) { case 2: access_mode = 2; break; case 3: access_mode = 3; break; default: break; } break; } old_mode = fd_inb(FD_MODE_CHANGE) & 3; switch (access_mode) { case 2: if ((old_mode & 2) == 0) { fd_outb(old_mode | 2, FD_MODE_CHANGE); mode_change_now = 1; } break; case 3: if (old_mode & 2) { fd_outb(old_mode & 0xfd, FD_MODE_CHANGE); mode_change_now = 1; } break; default: break; } } #ifdef PC9800_DEBUG_FLOPPY2 printk("floppy debug: DP->cmos=%d\n", DP->cmos); printk("floppy debug: mode_change_now=%d\n", mode_change_now); printk("floppy debug: access_mode=%d\n", access_mode); printk("floppy debug: old_mode=%d\n", old_mode); printk("floppy debug: _floppy - &floppy_type[0]=%d\n", (int)(_floppy - &floppy_type[0])); #endif /* PC9800_DEBUG_FLOPPY2 */ if(mode_change_now) reset_fdc(); } /* start motor, check media-changed condition and write protection */ static int start_motor(void (*function)(void) ) { access_mode_change_pc9800(); set_mode(~0, 0x8); /* wait_for_completion also schedules reset if needed. */ return(fd_wait_for_completion(DRS->select_date+DP->select_delay, (timeout_fn) function)); } static void floppy_ready(void) { CHECK_RESET; if (start_motor(floppy_ready)) return; #ifdef DCL_DEBUG if (DP->flags & FD_DEBUG){ DPRINT("calling disk change from floppy_ready\n"); } #endif if (!(raw_cmd->flags & FD_RAW_NO_MOTOR) && disk_change(current_drive) && !DP->select_delay) twaddle(); /* this clears the dcl on certain drive/controller * combinations */ #ifdef fd_chose_dma_mode if ((raw_cmd->flags & FD_RAW_READ) || (raw_cmd->flags & FD_RAW_WRITE)) { unsigned long flags = claim_dma_lock(); fd_chose_dma_mode(raw_cmd->kernel_data, raw_cmd->length); release_dma_lock(flags); } #endif #if 0 access_mode_change_pc9800(); #endif if (raw_cmd->flags & (FD_RAW_NEED_SEEK | FD_RAW_NEED_DISK)){ fdc_specify(); /* must be done here because of hut, hlt ... */ seek_floppy(); } else { if ((raw_cmd->flags & FD_RAW_READ) || (raw_cmd->flags & FD_RAW_WRITE)) fdc_specify(); setup_rw_floppy(); } } static void floppy_start(void) { reschedule_timeout(current_reqD, "floppy start", 0); scandrives(); #ifdef DCL_DEBUG if (DP->flags & FD_DEBUG){ DPRINT("setting NEWCHANGE in floppy_start\n"); } #endif SETF(FD_DISK_NEWCHANGE); floppy_ready(); } /* * ======================================================================== * here ends the bottom half. Exported routines are: * floppy_start, floppy_off, floppy_ready, lock_fdc, unlock_fdc, set_fdc, * start_motor, reset_fdc, reset_fdc_info, interpret_errors. * Initialization also uses output_byte, result, set_dor, floppy_interrupt * and set_dor. * ======================================================================== */ /* * General purpose continuations. * ============================== */ static void do_wakeup(void) { reschedule_timeout(MAXTIMEOUT, "do wakeup", 0); cont = 0; command_status += 2; wake_up(&command_done); } static struct cont_t wakeup_cont={ empty, do_wakeup, empty, (done_f)empty }; static struct cont_t intr_cont={ empty, process_fd_request, empty, (done_f) empty }; static int wait_til_done(void (*handler)(void), int interruptible) { int ret; schedule_bh((void *)(void *)handler); if (command_status < 2 && NO_SIGNAL) { DECLARE_WAITQUEUE(wait, current); add_wait_queue(&command_done, &wait); for (;;) { set_current_state(interruptible? TASK_INTERRUPTIBLE: TASK_UNINTERRUPTIBLE); if (command_status >= 2 || !NO_SIGNAL) break; is_alive("wait_til_done"); schedule(); } set_current_state(TASK_RUNNING); remove_wait_queue(&command_done, &wait); } if (command_status < 2){ cancel_activity(); cont = &intr_cont; reset_fdc(); return -EINTR; } #ifdef PC9800_DEBUG_FLOPPY if (command_status != FD_COMMAND_OKAY) printk("floppy check: wait_til_done out:%d\n", command_status); #endif if (FDCS->reset) command_status = FD_COMMAND_ERROR; if (command_status == FD_COMMAND_OKAY) ret=0; else ret=-EIO; command_status = FD_COMMAND_NONE; return ret; } static void generic_done(int result) { command_status = result; cont = &wakeup_cont; } static void generic_success(void) { cont->done(1); } static void generic_failure(void) { cont->done(0); } static void success_and_wakeup(void) { generic_success(); cont->redo(); } /* * formatting and rw support. * ========================== */ static int next_valid_format(void) { int probed_format; probed_format = DRS->probed_format; while(1){ if (probed_format >= 8 || !DP->autodetect[probed_format]){ DRS->probed_format = 0; return 1; } if (floppy_type[DP->autodetect[probed_format]].sect){ DRS->probed_format = probed_format; return 0; } probed_format++; } } static void bad_flp_intr(void) { if (probing){ DRS->probed_format++; if (!next_valid_format()) return; } (*errors)++; INFBOUND(DRWE->badness, *errors); if (*errors > DP->max_errors.abort) cont->done(0); if (*errors > DP->max_errors.reset) FDCS->reset = 1; else if (*errors > DP->max_errors.recal) DRS->track = NEED_2_RECAL; } static void set_floppy(int drive) { int type = ITYPE(UDRS->fd_device); if (type) { auto_detect_mode = 0; _floppy = floppy_type + type; } else if (auto_detect_mode == 0) { auto_detect_mode = 1; retry_auto_detect = 0; _floppy = current_type[drive]; } #ifdef PC9800_DEBUG_FLOPPY2 printk("set_floppy: set floppy type=%d\n", (int)(_floppy - floppy_type)); #endif } /* * formatting support. * =================== */ static void format_interrupt(void) { switch (interpret_errors()){ case 1: cont->error(); case 2: break; case 0: cont->done(1); } cont->redo(); } #define CODE2SIZE (ssize = ((1 << SIZECODE) + 3) >> 2) #define FM_MODE(x,y) ((y) & ~(((x)->rate & 0x80) >>1)) #define CT(x) ((x) | 0xc0) static void setup_format_params(int track) { struct fparm { unsigned char track,head,sect,size; } *here = (struct fparm *)floppy_track_buffer; int il,n; int count,head_shift,track_shift; raw_cmd = &default_raw_cmd; raw_cmd->track = track; raw_cmd->flags = FD_RAW_WRITE | FD_RAW_INTR | FD_RAW_SPIN | FD_RAW_NEED_DISK | FD_RAW_NEED_SEEK; raw_cmd->rate = _floppy->rate & 0x43; raw_cmd->cmd_count = NR_F; COMMAND = FM_MODE(_floppy,FD_FORMAT); DR_SELECT = UNIT(current_drive) + PH_HEAD(_floppy,format_req.head); F_SIZECODE = FD_SIZECODE(_floppy); F_SECT_PER_TRACK = _floppy->sect << 2 >> F_SIZECODE; F_GAP = _floppy->fmt_gap; F_FILL = FD_FILL_BYTE; raw_cmd->kernel_data = floppy_track_buffer; raw_cmd->length = 4 * F_SECT_PER_TRACK; /* allow for about 30ms for data transport per track */ head_shift = (F_SECT_PER_TRACK + 5) / 6; /* a ``cylinder'' is two tracks plus a little stepping time */ track_shift = 2 * head_shift + 3; /* position of logical sector 1 on this track */ n = (track_shift * format_req.track + head_shift * format_req.head) % F_SECT_PER_TRACK; /* determine interleave */ il = 1; if (_floppy->fmt_gap < 0x22) il++; /* initialize field */ for (count = 0; count < F_SECT_PER_TRACK; ++count) { here[count].track = format_req.track; here[count].head = format_req.head; here[count].sect = 0; here[count].size = F_SIZECODE; } /* place logical sectors */ for (count = 1; count <= F_SECT_PER_TRACK; ++count) { here[n].sect = count; n = (n+il) % F_SECT_PER_TRACK; if (here[n].sect) { /* sector busy, find next free sector */ ++n; if (n>= F_SECT_PER_TRACK) { n-=F_SECT_PER_TRACK; while (here[n].sect) ++n; } } } } static void redo_format(void) { buffer_track = -1; setup_format_params(format_req.track << STRETCH(_floppy)); floppy_start(); #ifdef DEBUGT debugt("queue format request"); #endif } static struct cont_t format_cont={ format_interrupt, redo_format, bad_flp_intr, generic_done }; static int do_format(int drive, struct format_descr *tmp_format_req) { int ret; LOCK_FDC(drive,1); set_floppy(drive); if (!