/* * Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ /* * This file contains support for diagnostic functions. It is accessed by * opening the ipath_diag device, normally minor number 129. Diagnostic use * of the InfiniPath chip may render the chip or board unusable until the * driver is unloaded, or in some cases, until the system is rebooted. * * Accesses to the chip through this interface are not similar to going * through the /sys/bus/pci resource mmap interface. */ #include #include #include "ipath_common.h" #include "ipath_kernel.h" #include "ips_common.h" #include "ipath_layer.h" int ipath_diag_inuse; static int diag_set_link; static int ipath_diag_open(struct inode *in, struct file *fp); static int ipath_diag_release(struct inode *in, struct file *fp); static ssize_t ipath_diag_read(struct file *fp, char __user *data, size_t count, loff_t *off); static ssize_t ipath_diag_write(struct file *fp, const char __user *data, size_t count, loff_t *off); static struct file_operations diag_file_ops = { .owner = THIS_MODULE, .write = ipath_diag_write, .read = ipath_diag_read, .open = ipath_diag_open, .release = ipath_diag_release }; static struct cdev *diag_cdev; static struct class_device *diag_class_dev; int ipath_diag_init(void) { return ipath_cdev_init(IPATH_DIAG_MINOR, "ipath_diag", &diag_file_ops, &diag_cdev, &diag_class_dev); } void ipath_diag_cleanup(void) { ipath_cdev_cleanup(&diag_cdev, &diag_class_dev); } /** * ipath_read_umem64 - read a 64-bit quantity from the chip into user space * @dd: the infinipath device * @uaddr: the location to store the data in user memory * @caddr: the source chip address (full pointer, not offset) * @count: number of bytes to copy (multiple of 32 bits) * * This function also localizes all chip memory accesses. * The copy should be written such that we read full cacheline packets * from the chip. This is usually used for a single qword * * NOTE: This assumes the chip address is 64-bit aligned. */ static int ipath_read_umem64(struct ipath_devdata *dd, void __user *uaddr, const void __iomem *caddr, size_t count) { const u64 __iomem *reg_addr = caddr; const u64 __iomem *reg_end = reg_addr + (count / sizeof(u64)); int ret; /* not very efficient, but it works for now */ if (reg_addr < dd->ipath_kregbase || reg_end > dd->ipath_kregend) { ret = -EINVAL; goto bail; } while (reg_addr < reg_end) { u64 data = readq(reg_addr); if (copy_to_user(uaddr, &data, sizeof(u64))) { ret = -EFAULT; goto bail; } reg_addr++; uaddr++; } ret = 0; bail: return ret; } /** * ipath_write_umem64 - write a 64-bit quantity to the chip from user space * @dd: the infinipath device * @caddr: the destination chip address (full pointer, not offset) * @uaddr: the source of the data in user memory * @count: the number of bytes to copy (multiple of 32 bits) * * This is usually used for a single qword * NOTE: This assumes the chip address is 64-bit aligned. */ static int ipath_write_umem64(struct ipath_devdata *dd, void __iomem *caddr, const void __user *uaddr, size_t count) { u64 __iomem *reg_addr = caddr; const u64 __iomem *reg_end = reg_addr + (count / sizeof(u64)); int ret; /* not very efficient, but it works for now */ if (reg_addr < dd->ipath_kregbase || reg_end > dd->ipath_kregend) { ret = -EINVAL; goto bail; } while (reg_addr < reg_end) { u64 data; if (copy_from_user(&data, uaddr, sizeof(data))) { ret = -EFAULT; goto bail; } writeq(data, reg_addr); reg_addr++; uaddr++; } ret = 0; bail: return ret; } /** * ipath_read_umem32 - read a 32-bit quantity from the chip into user space * @dd: the infinipath device * @uaddr: the location to store the data in user memory * @caddr: the source chip address (full pointer, not offset) * @count: number of bytes to copy * * read 32 bit values, not 64 bit; for memories that only * support 32 bit reads; usually a single dword. */ static int ipath_read_umem32(struct ipath_devdata *dd, void __user *uaddr, const void __iomem *caddr, size_t count) { const u32 __iomem *reg_addr = caddr; const u32 __iomem *reg_end = reg_addr + (count / sizeof(u32)); int ret; if (reg_addr < (u32 __iomem *) dd->ipath_kregbase || reg_end > (u32 __iomem *) dd->ipath_kregend) { ret = -EINVAL; goto bail; } /* not very efficient, but it works for now */ while (reg_addr < reg_end) { u32 data = readl(reg_addr); if (copy_to_user(uaddr, &data, sizeof(data))) { ret = -EFAULT; goto bail; } reg_addr++; uaddr++; } ret = 0; bail: return ret; } /** * ipath_write_umem32 - write a 32-bit quantity to the chip from user space * @dd: the infinipath device * @caddr: the destination chip address (full pointer, not offset) * @uaddr: the source of the data in user memory * @count: number of bytes to copy * * write 32 bit values, not 64 bit; for memories that only * support 32 bit write; usually a single dword. */ static int ipath_write_umem32(struct ipath_devdata *dd, void __iomem *caddr, const void __user *uaddr, size_t count) { u32 __iomem *reg_addr = caddr; const u32 __iomem *reg_end = reg_addr + (count / sizeof(u32)); int ret; if (reg_addr < (u32 __iomem *) dd->ipath_kregbase || reg_end > (u32 __iomem *) dd->ipath_kregend) { ret = -EINVAL; goto bail; } while (reg_addr < reg_end) { u32 data; if (copy_from_user(&data, uaddr, sizeof(data))) { ret = -EFAULT; goto bail; } writel(data, reg_addr); reg_addr++; uaddr++; } ret = 0; bail: return ret; } static int ipath_diag_open(struct inode *in, struct file *fp) { struct ipath_devdata *dd; int unit = 0; /* XXX this is bogus */ unsigned long flags; int ret; dd = ipath_lookup(unit); mutex_lock(&ipath_mutex); spin_lock_irqsave(&ipath_devs_lock, flags); if (ipath_diag_inuse) { ret = -EBUSY; goto bail; } list_for_each_entry(dd, &ipath_dev_list, ipath_list) { /* * we need at least one infinipath device to be present * (don't use INITTED, because we want to be able to open * even if device is in freeze mode, which cleared INITTED). * There is a small amount of risk to this, which is why we * also verify kregbase is set. */ if (!(dd->ipath_flags & IPATH_PRESENT) || !dd->ipath_kregbase) continue; ipath_diag_inuse = 1; diag_set_link = 0; ret = 0; goto bail; } ret = -ENODEV; bail: spin_unlock_irqrestore(&ipath_devs_lock, flags); /* Only expose a way to reset the device if we make it into diag mode. */ if (ret == 0) ipath_expose_reset(&dd->pcidev->dev); mutex_unlock(&ipath_mutex); return ret; } static int ipath_diag_release(struct inode *i, struct file *f) { mutex_lock(&ipath_mutex); ipath_diag_inuse = 0; mutex_unlock(&ipath_mutex); return 0; } static ssize_t ipath_diag_read(struct file *fp, char __user *data, size_t count, loff_t *off) { int unit = 0; /* XXX provide for reads on other units some day */ struct ipath_devdata *dd; void __iomem *kreg_base; ssize_t ret; dd = ipath_lookup(unit); if (!dd) { ret = -ENODEV; goto bail; } kreg_base = dd->ipath_kregbase; if (count == 0) ret = 0; else if ((count % 4) || (*off % 4)) /* address or length is not 32-bit aligned, hence invalid */ ret = -EINVAL; else if ((count % 8) || (*off % 8)) /* address or length not 64-bit aligned; do 32-bit reads */ ret = ipath_read_umem32(dd, data, kreg_base + *off, count); else ret = ipath_read_umem64(dd, data, kreg_base + *off, count); if (ret >= 0) { *off += count; ret = count; } bail: return ret; } static ssize_t ipath_diag_write(struct file *fp, const char __user *data, size_t count, loff_t *off) { int unit = 0; /* XXX this is bogus */ struct ipath_devdata *dd; void __iomem *kreg_base; ssize_t ret; dd = ipath_lookup(unit); if (!dd) { ret = -ENODEV; goto bail; } kreg_base = dd->ipath_kregbase; if (count == 0) ret = 0; else if ((count % 4) || (*off % 4)) /* address or length is not 32-bit aligned, hence invalid */ ret = -EINVAL; else if ((count % 8) || (*off % 8)) /* address or length not 64-bit aligned; do 32-bit writes */ ret = ipath_write_umem32(dd, kreg_base + *off, data, count); else ret = ipath_write_umem64(dd, kreg_base + *off, data, count); if (ret >= 0) { *off += count; ret = count; } bail: return ret; }