/* * Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include #include #include #include #include "ipath_kernel.h" #include "ips_common.h" #include "ipath_layer.h" static void ipath_update_pio_bufs(struct ipath_devdata *); const char *ipath_get_unit_name(int unit) { static char iname[16]; snprintf(iname, sizeof iname, "infinipath%u", unit); return iname; } EXPORT_SYMBOL_GPL(ipath_get_unit_name); #define DRIVER_LOAD_MSG "PathScale " IPATH_DRV_NAME " loaded: " #define PFX IPATH_DRV_NAME ": " /* * The size has to be longer than this string, so we can append * board/chip information to it in the init code. */ const char ipath_core_version[] = IPATH_IDSTR "\n"; static struct idr unit_table; DEFINE_SPINLOCK(ipath_devs_lock); LIST_HEAD(ipath_dev_list); wait_queue_head_t ipath_sma_state_wait; unsigned ipath_debug = __IPATH_INFO; module_param_named(debug, ipath_debug, uint, S_IWUSR | S_IRUGO); MODULE_PARM_DESC(debug, "mask for debug prints"); EXPORT_SYMBOL_GPL(ipath_debug); MODULE_LICENSE("GPL"); MODULE_AUTHOR("PathScale "); MODULE_DESCRIPTION("Pathscale InfiniPath driver"); const char *ipath_ibcstatus_str[] = { "Disabled", "LinkUp", "PollActive", "PollQuiet", "SleepDelay", "SleepQuiet", "LState6", /* unused */ "LState7", /* unused */ "CfgDebounce", "CfgRcvfCfg", "CfgWaitRmt", "CfgIdle", "RecovRetrain", "LState0xD", /* unused */ "RecovWaitRmt", "RecovIdle", }; /* * These variables are initialized in the chip-specific files * but are defined here. */ u16 ipath_gpio_sda_num, ipath_gpio_scl_num; u64 ipath_gpio_sda, ipath_gpio_scl; u64 infinipath_i_bitsextant; ipath_err_t infinipath_e_bitsextant, infinipath_hwe_bitsextant; u32 infinipath_i_rcvavail_mask, infinipath_i_rcvurg_mask; static void __devexit ipath_remove_one(struct pci_dev *); static int __devinit ipath_init_one(struct pci_dev *, const struct pci_device_id *); /* Only needed for registration, nothing else needs this info */ #define PCI_VENDOR_ID_PATHSCALE 0x1fc1 #define PCI_DEVICE_ID_INFINIPATH_HT 0xd #define PCI_DEVICE_ID_INFINIPATH_PE800 0x10 static const struct pci_device_id ipath_pci_tbl[] = { { PCI_DEVICE(PCI_VENDOR_ID_PATHSCALE, PCI_DEVICE_ID_INFINIPATH_HT) }, { PCI_DEVICE(PCI_VENDOR_ID_PATHSCALE, PCI_DEVICE_ID_INFINIPATH_PE800) }, { 0, } }; MODULE_DEVICE_TABLE(pci, ipath_pci_tbl); static struct pci_driver ipath_driver = { .name = IPATH_DRV_NAME, .probe = ipath_init_one, .remove = __devexit_p(ipath_remove_one), .id_table = ipath_pci_tbl, }; /* * This is where port 0's rcvhdrtail register is written back; we also * want nothing else sharing the cache line, so make it a cache line * in size. Used for all units. */ volatile __le64 *ipath_port0_rcvhdrtail; dma_addr_t ipath_port0_rcvhdrtail_dma; static int port0_rcvhdrtail_refs; static inline void read_bars(struct ipath_devdata *dd, struct pci_dev *dev, u32 *bar0, u32 *bar1) { int ret; ret = pci_read_config_dword(dev, PCI_BASE_ADDRESS_0, bar0); if (ret) ipath_dev_err(dd, "failed to read bar0 before enable: " "error %d\n", -ret); ret = pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, bar1); if (ret) ipath_dev_err(dd, "failed to read bar1 before enable: " "error %d\n", -ret); ipath_dbg("Read bar0 %x bar1 %x\n", *bar0, *bar1); } static void ipath_free_devdata(struct pci_dev *pdev, struct ipath_devdata *dd) { unsigned long flags; pci_set_drvdata(pdev, NULL); if (dd->ipath_unit != -1) { spin_lock_irqsave(&ipath_devs_lock, flags); idr_remove(&unit_table, dd->ipath_unit); list_del(&dd->ipath_list); spin_unlock_irqrestore(&ipath_devs_lock, flags); } dma_free_coherent(&pdev->dev, sizeof(*dd), dd, dd->ipath_dma_addr); } static struct ipath_devdata *ipath_alloc_devdata(struct pci_dev *pdev) { unsigned long flags; struct ipath_devdata *dd; dma_addr_t dma_addr; int ret; if (!idr_pre_get(&unit_table, GFP_KERNEL)) { dd = ERR_PTR(-ENOMEM); goto bail; } dd = dma_alloc_coherent(&pdev->dev, sizeof(*dd), &dma_addr, GFP_KERNEL); if (!dd) { dd = ERR_PTR(-ENOMEM); goto bail; } dd->ipath_dma_addr = dma_addr; dd->ipath_unit = -1; spin_lock_irqsave(&ipath_devs_lock, flags); ret = idr_get_new(&unit_table, dd, &dd->ipath_unit); if (ret < 0) { printk(KERN_ERR IPATH_DRV_NAME ": Could not allocate unit ID: error %d\n", -ret); ipath_free_devdata(pdev, dd); dd = ERR_PTR(ret); goto bail_unlock; } dd->pcidev = pdev; pci_set_drvdata(pdev, dd); list_add(&dd->ipath_list, &ipath_dev_list); bail_unlock: spin_unlock_irqrestore(&ipath_devs_lock, flags); bail: return dd; } static inline struct ipath_devdata *__ipath_lookup(int unit) { return idr_find(&unit_table, unit); } struct ipath_devdata *ipath_lookup(int unit) { struct ipath_devdata *dd; unsigned long flags; spin_lock_irqsave(&ipath_devs_lock, flags); dd = __ipath_lookup(unit); spin_unlock_irqrestore(&ipath_devs_lock, flags); return dd; } int ipath_count_units(int *npresentp, int *nupp, u32 *maxportsp) { int nunits, npresent, nup; struct ipath_devdata *dd; unsigned long flags; u32 maxports; nunits = npresent = nup = maxports = 0; spin_lock_irqsave(&ipath_devs_lock, flags); list_for_each_entry(dd, &ipath_dev_list, ipath_list) { nunits++; if ((dd->ipath_flags & IPATH_PRESENT) && dd->ipath_kregbase) npresent++; if (dd->ipath_lid && !(dd->ipath_flags & (IPATH_DISABLED | IPATH_LINKDOWN | IPATH_LINKUNK))) nup++; if (dd->ipath_cfgports > maxports) maxports = dd->ipath_cfgports; } spin_unlock_irqrestore(&ipath_devs_lock, flags); if (npresentp) *npresentp = npresent; if (nupp) *nupp = nup; if (maxportsp) *maxportsp = maxports; return nunits; } static int init_port0_rcvhdrtail(struct pci_dev *pdev) { int ret; mutex_lock(&ipath_mutex); if (!ipath_port0_rcvhdrtail) { ipath_port0_rcvhdrtail = dma_alloc_coherent(&pdev->dev, IPATH_PORT0_RCVHDRTAIL_SIZE, &ipath_port0_rcvhdrtail_dma, GFP_KERNEL); if (!ipath_port0_rcvhdrtail) { ret = -ENOMEM; goto bail; } } port0_rcvhdrtail_refs++; ret = 0; bail: mutex_unlock(&ipath_mutex); return ret; } static void cleanup_port0_rcvhdrtail(struct pci_dev *pdev) { mutex_lock(&ipath_mutex); if (!--port0_rcvhdrtail_refs) { dma_free_coherent(&pdev->dev, IPATH_PORT0_RCVHDRTAIL_SIZE, (void *) ipath_port0_rcvhdrtail, ipath_port0_rcvhdrtail_dma); ipath_port0_rcvhdrtail = NULL; } mutex_unlock(&ipath_mutex); } /* * These next two routines are placeholders in case we don't have per-arch * code for controlling write combining. If explicit control of write * combining is not available, performance will probably be awful. */ int __attribute__((weak)) ipath_enable_wc(struct ipath_devdata *dd) { return -EOPNOTSUPP; } void __attribute__((weak)) ipath_disable_wc(struct ipath_devdata *dd) { } static int __devinit ipath_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) { int ret, len, j; struct ipath_devdata *dd; unsigned long long addr; u32 bar0 = 0, bar1 = 0; u8 rev; ret = init_port0_rcvhdrtail(pdev); if (ret < 0) { printk(KERN_ERR IPATH_DRV_NAME ": Could not allocate port0_rcvhdrtail: error %d\n", -ret); goto bail; } dd = ipath_alloc_devdata(pdev); if (IS_ERR(dd)) { ret = PTR_ERR(dd); printk(KERN_ERR IPATH_DRV_NAME ": Could not allocate devdata: error %d\n", -ret); goto bail_rcvhdrtail; } ipath_cdbg(VERBOSE, "initializing unit #%u\n", dd->ipath_unit); read_bars(dd, pdev, &bar0, &bar1); ret = pci_enable_device(pdev); if (ret) { /* This can happen iff: * * We did a chip reset, and then failed to reprogram the * BAR, or the chip reset due to an internal error. We then * unloaded the driver and reloaded it. * * Both reset cases set the BAR back to initial state. For * the latter case, the AER sticky error bit at offset 0x718 * should be set, but the Linux kernel doesn't yet know * about that, it appears. If the original BAR was retained * in the kernel data structures, this may be OK. */ ipath_dev_err(dd, "enable unit %d failed: error %d\n", dd->ipath_unit, -ret); goto bail_devdata; } addr = pci_resource_start(pdev, 0); len = pci_resource_len(pdev, 0); ipath_cdbg(VERBOSE, "regbase (0) %llx len %d irq %x, vend %x/%x " "driver_data %lx\n", addr, len, pdev->irq, ent->vendor, ent->device, ent->driver_data); read_bars(dd, pdev, &bar0, &bar1); if (!bar1 && !(bar0 & ~0xf)) { if (addr) { dev_info(&pdev->dev, "BAR is 0 (probable RESET), " "rewriting as %llx\n", addr); ret = pci_write_config_dword( pdev, PCI_BASE_ADDRESS_0, addr); if (ret) { ipath_dev_err(dd, "rewrite of BAR0 " "failed: err %d\n", -ret); goto bail_disable; } ret = pci_write_config_dword( pdev, PCI_BASE_ADDRESS_1, addr >> 32); if (ret) { ipath_dev_err(dd, "rewrite of BAR1 " "failed: err %d\n", -ret); goto bail_disable; } } else { ipath_dev_err(dd, "BAR is 0 (probable RESET), " "not usable until reboot\n"); ret = -ENODEV; goto bail_disable; } } ret = pci_request_regions(pdev, IPATH_DRV_NAME); if (ret) { dev_info(&pdev->dev, "pci_request_regions unit %u fails: " "err %d\n", dd->ipath_unit, -ret); goto bail_disable; } ret = pci_set_dma_mask(pdev, DMA_64BIT_MASK); if (ret) { /* * if the 64 bit setup fails, try 32 bit. Some systems * do not setup 64 bit maps on systems with 2GB or less * memory installed. */ ret = pci_set_dma_mask(pdev, DMA_32BIT_MASK); if (ret) { dev_info(&pdev->dev, "pci_set_dma_mask unit %u " "fails: %d\n", dd->ipath_unit, ret); goto bail_regions; } else ipath_dbg("No 64bit DMA mask, used 32 bit mask\n"); } pci_set_master(pdev); /* * Save BARs to rewrite after device reset. Save all 64 bits of * BAR, just in case. */ dd->ipath_pcibar0 = addr; dd->ipath_pcibar1 = addr >> 32; dd->ipath_deviceid = ent->device; /* save for later use */ dd->ipath_vendorid = ent->vendor; /* setup the chip-specific functions, as early as possible. */ switch (ent->device) { case PCI_DEVICE_ID_INFINIPATH_HT: ipath_init_ht400_funcs(dd); break; case PCI_DEVICE_ID_INFINIPATH_PE800: ipath_init_pe800_funcs(dd); break; default: ipath_dev_err(dd, "Found unknown PathScale deviceid 0x%x, " "failing\n", ent->device); return -ENODEV; } for (j = 0; j < 6; j++) { if (!pdev->resource[j].start) continue; ipath_cdbg(VERBOSE, "BAR %d start %lx, end %lx, len %lx\n", j, pdev->resource[j].start, pdev->resource[j].end, pci_resource_len(pdev, j)); } if (!addr) { ipath_dev_err(dd, "No valid address in BAR 0!