_floppy || _floppy->track > DP->tracks || tmp_format_req->track >= _floppy->track || tmp_format_req->head >= _floppy->head || (_floppy->sect << 2) % (1 << FD_SIZECODE(_floppy)) || !_floppy->fmt_gap) { process_fd_request(); return -EINVAL; } format_req = *tmp_format_req; format_errors = 0; cont = &format_cont; errors = &format_errors; IWAIT(redo_format); process_fd_request(); return ret; } /* * Buffer read/write and support * ============================= */ static void floppy_end_request(struct request *req, int uptodate) { if (end_that_request_first(req, uptodate, current_count_sectors)) return; add_disk_randomness(req->rq_disk); floppy_off((long)req->rq_disk->private_data); blkdev_dequeue_request(req); end_that_request_last(req); /* We're done with the request */ current_req = NULL; } /* new request_done. Can handle physical sectors which are smaller than a * logical buffer */ static void request_done(int uptodate) { struct request_queue *q = floppy_queue; struct request *req = current_req; unsigned long flags; int block; probing = 0; reschedule_timeout(MAXTIMEOUT, "request done %d", uptodate); if (!req) { printk("floppy.c: no request in request_done\n"); return; } if (uptodate){ /* maintain values for invalidation on geometry * change */ block = current_count_sectors + req->sector; INFBOUND(DRS->maxblock, block); if (block > _floppy->sect) DRS->maxtrack = 1; /* unlock chained buffers */ spin_lock_irqsave(q->queue_lock, flags); floppy_end_request(req, 1); spin_unlock_irqrestore(q->queue_lock, flags); } else { if (rq_data_dir(req) == WRITE) { /* record write error information */ DRWE->write_errors++; if (DRWE->write_errors == 1) { DRWE->first_error_sector = req->sector; DRWE->first_error_generation = DRS->generation; } DRWE->last_error_sector = req->sector; DRWE->last_error_generation = DRS->generation; } spin_lock_irqsave(q->queue_lock, flags); floppy_end_request(req, 0); spin_unlock_irqrestore(q->queue_lock, flags); } } /* Interrupt handler evaluating the result of the r/w operation */ static void rw_interrupt(void) { int nr_sectors, ssize, eoc, heads; if (R_HEAD >= 2) { /* some Toshiba floppy controllers occasionnally seem to * return bogus interrupts after read/write operations, which * can be recognized by a bad head number (>= 2) */ return; } if (!DRS->first_read_date) DRS->first_read_date = jiffies; nr_sectors = 0; CODE2SIZE; if (ST1 & ST1_EOC) eoc = 1; else eoc = 0; if (COMMAND & 0x80) heads = 2; else heads = 1; nr_sectors = (((R_TRACK-TRACK) * heads + R_HEAD-HEAD) * SECT_PER_TRACK + R_SECTOR-SECTOR + eoc) << SIZECODE >> 2; #ifdef FLOPPY_SANITY_CHECK if (nr_sectors / ssize > (in_sector_offset + current_count_sectors + ssize - 1) / ssize) { DPRINT("long rw: %x instead of %lx\n", nr_sectors, current_count_sectors); printk("rs=%d s=%d\n", R_SECTOR, SECTOR); printk("rh=%d h=%d\n", R_HEAD, HEAD); printk("rt=%d t=%d\n", R_TRACK, TRACK); printk("heads=%d eoc=%d\n", heads, eoc); printk("spt=%d st=%d ss=%d\n", SECT_PER_TRACK, fsector_t, ssize); printk("in_sector_offset=%d\n", in_sector_offset); } #endif nr_sectors -= in_sector_offset; INFBOUND(nr_sectors,0); SUPBOUND(current_count_sectors, nr_sectors); switch (interpret_errors()){ case 2: cont->redo(); return; case 1: if (!current_count_sectors){ cont->error(); cont->redo(); return; } break; case 0: if (!current_count_sectors){ cont->redo(); return; } current_type[current_drive] = _floppy; floppy_sizes[TOMINOR(current_drive) ]= _floppy->size; break; } if (probing) { if (DP->flags & FTD_MSG) DPRINT("Auto-detected floppy type %s in fd%d\n", _floppy->name,current_drive); current_type[current_drive] = _floppy; floppy_sizes[TOMINOR(current_drive)] = _floppy->size; probing = 0; } if (CT(COMMAND) != FD_READ || raw_cmd->kernel_data == current_req->buffer){ /* transfer directly from buffer */ cont->done(1); } else if (CT(COMMAND) == FD_READ){ buffer_track = raw_cmd->track; buffer_drive = current_drive; INFBOUND(buffer_max, nr_sectors + fsector_t); } cont->redo(); } /* Compute maximal contiguous buffer size. */ static int buffer_chain_size(void) { struct bio *bio; struct bio_vec *bv; int size, i; char *base; base = bio_data(current_req->bio); size = 0; rq_for_each_bio(bio, current_req) { bio_for_each_segment(bv, bio, i) { if (page_address(bv->bv_page) + bv->bv_offset != base + size) break; size += bv->bv_len; } } return size >> 9; } /* Compute the maximal transfer size */ static int transfer_size(int ssize, int max_sector, int max_size) { SUPBOUND(max_sector, fsector_t + max_size); /* alignment */ max_sector -= (max_sector % _floppy->sect) % ssize; /* transfer size, beginning not aligned */ current_count_sectors = max_sector - fsector_t ; return max_sector; } /* * Move data from/to the track buffer to/from the buffer cache. */ static void copy_buffer(int ssize, int max_sector, int max_sector_2) { int remaining; /* number of transferred 512-byte sectors */ struct bio_vec *bv; struct bio *bio; char *buffer, *dma_buffer; int size, i; max_sector = transfer_size(ssize, minimum(max_sector, max_sector_2), current_req->nr_sectors); if (current_count_sectors <= 0 && CT(COMMAND) == FD_WRITE && buffer_max > fsector_t + current_req->nr_sectors) current_count_sectors = minimum(buffer_max - fsector_t, current_req->nr_sectors); remaining = current_count_sectors << 9; #ifdef FLOPPY_SANITY_CHECK if ((remaining >> 9) > current_req->nr_sectors && CT(COMMAND) == FD_WRITE){ DPRINT("in copy buffer\n"); printk("current_count_sectors=%ld\n", current_count_sectors); printk("remaining=%d\n", remaining >> 9); printk("current_req->nr_sectors=%ld\n",current_req->nr_sectors); printk("current_req->current_nr_sectors=%u\n", current_req->current_nr_sectors); printk("max_sector=%d\n", max_sector); printk("ssize=%d\n", ssize); } #endif buffer_max = maximum(max_sector, buffer_max); dma_buffer = floppy_track_buffer + ((fsector_t - buffer_min) << 9); size = current_req->current_nr_sectors << 9; rq_for_each_bio(bio, current_req) { bio_for_each_segment(bv, bio, i) { if (!remaining) break; size = bv->bv_len; SUPBOUND(size, remaining); buffer = page_address(bv->bv_page) + bv->bv_offset; #ifdef FLOPPY_SANITY_CHECK if (dma_buffer + size > floppy_track_buffer + (max_buffer_sectors << 10) || dma_buffer < floppy_track_buffer){ DPRINT("buffer overrun in copy buffer %d\n", (int) ((floppy_track_buffer - dma_buffer) >>9)); printk("fsector_t=%d buffer_min=%d\n", fsector_t, buffer_min); printk("current_count_sectors=%ld\n", current_count_sectors); if (CT(COMMAND) == FD_READ) printk("read\n"); if (CT(COMMAND) == FD_WRITE) printk("write\n"); break; } if (((unsigned long)buffer) % 512) DPRINT("%p buffer not aligned\n", buffer); #endif if (CT(COMMAND) == FD_READ) memcpy(buffer, dma_buffer, size); else memcpy(dma_buffer, buffer, size); remaining -= size; dma_buffer += size; } } #ifdef FLOPPY_SANITY_CHECK if (remaining){ if (remaining > 0) max_sector -= remaining >> 9; DPRINT("weirdness: remaining %d\n", remaining>>9); } #endif } #if 0 static inline int check_dma_crossing(char *start, unsigned long length, char *message) { if (CROSS_64KB(start, length)) { printk("DMA xfer crosses 64KB boundary in %s %p-%p\n", message, start, start+length); return 1; } else return 0; } #endif /* work around a bug in pseudo DMA * (on some FDCs) pseudo DMA does not stop when the CPU stops * sending data. Hence we need a different way to signal the * transfer length: We use SECT_PER_TRACK. Unfortunately, this * does not work with MT, hence we can only transfer one head at * a time */ static void virtualdmabug_workaround(void) { int hard_sectors, end_sector; if(CT(COMMAND) == FD_WRITE) { COMMAND &= ~0x80; /* switch off multiple track mode */ hard_sectors = raw_cmd->length >> (7 + SIZECODE); end_sector = SECTOR + hard_sectors - 1; #ifdef FLOPPY_SANITY_CHECK if(end_sector > SECT_PER_TRACK) { printk("too many sectors %d > %d\n", end_sector, SECT_PER_TRACK); return; } #endif SECT_PER_TRACK = end_sector; /* make sure SECT_PER_TRACK points * to end of transfer */ } } /* * Formulate a read/write request. * this routine decides where to load the data (directly to buffer, or to * tmp floppy area), how much data to load (the size of the buffer, the whole * track, or a single sector) * All floppy_track_buffer handling goes in here. If we ever add track buffer * allocation on the fly, it should be done here. No other part should need * modification. */ static int make_raw_rw_request(void) { int aligned_sector_t; int max_sector, max_size, tracksize, ssize; if(max_buffer_sectors == 0) { printk("VFS: Block I/O scheduled on unopened device\n"); return 0; } set_fdc((long)current_req->rq_disk->private_data); raw_cmd = &default_raw_cmd; raw_cmd->flags = FD_RAW_SPIN | FD_RAW_NEED_DISK | FD_RAW_NEED_DISK | FD_RAW_NEED_SEEK; raw_cmd->cmd_count = NR_RW; if (rq_data_dir(current_req) == READ) { raw_cmd->flags |= FD_RAW_READ; COMMAND = FM_MODE(_floppy,FD_READ); } else if (rq_data_dir(current_req) == WRITE){ raw_cmd->flags |= FD_RAW_WRITE; COMMAND = FM_MODE(_floppy,FD_WRITE); } else { DPRINT("make_raw_rw_request: unknown command\n"); return 0; } max_sector = _floppy->sect * _floppy->head; TRACK = (int)current_req->sector / max_sector; fsector_t = (int)current_req->sector % max_sector; if (_floppy->track && TRACK >= _floppy->track) { if (current_req->current_nr_sectors & 1) { current_count_sectors = 1; return 1; } else return 0; } HEAD = fsector_t / _floppy->sect; if (((_floppy->stretch & FD_SWAPSIDES) || TESTF(FD_NEED_TWADDLE)) && fsector_t < _floppy->sect) max_sector = _floppy->sect; /* 2M disks have phantom sectors on the first track */ if ((_floppy->rate & FD_2M) && (!TRACK) && (!HEAD)){ max_sector = 2 * _floppy->sect / 3; if (fsector_t >= max_sector){ current_count_sectors = minimum(_floppy->sect - fsector_t, current_req->nr_sectors); return 1; } SIZECODE = 2; } else SIZECODE = FD_SIZECODE(_floppy); raw_cmd->rate = _floppy->rate & 0x43; if ((_floppy->rate & FD_2M) && (TRACK || HEAD) && raw_cmd->rate == 2) raw_cmd->rate = 1; if (SIZECODE) SIZECODE2 = 0xff; else SIZECODE2 = 0x80; raw_cmd->track = TRACK << STRETCH(_floppy); DR_SELECT = UNIT(current_drive) + PH_HEAD(_floppy,HEAD); GAP = _floppy->gap; CODE2SIZE; SECT_PER_TRACK = _floppy->sect << 2 >> SIZECODE; SECTOR = ((fsector_t % _floppy->sect) << 2 >> SIZECODE) + 1; /* tracksize describes the size which can be filled up with sectors * of size ssize. */ tracksize = _floppy->sect - _floppy->sect % ssize; if (tracksize < _floppy->sect){ SECT_PER_TRACK ++; if (tracksize <= fsector_t % _floppy->sect) SECTOR--; /* if we are beyond tracksize, fill up using smaller sectors */ while (tracksize <= fsector_t % _floppy->sect){ while(tracksize + ssize > _floppy->sect){ SIZECODE--; ssize >>= 1; } SECTOR++; SECT_PER_TRACK ++; tracksize += ssize; } max_sector = HEAD * _floppy->sect + tracksize; } else if (!TRACK && !HEAD && !(_floppy->rate & FD_2M) && probing) { max_sector = _floppy->sect; } else if (!HEAD && CT(COMMAND) == FD_WRITE) { /* for virtual DMA bug workaround */ max_sector = _floppy->sect; } in_sector_offset = (fsector_t % _floppy->sect) % ssize; aligned_sector_t = fsector_t - in_sector_offset; max_size = current_req->nr_sectors; if ((raw_cmd->track == buffer_track) && (current_drive == buffer_drive) && (fsector_t >= buffer_min) && (fsector_t < buffer_max)) { /* data already in track buffer */ if (CT(COMMAND) == FD_READ) { copy_buffer(1, max_sector, buffer_max); return 1; } } else if (in_sector_offset || current_req->nr_sectors < ssize){ if (CT(COMMAND) == FD_WRITE){ if (fsector_t + current_req->nr_sectors > ssize && fsector_t + current_req->nr_sectors < ssize + ssize) max_size = ssize + ssize; else max_size = ssize; } raw_cmd->flags &= ~FD_RAW_WRITE; raw_cmd->flags |= FD_RAW_READ; COMMAND = FM_MODE(_floppy,FD_READ); } else if ((unsigned long)current_req->buffer < MAX_DMA_ADDRESS) { unsigned long dma_limit; int direct, indirect; indirect= transfer_size(ssize,max_sector,max_buffer_sectors*2) - fsector_t; /* * Do NOT use minimum() here---MAX_DMA_ADDRESS is 64 bits wide * on a 64 bit machine! */ max_size = buffer_chain_size(); dma_limit = (MAX_DMA_ADDRESS - ((unsigned long) current_req->buffer)) >> 9; if ((unsigned long) max_size > dma_limit) { max_size = dma_limit; } /* 64 kb boundaries */ if (CROSS_64KB(current_req->buffer, max_size << 9)) max_size = (K_64 - ((unsigned long)current_req->buffer) % K_64)>>9; direct = transfer_size(ssize,max_sector,max_size) - fsector_t; /* * We try to read tracks, but if we get too many errors, we * go back to reading just one sector at a time. * * This means we should be able to read a sector even if there * are other bad sectors on this track. */ if (!direct || (indirect * 2 > direct * 3 && *errors < DP->max_errors.read_track && /*!TESTF(FD_NEED_TWADDLE) &&*/ ((!probing || (DP->read_track&(1<probed_format)))))){ max_size = current_req->nr_sectors; } else { raw_cmd->kernel_data = current_req->buffer; raw_cmd->length = current_count_sectors << 9; if (raw_cmd->length == 0){ DPRINT("zero dma transfer attempted from make_raw_request\n"); DPRINT("indirect=%d direct=%d fsector_t=%d", indirect, direct, fsector_t); return 0; } /* check_dma_crossing(raw_cmd->kernel_data, raw_cmd->length, "end of make_raw_request [1]");*/ virtualdmabug_workaround(); return 2; } } if (CT(COMMAND) == FD_READ) max_size = max_sector; /* unbounded */ /* claim buffer track if needed */ if (buffer_track != raw_cmd->track || /* bad track */ buffer_drive !=current_drive || /* bad drive */ fsector_t > buffer_max || fsector_t < buffer_min || ((CT(COMMAND) == FD_READ || (!in_sector_offset && current_req->nr_sectors >= ssize))&& max_sector > 2 * max_buffer_sectors + buffer_min && max_size + fsector_t > 2 * max_buffer_sectors + buffer_min) /* not enough space */){ buffer_track = -1; buffer_drive = current_drive; buffer_max = buffer_min = aligned_sector_t; } raw_cmd->kernel_data = floppy_track_buffer + ((aligned_sector_t-buffer_min)<<9); if (CT(COMMAND) == FD_WRITE){ /* copy write buffer to track buffer. * if we get here, we know that the write * is either aligned or the data already in the buffer * (buffer will be overwritten) */ #ifdef FLOPPY_SANITY_CHECK if (in_sector_offset && buffer_track == -1) DPRINT("internal error offset !=0 on write\n"); #endif buffer_track = raw_cmd->track; buffer_drive = current_drive; copy_buffer(ssize, max_sector, 2*max_buffer_sectors+buffer_min); } else transfer_size(ssize, max_sector, 2*max_buffer_sectors+buffer_min-aligned_sector_t); /* round up current_count_sectors to get dma xfer size */ raw_cmd->length = in_sector_offset+current_count_sectors; raw_cmd->length = ((raw_cmd->length -1)|(ssize-1))+1; raw_cmd->length <<= 9; #ifdef FLOPPY_SANITY_CHECK /*check_dma_crossing(raw_cmd->kernel_data, raw_cmd->length, "end of make_raw_request");*/ if ((raw_cmd->length < current_count_sectors << 9) || (raw_cmd->kernel_data != current_req->buffer && CT(COMMAND) == FD_WRITE && (aligned_sector_t + (raw_cmd->length >> 9) > buffer_max || aligned_sector_t < buffer_min)) || raw_cmd->length % (128 << SIZECODE) || raw_cmd->length <= 0 || current_count_sectors <= 0){ DPRINT("fractionary current count b=%lx s=%lx\n", raw_cmd->length, current_count_sectors); if (raw_cmd->kernel_data != current_req->buffer) printk("addr=%d, length=%ld\n", (int) ((raw_cmd->kernel_data - floppy_track_buffer) >> 9), current_count_sectors); printk("st=%d ast=%d mse=%d msi=%d\n", fsector_t, aligned_sector_t, max_sector, max_size); printk("ssize=%x SIZECODE=%d\n", ssize, SIZECODE); printk("command=%x SECTOR=%d HEAD=%d, TRACK=%d\n", COMMAND, SECTOR, HEAD, TRACK); printk("buffer drive=%d\n", buffer_drive); printk("buffer track=%d\n", buffer_track); printk("buffer_min=%d\n", buffer_min); printk("buffer_max=%d\n", buffer_max); return 0; } if (raw_cmd->kernel_data != current_req->buffer){ if (raw_cmd->kernel_data < floppy_track_buffer || current_count_sectors < 0 || raw_cmd->length < 0 || raw_cmd->kernel_data + raw_cmd->length > floppy_track_buffer + (max_buffer_sectors << 10)){ DPRINT("buffer overrun in schedule dma\n"); printk("fsector_t=%d buffer_min=%d current_count=%ld\n", fsector_t, buffer_min, raw_cmd->length >> 9); printk("current_count_sectors=%ld\n", current_count_sectors); if (CT(COMMAND) == FD_READ) printk("read\n"); if (CT(COMMAND) == FD_WRITE) printk("write\n"); return 0; } } else if (raw_cmd->length > current_req->nr_sectors << 9 || current_count_sectors > current_req->nr_sectors){ DPRINT("buffer overrun in direct transfer\n"); return 0; } else if (raw_cmd->length < current_count_sectors << 9){ DPRINT("more sectors than bytes\n"); printk("bytes=%ld\n", raw_cmd->length >> 9); printk("sectors=%ld\n", current_count_sectors); } if (raw_cmd->length == 0){ DPRINT("zero dma transfer attempted from make_raw_request\n"); return 0; } #endif virtualdmabug_workaround(); return 2; } static void redo_fd_request(void) { #define REPEAT {request_done(0); continue; } int drive; int tmp; lastredo = jiffies; if (current_drive < N_DRIVE) floppy_off(current_drive); for (;;) { if (!current_req) { struct request *req; spin_lock_irq(floppy_queue->queue_lock); req = elv_next_request(floppy_queue); spin_unlock_irq(floppy_queue->queue_lock); if (!req) { do_floppy = NULL; unlock_fdc(); return; } current_req = req; } drive = (long)current_req->rq_disk->private_data; set_fdc(drive); reschedule_timeout(current_reqD, "redo fd request", 0); set_floppy(drive); raw_cmd = & default_raw_cmd; raw_cmd->flags = 0; if (start_motor(redo_fd_request)) return; disk_change(current_drive); if (test_bit(current_drive, &fake_change) || TESTF(FD_DISK_CHANGED)){ DPRINT("disk absent or changed during operation\n"); REPEAT; } if (!_floppy) { /* Autodetection */ if (!probing){ DRS->probed_format = 0; if (next_valid_format()){ DPRINT("no autodetectable formats\n"); _floppy = NULL; REPEAT; } } probing = 1; _floppy = floppy_type+DP->autodetect[DRS->probed_format]; } else probing = 0; errors = & (current_req->errors); tmp = make_raw_rw_request(); if (tmp < 2){ request_done(tmp); continue; } if (TESTF(FD_NEED_TWADDLE)) twaddle(); schedule_bh( (void *)(void *) floppy_start); #ifdef DEBUGT debugt("queue fd request"); #endif return; } #undef REPEAT } static struct cont_t rw_cont={ rw_interrupt, redo_fd_request, bad_flp_intr, request_done }; static void process_fd_request(void) { cont = &rw_cont; schedule_bh( (void *)(void *) redo_fd_request); } static void do_fd_request(request_queue_t * q) { if(max_buffer_sectors == 0) { printk("VFS: do_fd_request called on non-open device\n"); return; } if (usage_count == 0) { printk("warning: usage count=0, current_req=%p exiting\n", current_req); printk("sect=%ld flags=%lx\n", (long)current_req->sector, current_req->flags); return; } if (fdc_busy){ /* fdc busy, this new request will be treated when the current one is done */ is_alive("do fd request, old request running"); return; } lock_fdc(MAXTIMEOUT,0); process_fd_request(); is_alive("do fd request"); } static struct cont_t poll_cont={ success_and_wakeup, floppy_ready, generic_failure, generic_done }; static int poll_drive(int interruptible, int flag) { int ret; /* no auto-sense, just clear dcl */ raw_cmd = &default_raw_cmd; raw_cmd->flags= flag; raw_cmd->track=0; raw_cmd->cmd_count=0; cont = &poll_cont; #ifdef DCL_DEBUG if (DP->flags & FD_DEBUG){ DPRINT("setting NEWCHANGE in poll_drive\n"); } #endif SETF(FD_DISK_NEWCHANGE); WAIT(floppy_ready); return ret; } /* * User triggered reset * ==================== */ static void reset_intr(void) { printk("weird, reset interrupt called\n"); } static struct cont_t reset_cont={ reset_intr, success_and_wakeup, generic_failure, generic_done }; static int user_reset_fdc(int drive, int arg, int interruptible) { int ret; ret=0; LOCK_FDC(drive,interruptible); if (arg == FD_RESET_ALWAYS) FDCS->reset=1; if (FDCS->reset){ cont = &reset_cont; WAIT(reset_fdc); } process_fd_request(); return ret; } /* * Misc Ioctl's and support * ======================== */ static inline int fd_copyout(void *param, const void *address, unsigned long size) { return copy_to_user(param,address, size) ? -EFAULT : 0; } static inline int fd_copyin(void *param, void *address, unsigned long size) { return copy_from_user(address, param, size) ? -EFAULT : 0; } #define _COPYOUT(x) (copy_to_user((void *)param, &(x), sizeof(x)) ? -EFAULT : 0) #define _COPYIN(x) (copy_from_user(&(x), (void *)param, sizeof(x)) ? -EFAULT : 0) #define COPYOUT(x) ECALL(_COPYOUT(x)) #define COPYIN(x) ECALL(_COPYIN(x)) static inline const char *drive_name(int type, int drive) { struct floppy_struct *floppy; if (type) floppy = floppy_type + type; else { if (UDP->native_format) floppy = floppy_type + UDP->native_format; else return "(null)"; } if (floppy->name) return floppy->name; else return "(null)"; } /* raw commands */ static void raw_cmd_done(int flag) { int i; if (!flag) { raw_cmd->flags |= FD_RAW_FAILURE; raw_cmd->flags |= FD_RAW_HARDFAILURE; } else { raw_cmd->reply_count = inr; if (raw_cmd->reply_count > MAX_REPLIES) raw_cmd->reply_count=0; for (i=0; i< raw_cmd->reply_count; i++) raw_cmd->reply[i] = reply_buffer[i]; if (raw_cmd->flags & (FD_RAW_READ | FD_RAW_WRITE)) { unsigned long flags; flags=claim_dma_lock(); raw_cmd->length = fd_get_dma_residue(); release_dma_lock(flags); } if ((raw_cmd->flags & FD_RAW_SOFTFAILURE) && (!raw_cmd->reply_count || (raw_cmd->reply[0] & 0xc0))) raw_cmd->flags |= FD_RAW_FAILURE; if (disk_change(current_drive)) raw_cmd->flags |= FD_RAW_DISK_CHANGE; else raw_cmd->flags &= ~FD_RAW_DISK_CHANGE; if (raw_cmd->flags & FD_RAW_NO_MOTOR_AFTER) motor_off_callback(current_drive); if (raw_cmd->next && (!(raw_cmd->flags & FD_RAW_FAILURE) || !(raw_cmd->flags & FD_RAW_STOP_IF_FAILURE)) && ((raw_cmd->flags & FD_RAW_FAILURE) || !(raw_cmd->flags &FD_RAW_STOP_IF_SUCCESS))) { raw_cmd = raw_cmd->next; return; } } generic_done(flag); } static struct cont_t raw_cmd_cont={ success_and_wakeup, floppy_start, generic_failure, raw_cmd_done }; static inline int raw_cmd_copyout(int cmd, char *param, struct floppy_raw_cmd *ptr) { int ret; while(ptr) { COPYOUT(*ptr); param += sizeof(struct floppy_raw_cmd); if ((ptr->flags & FD_RAW_READ) && ptr->buffer_length){ if (ptr->length>=0 && ptr->length<=ptr->buffer_length) ECALL(fd_copyout(ptr->data, ptr->kernel_data, ptr->buffer_length - ptr->length)); } ptr = ptr->next; } return 0; } static void raw_cmd_free(struct floppy_raw_cmd **ptr) { struct floppy_raw_cmd *next,*this; this = *ptr; *ptr = 0; while(this) { if (this->buffer_length) { fd_dma_mem_free((unsigned long)this->kernel_data, this->buffer_length); this->buffer_length = 0; } next = this->next; kfree(this); this = next; } } static inline int raw_cmd_copyin(int cmd, char *param, struct floppy_raw_cmd **rcmd) { struct floppy_raw_cmd *ptr; int ret; int i; *rcmd = 0; while(1) { ptr = (struct floppy_raw_cmd *) kmalloc(sizeof(struct floppy_raw_cmd), GFP_USER); if (!ptr) return -ENOMEM; *rcmd = ptr; COPYIN(*ptr); ptr->next = 0; ptr->buffer_length = 0; param += sizeof(struct floppy_raw_cmd); if (ptr->cmd_count > 33) /* the command may now also take up the space * initially intended for the reply & the * reply count. Needed for long 82078 commands * such as RESTORE, which takes ... 17 command * bytes. Murphy's law #137: When you reserve * 16 bytes for a structure, you'll one day * discover that you really need 17... */ return -EINVAL; for (i=0; i< 16; i++) ptr->reply[i] = 0; ptr->resultcode = 0; ptr->kernel_data = 0; if (ptr->flags & (FD_RAW_READ | FD_RAW_WRITE)) { if (ptr->length <= 0) return -EINVAL; ptr->kernel_data =(char*)fd_dma_mem_alloc(ptr->length); fallback_on_nodma_alloc(&ptr->kernel_data, ptr->length); if (!ptr->kernel_data) return -ENOMEM; ptr->buffer_length = ptr->length; } if (ptr->flags & FD_RAW_WRITE) ECALL(fd_copyin(ptr->data, ptr->kernel_data, ptr->length)); rcmd = & (ptr->next); if (!(ptr->flags & FD_RAW_MORE)) return 0; ptr->rate &= 0x43; } } static int raw_cmd_ioctl(int cmd, void *param) { int drive, ret, ret2; struct floppy_raw_cmd *my_raw_cmd; if (FDCS->rawcmd <= 1) FDCS->rawcmd = 1; for (drive= 0; drive < N_DRIVE; drive++){ if (FDC(drive) != fdc) continue; if (drive == current_drive){ if (UDRS->fd_ref > 1){ FDCS->rawcmd = 2; break; } } else if (UDRS->fd_ref){ FDCS->rawcmd = 2; break; } } if (FDCS->reset) return -EIO; ret = raw_cmd_copyin(cmd, param, &my_raw_cmd); if (ret) { raw_cmd_free(&my_raw_cmd); return ret; } raw_cmd = my_raw_cmd; cont = &raw_cmd_cont; ret=wait_til_done(floppy_start,1); #ifdef DCL_DEBUG if (DP->flags & FD_DEBUG){ DPRINT("calling disk change from raw_cmd ioctl\n"); } #endif if (ret != -EINTR && FDCS->reset) ret = -EIO; DRS->track = NO_TRACK; ret2 = raw_cmd_copyout(cmd, param, my_raw_cmd); if (!ret) ret = ret2; raw_cmd_free(&my_raw_cmd); return ret; } static int invalidate_drive(struct block_device *bdev) { /* invalidate the buffer track to force a reread */ set_bit((long)bdev->bd_disk->private_data, &fake_change); process_fd_request(); check_disk_change(bdev); return 0; } static inline void clear_write_error(int drive) { CLEARSTRUCT(UDRWE); } static inline int set_geometry(unsigned int cmd, struct floppy_struct *g, int drive, int type, struct block_device *bdev) { int cnt; /* sanity checking for parameters.*/ if (g->sect <= 0 || g->head <= 0 || g->track <= 0 || g->track > UDP->tracks>>STRETCH(g) || /* check if reserved bits are set */ (g->stretch&~(FD_STRETCH|FD_SWAPSIDES)) != 0) return -EINVAL; if (type){ if (!capable(CAP_SYS_ADMIN)) return -EPERM; down(&open_lock); LOCK_FDC(drive,1); floppy_type[type] = *g; floppy_type[type].name="user format"; for (cnt = type << 2; cnt < (type << 2) + 4; cnt++) floppy_sizes[cnt]= floppy_sizes[cnt+0x80]= floppy_type[type].size+1; process_fd_request(); for (cnt = 0; cnt < N_DRIVE; cnt++) { struct block_device *bdev = opened_bdev[cnt]; if (!bdev || ITYPE(drive_state[cnt].fd_device) != type) continue; __invalidate_device(bdev, 0); } up(&open_lock); } else { LOCK_FDC(drive,1); if (cmd != FDDEFPRM) /* notice a disk change immediately, else * we lose our settings immediately*/ CALL(poll_drive(1, FD_RAW_NEED_DISK)); user_params[drive] = *g; if (buffer_drive == drive) SUPBOUND(buffer_max, user_params[drive].sect); current_type[drive] = &user_params[drive]; floppy_sizes[drive] = user_params[drive].size; if (cmd == FDDEFPRM) DRS->keep_data = -1; else DRS->keep_data = 1; /* invalidation. Invalidate only when needed, i.e. * when there are already sectors in the buffer cache * whose number will change. This is useful, because * mtools often changes the geometry of the disk after * looking at the boot block */ if (DRS->maxblock > user_params[drive].sect || DRS->maxtrack) invalidate_drive(bdev); else process_fd_request(); } return 0; } /* handle obsolete ioctl's */ static int ioctl_table[]= { FDCLRPRM, FDSETPRM, FDDEFPRM, FDGETPRM, FDMSGON, FDMSGOFF, FDFMTBEG, FDFMTTRK, FDFMTEND, FDSETEMSGTRESH, FDFLUSH, FDSETMAXERRS, FDGETMAXERRS, FDGETDRVTYP, FDSETDRVPRM, FDGETDRVPRM, FDGETDRVSTAT, FDPOLLDRVSTAT, FDRESET, FDGETFDCSTAT, FDWERRORCLR, FDWERRORGET, FDRAWCMD, FDEJECT, FDTWADDLE }; static inline int normalize_ioctl(int *cmd, int *size) { int i; for (i=0; i < ARRAY_SIZE(ioctl_table); i++) { if ((*cmd & 0xffff) == (ioctl_table[i] & 0xffff)){ *size = _IOC_SIZE(*cmd); *cmd = ioctl_table[i]; if (*size > _IOC_SIZE(*cmd)) { printk("ioctl not yet supported\n"); return -EFAULT; } return 0; } } return -EINVAL; } static int get_floppy_geometry(int drive, int type, struct floppy_struct **g) { if (type) *g = &floppy_type[type]; else { LOCK_FDC(drive,0); CALL(poll_drive(0,0)); process_fd_request(); *g = current_type[drive]; } if (!*g) return -ENODEV; return 0; } static int fd_ioctl(struct inode *inode, struct file *filp, unsigned int cmd, unsigned long param) { #define FD_IOCTL_ALLOWED ((filp) && (filp)->private_data) #define OUT(c,x) case c: outparam = (const char *) (x); break #define IN(c,x,tag) case c: *(x) = inparam. tag ; return 0 int drive = (long)inode->i_bdev->bd_disk->private_data; int i, type = ITYPE(UDRS->fd_device); int ret; int size; union inparam { struct floppy_struct g; /* geometry */ struct format_descr f; struct floppy_max_errors max_errors; struct floppy_drive_params dp; } inparam; /* parameters coming from user space */ const char *outparam; /* parameters passed back to user space */ /* convert compatibility eject ioctls into floppy eject ioctl. * We do this in order to provide a means to eject floppy disks before * installing the new fdutils package */ if (cmd == CDROMEJECT || /* CD-ROM eject */ cmd == 0x6470 /* SunOS floppy eject */) { DPRINT("obsolete eject ioctl\n"); DPRINT("please use floppycontrol --eject\n"); cmd = FDEJECT; } /* generic block device ioctls */ switch(cmd) { /* the following have been inspired by the corresponding * code for other block devices. */ struct floppy_struct *g; case HDIO_GETGEO: { struct hd_geometry loc; ECALL(get_floppy_geometry(drive, type, &g)); loc.heads = g->head; loc.sectors = g->sect; loc.cylinders = g->track; loc.start = 0; return _COPYOUT(loc); } } /* convert the old style command into a new style command */ if ((cmd & 0xff00) == 0x0200) { ECALL(normalize_ioctl(&cmd, &size)); } else return -EINVAL; /* permission checks */ if (((cmd & 0x40) && !FD_IOCTL_ALLOWED) || ((cmd & 0x80) && !capable(CAP_SYS_ADMIN))) return -EPERM; /* copyin */ CLEARSTRUCT(&inparam); if (_IOC_DIR(cmd) & _IOC_WRITE) ECALL(fd_copyin((void *)param, &inparam, size)) switch (cmd) { case FDEJECT: if (UDRS->fd_ref != 1) /* somebody else has this drive open */ return -EBUSY; LOCK_FDC(drive,1); /* do the actual eject. Fails on * non-Sparc architectures */ ret=fd_eject(UNIT(drive)); USETF(FD_DISK_CHANGED); USETF(FD_VERIFY); process_fd_request(); return ret; case FDCLRPRM: LOCK_FDC(drive,1); current_type[drive] = NULL; floppy_sizes[drive] = MAX_DISK_SIZE << 1; UDRS->keep_data = 0; return invalidate_drive(inode->i_bdev); case FDSETPRM: case FDDEFPRM: return set_geometry(cmd, & inparam.g, drive, type, inode->i_bdev); case FDGETPRM: ECALL(get_floppy_geometry(drive, type, (struct floppy_struct**) &outparam)); break; case FDMSGON: UDP->flags |= FTD_MSG; return 0; case FDMSGOFF: UDP->flags &= ~FTD_MSG; return 0; case FDFMTBEG: LOCK_FDC(drive,1); CALL(poll_drive(1, FD_RAW_NEED_DISK)); ret = UDRS->flags; if (ret & FD_VERIFY) { CALL(poll_drive(1, FD_RAW_NEED_DISK)); ret = UDRS->flags; } if (ret & FD_VERIFY) { CALL(poll_drive(1, FD_RAW_NEED_DISK)); ret = UDRS->flags; } if (ret & FD_VERIFY) { CALL(poll_drive(1, FD_RAW_NEED_DISK)); ret = UDRS->flags; } if (ret & FD_VERIFY) { CALL(poll_drive(1, FD_RAW_NEED_DISK)); ret = UDRS->flags; } if(ret & FD_VERIFY){ CALL(poll_drive(1, FD_RAW_NEED_DISK)); ret = UDRS->flags; } process_fd_request(); if (ret & FD_VERIFY) return -ENODEV; if (!(ret & FD_DISK_WRITABLE)) return -EROFS; return 0; case FDFMTTRK: if (UDRS->fd_ref != 1) return -EBUSY; return do_format(drive, &inparam.f); case FDFMTEND: case FDFLUSH: LOCK_FDC(drive,1); return invalidate_drive(inode->i_bdev); case FDSETEMSGTRESH: UDP->max_errors.reporting = (unsigned short) (param & 0x0f); return 0; OUT(FDGETMAXERRS, &UDP->max_errors); IN(FDSETMAXERRS, &UDP->max_errors, max_errors); case FDGETDRVTYP: outparam = drive_name(type,drive); SUPBOUND(size,strlen(outparam)+1); break; IN(FDSETDRVPRM, UDP, dp); OUT(FDGETDRVPRM, UDP); case FDPOLLDRVSTAT: LOCK_FDC(drive,1); CALL(poll_drive(1, FD_RAW_NEED_DISK)); process_fd_request(); /* fall through */ OUT(FDGETDRVSTAT, UDRS); case FDRESET: return user_reset_fdc(drive, (int)param, 1); OUT(FDGETFDCSTAT,UFDCS); case FDWERRORCLR: CLEARSTRUCT(UDRWE); return 0; OUT(FDWERRORGET,UDRWE); case FDRAWCMD: if (type) return -EINVAL; LOCK_FDC(drive,1); set_floppy(drive); CALL(i = raw_cmd_ioctl(cmd,(void *) param)); process_fd_request(); return i; case FDTWADDLE: LOCK_FDC(drive,1); twaddle(); process_fd_request(); return 0; default: return -EINVAL; } if (_IOC_DIR(cmd) & _IOC_READ) return fd_copyout((void *)param, outparam, size); else return 0; #undef OUT #undef IN } static void __init config_types(void) { int first=1; int drive; extern struct fd_info { unsigned char dummy[4 * 6]; unsigned char fd_types[8]; } drive_info; for (drive = 0; drive < 4; drive++) UDP->cmos = drive_info.fd_types[drive]; /* XXX */ /* additional physical CMOS drive detection should go here */ for (drive=0; drive < N_DRIVE; drive++){ unsigned int type = UDP->cmos; struct floppy_drive_params *params; const char *name = NULL; static char temparea[32]; if (type < NUMBER(default_drive_params)) { params = &default_drive_params[type].params; if (type) { name = default_drive_params[type].name; allowed_drive_mask |= 1 << drive; } else allowed_drive_mask &= ~(1 << drive); } else { params = &default_drive_params[0].params; sprintf(temparea, "unknown type %d (usb?)", type); name = temparea; } if (name) { const char * prepend = ","; if (first) { prepend = KERN_INFO "Floppy drive(s):"; first = 0; } printk("%s fd%d is %s", prepend, drive, name); register_devfs_entries (drive); } *UDP = *params; } if (!first) printk("\n"); } static int floppy_release(struct inode * inode, struct file * filp) { int drive = (long)inode->i_bdev->bd_disk->private_data; down(&open_lock); if (UDRS->fd_ref < 0) UDRS->fd_ref=0; else if (!UDRS->fd_ref--) { DPRINT("floppy_release with fd_ref == 0"); UDRS->fd_ref = 0; } if (!UDRS->fd_ref) opened_bdev[drive] = NULL; floppy_release_irq_and_dma(); up(&open_lock); return 0; } /* * floppy_open check for aliasing (/dev/fd0 can be the same as * /dev/PS0 etc), and disallows simultaneous access to the same * drive with different device numbers. */ #define RETERR(x) do{floppy_release(inode,filp); return -(x);}while(0) static int floppy_open(struct inode * inode, struct file * filp) { int drive = (long)inode->i_bdev->bd_disk->private_data; int old_dev; int try; int res = -EBUSY; char *tmp; #ifdef PC9800_DEBUG_FLOPPY printk("floppy open: start\n"); #endif filp->private_data = (void*) 0; #ifdef PC9800_DEBUG_FLOPPY printk("floppy open: drive=%d, current_drive=%d, UDP->cmos=%d\n" "floppy open: FDCS={spec1=%d, spec2=%d, dtr=%d, version=%d, dor=%d, address=%lu}\n", drive, current_drive, UDP->cmos, FDCS->spec1, FDCS->spec2, FDCS->dtr, FDCS->version, FDCS->dor, FDCS->address); if (_floppy) { printk("floppy open: _floppy={size=%d, sect=%d, head=%d, track=%d, spec1=%d}\n", _floppy->size, _floppy->sect, _floppy->head, _floppy->track, _floppy->spec1); } else { printk("floppy open: _floppy=NULL\n"); } #endif /* PC9800_DEBUG_FLOPPY */ down(&open_lock); old_dev = UDRS->fd_device; if (opened_bdev[drive] && opened_bdev[drive] != inode->i_bdev) goto out2; if (!UDRS->fd_ref && (UDP->flags & FD_BROKEN_DCL)){ USETF(FD_DISK_CHANGED); USETF(FD_VERIFY); } if (UDRS->fd_ref == -1 || (UDRS->fd_ref && (filp->f_flags & O_EXCL))) goto out2; if (floppy_grab_irq_and_dma()) goto out2; if (filp->f_flags & O_EXCL) UDRS->fd_ref = -1; else UDRS->fd_ref++; opened_bdev[drive] = inode->i_bdev; res = -ENXIO; if (!floppy_track_buffer){ /* if opening an ED drive, reserve a big buffer, * else reserve a small one */ if ((UDP->cmos == 6) || (UDP->cmos == 5)) try = 64; /* Only 48 actually useful */ else try = 32; /* Only 24 actually useful */ tmp=(char *)fd_dma_mem_alloc(1024 * try); if (!tmp && !floppy_track_buffer) { try >>= 1; /* buffer only one side */ INFBOUND(try, 16); tmp= (char *)fd_dma_mem_alloc(1024*try); } if (!tmp && !floppy_track_buffer) { fallback_on_nodma_alloc(&tmp, 2048 * try); } if (!tmp && !floppy_track_buffer) { DPRINT("Unable to allocate DMA memory\n"); goto out; } if (floppy_track_buffer) { if (tmp) fd_dma_mem_free((unsigned long)tmp,try*1024); } else { buffer_min = buffer_max = -1; floppy_track_buffer = tmp; max_buffer_sectors = try; } } UDRS->fd_device = iminor(inode); set_capacity(disks[drive], floppy_sizes[iminor(inode)]); if (old_dev != -1 && old_dev != iminor(inode)) { if (buffer_drive == drive) buffer_track = -1; } #ifdef PC9800_DEBUG_FLOPPY printk("floppy open: floppy.c:%d passed\n", __LINE__); #endif /* Allow ioctls if we have write-permissions even if read-only open. * Needed so that programs such as fdrawcmd still can work on write * protected disks */ if (filp->f_mode & 2 || permission(filp->f_dentry->d_inode,2,NULL) == 0) filp->private_data = (void*) 8; if (UFDCS->rawcmd == 1) UFDCS->rawcmd = 2; #ifdef PC9800_DEBUG_FLOPPY printk("floppy open: floppy.c:%d passed\n", __LINE__); #endif if (!(filp->f_flags & O_NDELAY)) { if (filp->f_mode & 3) { UDRS->last_checked = 0; check_disk_change(inode->i_bdev); if (UTESTF(FD_DISK_CHANGED)) goto out; } res = -EROFS; if ((filp->f_mode & 2) && !(UTESTF(FD_DISK_WRITABLE))) goto out; #ifdef PC9800_DEBUG_FLOPPY printk("floppy open: end normally\n"); #endif } up(&open_lock); return 0; out: if (UDRS->fd_ref < 0) UDRS->fd_ref=0; else UDRS->fd_ref--; if (!UDRS->fd_ref) opened_bdev[drive] = NULL; floppy_release_irq_and_dma(); out2: up(&open_lock); return res; } /* * Check if the disk has been changed or if a change has been faked. */ static int check_floppy_change(struct gendisk *disk) { int drive = (long)disk->private_data; #ifdef PC9800_DEBUG_FLOPPY printk("check_floppy_change: MINOR=%d\n", minor(dev)); #endif if (UTESTF(FD_DISK_CHANGED) || UTESTF(FD_VERIFY)) return 1; if (UDP->checkfreq < (int)(jiffies - UDRS->last_checked)) { if(floppy_grab_irq_and_dma()) { return 1; } lock_fdc(drive,0); poll_drive(0,0); process_fd_request(); floppy_release_irq_and_dma(); } if (UTESTF(FD_DISK_CHANGED) || UTESTF(FD_VERIFY) || test_bit(drive, &fake_change) || (!ITYPE(UDRS->fd_device) && !current_type[drive])) return 1; return 0; } /* * This implements "read block 0" for floppy_revalidate(). * Needed for format autodetection, checking whether there is * a disk in the drive, and whether that disk is writable. */ static int floppy_rb0_complete(struct bio *bio, unsigned int bytes_done, int err) { if (bio->bi_size) return 1; complete((struct completion*)bio->bi_private); return 0; } static int __floppy_read_block_0(struct block_device *bdev) { struct bio bio; struct bio_vec bio_vec; struct completion complete; struct page *page; size_t size; page = alloc_page(GFP_NOIO); if (!page) { process_fd_request(); return -ENOMEM; } size = bdev->bd_block_size; if (!size) size = 1024; bio_init(&bio); bio.bi_io_vec = &bio_vec; bio_vec.bv_page = page; bio_vec.bv_len = size; bio_vec.bv_offset = 0; bio.bi_vcnt = 1; bio.bi_idx = 0; bio.bi_size = size; bio.bi_bdev = bdev; bio.bi_sector = 0; init_completion(&complete); bio.bi_private = &complete; bio.bi_end_io = floppy_rb0_complete; submit_bio(READ, &bio); generic_unplug_device(bdev_get_queue(bdev)); process_fd_request(); wait_for_completion(&complete); __free_page(page); return 0; } /* revalidate the floppy disk, i.e. trigger format autodetection by reading * the bootblock (block 0). "Autodetection" is also needed to check whether * there is a disk in the drive at all... Thus we also do it for fixed * geometry formats */ static int floppy_revalidate(struct gendisk *disk) { int drive=(long)disk->private_data; #define NO_GEOM (!current_type[drive] && !ITYPE(UDRS->fd_device)) int cf; int res = 0; if (UTESTF(FD_DISK_CHANGED) || UTESTF(FD_VERIFY) || test_bit(drive, &fake_change) || NO_GEOM){ if(usage_count == 0) { printk("VFS: revalidate called on non-open device.\n"); return -EFAULT; } lock_fdc(drive,0); cf = UTESTF(FD_DISK_CHANGED) || UTESTF(FD_VERIFY); if (!(cf || test_bit(drive, &fake_change) || NO_GEOM)){ process_fd_request(); /*already done by another thread*/ return 0; } UDRS->maxblock = 0; UDRS->maxtrack = 0; if (buffer_drive == drive) buffer_track = -1; clear_bit(drive, &fake_change); UCLEARF(FD_DISK_CHANGED); if (cf) UDRS->generation++; if (NO_GEOM){ /* auto-sensing */ res = __floppy_read_block_0(opened_bdev[drive]); } else { if (cf) poll_drive(0, FD_RAW_NEED_DISK); process_fd_request(); } } set_capacity(disk, floppy_sizes[UDRS->fd_device]); return res; } static struct block_device_operations floppy_fops = { .owner = THIS_MODULE, .open = floppy_open, .release = floppy_release, .ioctl = fd_ioctl, .media_changed = check_floppy_change, .revalidate_disk= floppy_revalidate, }; static char *table[] = {"", #if 0 "d360", #else "h1232", #endif "h1200", "u360", "u720", "h360", "h720", "u1440", "u2880", "CompaQ", "h1440", "u1680", "h410", "u820", "h1476", "u1722", "h420", "u830", "h1494", "u1743", "h880", "u1040", "u1120", "h1600", "u1760", "u1920", "u3200", "u3520", "u3840", "u1840", "u800", "u1600", NULL }; static int t360[] = { 1,0 }; static int t1200[] = { 2,5,6,10,12,14,16,18,20,23,0 }; static int t3in[] = { 8, 9,26,27,28, 7,11,15,19,24,25, 29,31, 3, 4,13,17,21,22,30, 0 }; static int *table_sup[] = { NULL, t360, t1200, t3in+5+8, t3in+5, t3in, t3in }; static void __init register_devfs_entries (int drive) { int base_minor = (drive < 4) ? drive : (124 + drive); if (UDP->cmos < NUMBER(default_drive_params)) { int i = 0; do { int minor = base_minor + (table_sup[UDP->cmos][i] << 2); devfs_mk_bdev(MKDEV(FLOPPY_MAJOR, minor), S_IFBLK|S_IRUSR|S_IWUSR|S_IRGRP|S_IWGRP, "floppy/%d%s", drive, table[table_sup[UDP->cmos][i]]); } while (table_sup[UDP->cmos][i++]); } } /* * Floppy Driver initialization * ============================= */ static inline char __init get_fdc_version(void) { return FDC_8272A; } /* lilo configuration */ static void __init floppy_set_flags(int *ints,int param, int param2) { int i; for (i=0; i < ARRAY_SIZE(default_drive_params); i++){ if (param) default_drive_params[i].params.flags |= param2; else default_drive_params[i].params.flags &= ~param2; } DPRINT("%s flag 0x%x\n", param2 ? "Setting" : "Clearing", param); } static void __init daring(int *ints,int param, int param2) { int i; for (i=0; i < ARRAY_SIZE(default_drive_params); i++){ if (param){ default_drive_params[i].params.select_delay = 0; default_drive_params[i].params.flags |= FD_SILENT_DCL_CLEAR; } else { default_drive_params[i].params.select_delay = 2*HZ/100; default_drive_params[i].params.flags &= ~FD_SILENT_DCL_CLEAR; } } DPRINT("Assuming %s floppy hardware\n", param ? "standard" : "broken"); } static void __init set_cmos(int *ints, int dummy, int dummy2) { int current_drive=0; if (ints[0] != 2){ DPRINT("wrong number of parameters for CMOS\n"); return; } current_drive = ints[1]; if (current_drive < 0 || current_drive >= 8){ DPRINT("bad drive for set_cmos\n"); return; } #if N_FDC > 1 if (current_drive >= 4 && !FDC2) FDC2 = 0x370; #endif DP->cmos = ints[2]; DPRINT("setting CMOS code to %d\n", ints[2]); } static struct param_table { const char *name; void (*fn)(int *ints, int param, int param2); int *var; int def_param; int param2; } config_params[]={ { "allowed_drive_mask", 0, &allowed_drive_mask, 0xff, 0}, /* obsolete */ { "all_drives", 0, &allowed_drive_mask, 0xff, 0 }, /* obsolete */ { "irq", 0, &FLOPPY_IRQ, DEFAULT_FLOPPY_IRQ, 0 }, { "dma", 0, &FLOPPY_DMA, DEFAULT_FLOPPY_DMA, 0 }, { "daring", daring, 0, 1, 0}, #if N_FDC > 1 { "two_fdc", 0, &FDC2, 0x370, 0 }, { "one_fdc", 0, &FDC2, 0, 0 }, #endif { "broken_dcl", floppy_set_flags, 0, 1, FD_BROKEN_DCL }, { "messages", floppy_set_flags, 0, 1, FTD_MSG }, { "silent_dcl_clear", floppy_set_flags, 0, 1, FD_SILENT_DCL_CLEAR }, { "debug", floppy_set_flags, 0, 1, FD_DEBUG }, { "nodma", 0, &can_use_virtual_dma, 1, 0 }, { "yesdma", 0, &can_use_virtual_dma, 0, 0 }, { "fifo_depth", 0, &fifo_depth, 0xa, 0 }, { "nofifo", 0, &no_fifo, 0x20, 0 }, { "usefifo", 0, &no_fifo, 0, 0 }, { "cmos", set_cmos, 0, 0, 0 }, { "slow", 0, &slow_floppy, 1, 0 }, { "unexpected_interrupts", 0, &print_unex, 1, 0 }, { "no_unexpected_interrupts", 0, &print_unex, 0, 0 }, EXTRA_FLOPPY_PARAMS }; static int __init floppy_setup(char *str) { int i; int param; int ints[11]; str = get_options(str,ARRAY_SIZE(ints),ints); if (str) { for (i=0; i< ARRAY_SIZE(config_params); i++){ if (strcmp(str,config_params[i].name) == 0){ if (ints[0]) param = ints[1]; else param = config_params[i].def_param; if (config_params[i].fn) config_params[i]. fn(ints,param, config_params[i].param2); if (config_params[i].var) { DPRINT("%s=%d\n", str, param); *config_params[i].var = param; } return 1; } } } if (str) { DPRINT("unknown floppy option [%s]\n", str); DPRINT("allowed options are:"); for (i=0; i< ARRAY_SIZE(config_params); i++) printk(" %s",config_params[i].name); printk("\n"); } else DPRINT("botched floppy option\n"); DPRINT("Read linux/Documentation/floppy.txt\n"); return 0; } static int have_no_fdc= -ENODEV; static void floppy_device_release(struct device *dev) { complete(&device_release); } static struct platform_device floppy_device = { .name = "floppy", .id = 0, .dev = { .release = floppy_device_release, }, }; static struct kobject *floppy_find(dev_t dev, int *part, void *data) { int drive = (*part&3) | ((*part&0x80) >> 5); if (drive >= N_DRIVE || !(allowed_drive_mask & (1 << drive)) || fdc_state[FDC(drive)].version == FDC_NONE) return NULL; if (((*part>>2) & 0x1f) >= NUMBER(floppy_type)) return NULL; *part = 0; return get_disk(disks[drive]); } int __init floppy_init(void) { int i,unit,drive; int err; raw_cmd = NULL; FDC1 = 0x90; for (i=0; imajor = FLOPPY_MAJOR; disks[i]->first_minor = TOMINOR(i); disks[i]->fops = &floppy_fops; sprintf(disks[i]->disk_name, "fd%d", i); } blk_register_region(MKDEV(FLOPPY_MAJOR, 0), 256, THIS_MODULE, floppy_find, NULL, NULL); for (i=0; i<256; i++) if (ITYPE(i)) floppy_sizes[i] = floppy_type[ITYPE(i)].size; else floppy_sizes[i] = MAX_DISK_SIZE << 1; floppy_queue = blk_init_queue(do_fd_request, &floppy_lock); if (!floppy_queue) goto out_queue; reschedule_timeout(MAXTIMEOUT, "floppy init", MAXTIMEOUT); config_types(); for (i = 0; i < N_FDC; i++) { fdc = i; CLEARSTRUCT(FDCS); FDCS->dtr = -1; FDCS->dor = 0; } if ((fd_inb(FD_MODE_CHANGE) & 1) == 0) FDC1 = 0xc8; use_virtual_dma = can_use_virtual_dma & 1; fdc_state[0].address = FDC1; if (fdc_state[0].address == -1) { err = -ENODEV; goto out1; } #if N_FDC > 1 fdc_state[1].address = FDC2; #endif fdc = 0; /* reset fdc in case of unexpected interrupt */ if (floppy_grab_irq_and_dma()){ err = -EBUSY; goto out1; } /* initialise drive state */ for (drive = 0; drive < N_DRIVE; drive++) { CLEARSTRUCT(UDRS); CLEARSTRUCT(UDRWE); USETF(FD_DISK_NEWCHANGE); USETF(FD_DISK_CHANGED); USETF(FD_VERIFY); UDRS->fd_device = -1; floppy_track_buffer = NULL; max_buffer_sectors = 0; } for (i = 0; i < N_FDC; i++) { fdc = i; FDCS->driver_version = FD_DRIVER_VERSION; for (unit=0; unit<4; unit++) FDCS->track[unit] = 0; if (FDCS->address == -1) continue; FDCS->rawcmd = 2; user_reset_fdc(-1, FD_RESET_ALWAYS, 0); /* Try to determine the floppy controller type */ FDCS->version = get_fdc_version(); if (FDCS->version == FDC_NONE){ /* free ioports reserved by floppy_grab_irq_and_dma() */ release_region(FDCS->address, 1); release_region(FDCS->address + 2, 1); release_region(FDCS->address + 4, 1); release_region(0xbe, 1); release_region(0x4be, 1); FDCS->address = -1; continue; } if (can_use_virtual_dma == 2 && FDCS->version < FDC_82072A) can_use_virtual_dma = 0; have_no_fdc = 0; /* Not all FDCs seem to be able to handle the version command * properly, so force a reset for the standard FDC clones, * to avoid interrupt garbage. */ user_reset_fdc(-1,FD_RESET_ALWAYS,0); } fdc=0; del_timer(&fd_timeout); current_drive = 0; floppy_release_irq_and_dma(); #if 0 /* no message */ initialising=0; #endif if (have_no_fdc) { DPRINT("no floppy controllers found\n"); flush_scheduled_work(); if (usage_count) floppy_release_irq_and_dma(); err = have_no_fdc; goto out2; } for (drive = 0; drive < N_DRIVE; drive++) { init_timer(&motor_off_timer[drive]); motor_off_timer[drive].data = drive; motor_off_timer[drive].function = motor_off_callback; if (!(allowed_drive_mask & (1 << drive))) continue; if (fdc_state[FDC(drive)].version == FDC_NONE) continue; /* to be cleaned up... */ disks[drive]->private_data = (void*)(long)drive; disks[drive]->queue = floppy_queue; add_disk(disks[drive]); } platform_device_register(&floppy_device); return 0; out1: del_timer_sync(&fd_timeout); out2: blk_cleanup_queue(floppy_queue); out_queue: blk_unregister_region(MKDEV(FLOPPY_MAJOR, 0), 256); unregister_blkdev(FLOPPY_MAJOR,"fd"); out: for (i=0; iaddress != -1){ static char floppy[] = "floppy"; if (!request_region(FDCS->address, 1, floppy)) goto cleanup0; if (!request_region(FDCS->address + 2, 1, floppy)) { release_region(FDCS->address, 1); goto cleanup0; } if (!request_region(FDCS->address + 4, 1, floppy)) { release_region(FDCS->address, 1); release_region(FDCS->address + 2, 1); goto cleanup0; } if (fdc == 0) { /* internal FDC */ if (request_region(0xbe, 1, "floppy mode change")) { if (request_region(0x4be, 1, "floppy ex. mode change")) continue; else DPRINT("Floppy io-port 0x4be in use\n"); release_region(0xbe, 1); } else DPRINT("Floppy io-port 0xbe in use\n"); release_region(FDCS->address, 1); release_region(FDCS->address + 2, 1); release_region(FDCS->address + 4, 1); } goto cleanup1; } } for (fdc=0; fdc< N_FDC; fdc++){ if (FDCS->address != -1){ reset_fdc_info(1); fd_outb(FDCS->dor, FD_MODE); } } fdc = 0; fd_outb((FDCS->dor & 8), FD_MODE); for (fdc = 0; fdc < N_FDC; fdc++) if (FDCS->address != -1) fd_outb(FDCS->dor, FD_MODE); /* * The driver will try and free resources and relies on us * to know if they were allocated or not. */ fdc = 0; irqdma_allocated = 1; return 0; cleanup0: DPRINT("Floppy io-port 0x%04lx in use\n", FDCS->address); cleanup1: fd_free_irq(); fd_free_dma(); while(--fdc >= 0) { release_region(FDCS->address, 1); release_region(FDCS->address + 2, 1); release_region(FDCS->address + 4, 1); if (fdc == 0) { release_region(0x00be, 1); release_region(0x04be, 1); } } spin_lock_irqsave(&floppy_usage_lock, flags); usage_count--; spin_unlock_irqrestore(&floppy_usage_lock, flags); return -1; } static void floppy_release_irq_and_dma(void) { int old_fdc; #ifdef FLOPPY_SANITY_CHECK int drive; #endif long tmpsize; unsigned long tmpaddr; unsigned long flags; spin_lock_irqsave(&floppy_usage_lock, flags); if (--usage_count){ spin_unlock_irqrestore(&floppy_usage_lock, flags); return; } spin_unlock_irqrestore(&floppy_usage_lock, flags); if(irqdma_allocated) { fd_disable_dma(); fd_free_dma(); fd_free_irq(); irqdma_allocated=0; } fd_outb(0, FD_MODE); floppy_enable_hlt(); if (floppy_track_buffer && max_buffer_sectors) { tmpsize = max_buffer_sectors*1024; tmpaddr = (unsigned long)floppy_track_buffer; floppy_track_buffer = NULL; max_buffer_sectors = 0; buffer_min = buffer_max = -1; fd_dma_mem_free(tmpaddr, tmpsize); } #ifdef FLOPPY_SANITY_CHECK for (drive=0; drive < N_FDC * 4; drive++) if (timer_pending(motor_off_timer + drive)) printk("motor off timer %d still active\n", drive); if (timer_pending(&fd_timeout)) printk("floppy timer still active:%s\n", timeout_message); if (timer_pending(&fd_timer)) printk("auxiliary floppy timer still active\n"); if (floppy_work.pending) printk("work still pending\n"); #endif old_fdc = fdc; for (fdc = 0; fdc < N_FDC; fdc++) if (FDCS->address != -1) { release_region(FDCS->address, 1); release_region(FDCS->address + 2, 1); release_region(FDCS->address + 4, 1); if (fdc == 0) { release_region(0xbe, 1); release_region(0x4be, 1); } } fdc = old_fdc; } #ifdef MODULE char *floppy; static void unregister_devfs_entries (int drive) { int i; if (UDP->cmos < NUMBER(default_drive_params)) { i = 0; do { devfs_remove("floppy/%d%s", drive, table[table_sup[UDP->cmos][i]]); } while (table_sup[UDP->cmos][i++]); } } static void __init parse_floppy_cfg_string(char *cfg) { char *ptr; while(*cfg) { for(ptr = cfg;*cfg && *cfg != ' ' && *cfg != '\t'; cfg++); if (*cfg) { *cfg = '\0'; cfg++; } if (*ptr) floppy_setup(ptr); } } int init_module(void) { printk(KERN_INFO "inserting floppy driver for " UTS_RELEASE "\n"); if (floppy) parse_floppy_cfg_string(floppy); return floppy_init(); } void cleanup_module(void) { int drive; init_completion(&device_release); platform_device_unregister(&floppy_device); blk_unregister_region(MKDEV(FLOPPY_MAJOR, 0), 256); unregister_blkdev(FLOPPY_MAJOR, "fd"); for (drive = 0; drive < N_DRIVE; drive++) { del_timer_sync(&motor_off_timer[drive]); if ((allowed_drive_mask & (1 << drive)) && fdc_state[FDC(drive)].version != FDC_NONE) { del_gendisk(disks[drive]); unregister_devfs_entries(drive); } put_disk(disks[drive]); } devfs_remove("floppy"); del_timer_sync(&fd_timeout); del_timer_sync(&fd_timer); blk_cleanup_queue(floppy_queue); if (usage_count) floppy_release_irq_and_dma(); /* eject disk, if any */ fd_eject(0); wait_for_completion(&device_release); } MODULE_PARM(floppy,"s"); MODULE_PARM(FLOPPY_IRQ,"i"); MODULE_PARM(FLOPPY_DMA,"i"); MODULE_AUTHOR("Osamu Tomita"); MODULE_SUPPORTED_DEVICE("fd"); MODULE_LICENSE("GPL"); #else __setup ("floppy=", floppy_setup); module_init(floppy_init) #endif