\n"); ret = -ENODEV; goto bail_regions; } dd->ipath_deviceid = ent->device; /* save for later use */ dd->ipath_vendorid = ent->vendor; ret = pci_read_config_byte(pdev, PCI_REVISION_ID, &rev); if (ret) { ipath_dev_err(dd, "Failed to read PCI revision ID unit " "%u: err %d\n", dd->ipath_unit, -ret); goto bail_regions; /* shouldn't ever happen */ } dd->ipath_pcirev = rev; dd->ipath_kregbase = ioremap_nocache(addr, len); if (!dd->ipath_kregbase) { ipath_dbg("Unable to map io addr %llx to kvirt, failing\n", addr); ret = -ENOMEM; goto bail_iounmap; } dd->ipath_kregend = (u64 __iomem *) ((void __iomem *)dd->ipath_kregbase + len); dd->ipath_physaddr = addr; /* used for io_remap, etc. */ /* for user mmap */ dd->ipath_kregvirt = (u64 __iomem *) phys_to_virt(addr); ipath_cdbg(VERBOSE, "mapped io addr %llx to kregbase %p " "kregvirt %p\n", addr, dd->ipath_kregbase, dd->ipath_kregvirt); /* * clear ipath_flags here instead of in ipath_init_chip as it is set * by ipath_setup_htconfig. */ dd->ipath_flags = 0; if (dd->ipath_f_bus(dd, pdev)) ipath_dev_err(dd, "Failed to setup config space; " "continuing anyway\n"); /* * set up our interrupt handler; SA_SHIRQ probably not needed, * since MSI interrupts shouldn't be shared but won't hurt for now. * check 0 irq after we return from chip-specific bus setup, since * that can affect this due to setup */ if (!pdev->irq) ipath_dev_err(dd, "irq is 0, BIOS error? Interrupts won't " "work\n"); else { ret = request_irq(pdev->irq, ipath_intr, SA_SHIRQ, IPATH_DRV_NAME, dd); if (ret) { ipath_dev_err(dd, "Couldn't setup irq handler, " "irq=%u: %d\n", pdev->irq, ret); goto bail_iounmap; } } ret = ipath_init_chip(dd, 0); /* do the chip-specific init */ if (ret) goto bail_iounmap; ret = ipath_enable_wc(dd); if (ret) { ipath_dev_err(dd, "Write combining not enabled " "(err %d): performance may be poor\n", -ret); ret = 0; } ipath_device_create_group(&pdev->dev, dd); ipathfs_add_device(dd); ipath_user_add(dd); ipath_layer_add(dd); goto bail; bail_iounmap: iounmap((volatile void __iomem *) dd->ipath_kregbase); bail_regions: pci_release_regions(pdev); bail_disable: pci_disable_device(pdev); bail_devdata: ipath_free_devdata(pdev, dd); bail_rcvhdrtail: cleanup_port0_rcvhdrtail(pdev); bail: return ret; } static void __devexit ipath_remove_one(struct pci_dev *pdev) { struct ipath_devdata *dd; ipath_cdbg(VERBOSE, "removing, pdev=%p\n", pdev); if (!pdev) return; dd = pci_get_drvdata(pdev); ipath_layer_del(dd); ipath_user_del(dd); ipathfs_remove_device(dd); ipath_device_remove_group(&pdev->dev, dd); ipath_cdbg(VERBOSE, "Releasing pci memory regions, dd %p, " "unit %u\n", dd, (u32) dd->ipath_unit); if (dd->ipath_kregbase) { ipath_cdbg(VERBOSE, "Unmapping kregbase %p\n", dd->ipath_kregbase); iounmap((volatile void __iomem *) dd->ipath_kregbase); dd->ipath_kregbase = NULL; } pci_release_regions(pdev); ipath_cdbg(VERBOSE, "calling pci_disable_device\n"); pci_disable_device(pdev); ipath_free_devdata(pdev, dd); cleanup_port0_rcvhdrtail(pdev); } /* general driver use */ DEFINE_MUTEX(ipath_mutex); static DEFINE_SPINLOCK(ipath_pioavail_lock); /** * ipath_disarm_piobufs - cancel a range of PIO buffers * @dd: the infinipath device * @first: the first PIO buffer to cancel * @cnt: the number of PIO buffers to cancel * * cancel a range of PIO buffers, used when they might be armed, but * not triggered. Used at init to ensure buffer state, and also user * process close, in case it died while writing to a PIO buffer * Also after errors. */ void ipath_disarm_piobufs(struct ipath_devdata *dd, unsigned first, unsigned cnt) { unsigned i, last = first + cnt; u64 sendctrl, sendorig; ipath_cdbg(PKT, "disarm %u PIObufs first=%u\n", cnt, first); sendorig = dd->ipath_sendctrl | INFINIPATH_S_DISARM; for (i = first; i < last; i++) { sendctrl = sendorig | (i << INFINIPATH_S_DISARMPIOBUF_SHIFT); ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl, sendctrl); } /* * Write it again with current value, in case ipath_sendctrl changed * while we were looping; no critical bits that would require * locking. * * Write a 0, and then the original value, reading scratch in * between. This seems to avoid a chip timing race that causes * pioavail updates to memory to stop. */ ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl, 0); sendorig = ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch); ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl, dd->ipath_sendctrl); } /** * ipath_wait_linkstate - wait for an IB link state change to occur * @dd: the infinipath device * @state: the state to wait for * @msecs: the number of milliseconds to wait * * wait up to msecs milliseconds for IB link state change to occur for * now, take the easy polling route. Currently used only by * ipath_layer_set_linkstate. Returns 0 if state reached, otherwise * -ETIMEDOUT state can have multiple states set, for any of several * transitions. */ int ipath_wait_linkstate(struct ipath_devdata *dd, u32 state, int msecs) { dd->ipath_sma_state_wanted = state; wait_event_interruptible_timeout(ipath_sma_state_wait, (dd->ipath_flags & state), msecs_to_jiffies(msecs)); dd->ipath_sma_state_wanted = 0; if (!(dd->ipath_flags & state)) { u64 val; ipath_cdbg(SMA, "Didn't reach linkstate %s within %u ms\n", /* test INIT ahead of DOWN, both can be set */ (state & IPATH_LINKINIT) ? "INIT" : ((state & IPATH_LINKDOWN) ? "DOWN" : ((state & IPATH_LINKARMED) ? "ARM" : "ACTIVE")), msecs); val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_ibcstatus); ipath_cdbg(VERBOSE, "ibcc=%llx ibcstatus=%llx (%s)\n", (unsigned long long) ipath_read_kreg64( dd, dd->ipath_kregs->kr_ibcctrl), (unsigned long long) val, ipath_ibcstatus_str[val & 0xf]); } return (dd->ipath_flags & state) ? 0 : -ETIMEDOUT; } void ipath_decode_err(char *buf, size_t blen, ipath_err_t err) { *buf = '\0'; if (err & INFINIPATH_E_RHDRLEN) strlcat(buf, "rhdrlen ", blen); if (err & INFINIPATH_E_RBADTID) strlcat(buf, "rbadtid ", blen); if (err & INFINIPATH_E_RBADVERSION) strlcat(buf, "rbadversion ", blen); if (err & INFINIPATH_E_RHDR) strlcat(buf, "rhdr ", blen); if (err & INFINIPATH_E_RLONGPKTLEN) strlcat(buf, "rlongpktlen ", blen); if (err & INFINIPATH_E_RSHORTPKTLEN) strlcat(buf, "rshortpktlen ", blen); if (err & INFINIPATH_E_RMAXPKTLEN) strlcat(buf, "rmaxpktlen ", blen); if (err & INFINIPATH_E_RMINPKTLEN) strlcat(buf, "rminpktlen ", blen); if (err & INFINIPATH_E_RFORMATERR) strlcat(buf, "rformaterr ", blen); if (err & INFINIPATH_E_RUNSUPVL) strlcat(buf, "runsupvl ", blen); if (err & INFINIPATH_E_RUNEXPCHAR) strlcat(buf, "runexpchar ", blen); if (err & INFINIPATH_E_RIBFLOW) strlcat(buf, "ribflow ", blen); if (err & INFINIPATH_E_REBP) strlcat(buf, "EBP ", blen); if (err & INFINIPATH_E_SUNDERRUN) strlcat(buf, "sunderrun ", blen); if (err & INFINIPATH_E_SPIOARMLAUNCH) strlcat(buf, "spioarmlaunch ", blen); if (err & INFINIPATH_E_SUNEXPERRPKTNUM) strlcat(buf, "sunexperrpktnum ", blen); if (err & INFINIPATH_E_SDROPPEDDATAPKT) strlcat(buf, "sdroppeddatapkt ", blen); if (err & INFINIPATH_E_SDROPPEDSMPPKT) strlcat(buf, "sdroppedsmppkt ", blen); if (err & INFINIPATH_E_SMAXPKTLEN) strlcat(buf, "smaxpktlen ", blen); if (err & INFINIPATH_E_SMINPKTLEN) strlcat(buf, "sminpktlen ", blen); if (err & INFINIPATH_E_SUNSUPVL) strlcat(buf, "sunsupVL ", blen); if (err & INFINIPATH_E_SPKTLEN) strlcat(buf, "spktlen ", blen); if (err & INFINIPATH_E_INVALIDADDR) strlcat(buf, "invalidaddr ", blen); if (err & INFINIPATH_E_RICRC) strlcat(buf, "CRC ", blen); if (err & INFINIPATH_E_RVCRC) strlcat(buf, "VCRC ", blen); if (err & INFINIPATH_E_RRCVEGRFULL) strlcat(buf, "rcvegrfull ", blen); if (err & INFINIPATH_E_RRCVHDRFULL) strlcat(buf, "rcvhdrfull ", blen); if (err & INFINIPATH_E_IBSTATUSCHANGED) strlcat(buf, "ibcstatuschg ", blen); if (err & INFINIPATH_E_RIBLOSTLINK) strlcat(buf, "riblostlink ", blen); if (err & INFINIPATH_E_HARDWARE) strlcat(buf, "hardware ", blen); if (err & INFINIPATH_E_RESET) strlcat(buf, "reset ", blen); } /** * get_rhf_errstring - decode RHF errors * @err: the err number * @msg: the output buffer * @len: the length of the output buffer * * only used one place now, may want more later */ static void get_rhf_errstring(u32 err, char *msg, size_t len) { /* if no errors, and so don't need to check what's first */ *msg = '\0'; if (err & INFINIPATH_RHF_H_ICRCERR) strlcat(msg, "icrcerr ", len); if (err & INFINIPATH_RHF_H_VCRCERR) strlcat(msg, "vcrcerr ", len); if (err & INFINIPATH_RHF_H_PARITYERR) strlcat(msg, "parityerr ", len); if (err & INFINIPATH_RHF_H_LENERR) strlcat(msg, "lenerr ", len); if (err & INFINIPATH_RHF_H_MTUERR) strlcat(msg, "mtuerr ", len); if (err & INFINIPATH_RHF_H_IHDRERR) /* infinipath hdr checksum error */ strlcat(msg, "ipathhdrerr ", len); if (err & INFINIPATH_RHF_H_TIDERR) strlcat(msg, "tiderr ", len); if (err & INFINIPATH_RHF_H_MKERR) /* bad port, offset, etc. */ strlcat(msg, "invalid ipathhdr ", len); if (err & INFINIPATH_RHF_H_IBERR) strlcat(msg, "iberr ", len); if (err & INFINIPATH_RHF_L_SWA) strlcat(msg, "swA ", len); if (err & INFINIPATH_RHF_L_SWB) strlcat(msg, "swB ", len); } /** * ipath_get_egrbuf - get an eager buffer * @dd: the infinipath device * @bufnum: the eager buffer to get * @err: unused * * must only be called if ipath_pd[port] is known to be allocated */ static inline void *ipath_get_egrbuf(struct ipath_devdata *dd, u32 bufnum, int err) { return dd->ipath_port0_skbs ? (void *)dd->ipath_port0_skbs[bufnum]->data : NULL; } /** * ipath_alloc_skb - allocate an skb and buffer with possible constraints * @dd: the infinipath device * @gfp_mask: the sk_buff SFP mask */ struct sk_buff *ipath_alloc_skb(struct ipath_devdata *dd, gfp_t gfp_mask) { struct sk_buff *skb; u32 len; /* * Only fully supported way to handle this is to allocate lots * extra, align as needed, and then do skb_reserve(). That wastes * a lot of memory... I'll have to hack this into infinipath_copy * also. */ /* * We need 4 extra bytes for unaligned transfer copying */ if (dd->ipath_flags & IPATH_4BYTE_TID) { /* we need a 4KB multiple alignment, and there is no way * to do it except to allocate extra and then skb_reserve * enough to bring it up to the right alignment. */ len = dd->ipath_ibmaxlen + 4 + (1 << 11) - 1; } else len = dd->ipath_ibmaxlen + 4; skb = __dev_alloc_skb(len, gfp_mask); if (!skb) { ipath_dev_err(dd, "Failed to allocate skbuff, length %u\n", len); goto bail; } if (dd->ipath_flags & IPATH_4BYTE_TID) { u32 una = ((1 << 11) - 1) & (unsigned long)(skb->data + 4); if (una) skb_reserve(skb, 4 + (1 << 11) - una); else skb_reserve(skb, 4); } else skb_reserve(skb, 4); bail: return skb; } /** * ipath_rcv_layer - receive a packet for the layered (ethernet) driver * @dd: the infinipath device * @etail: the sk_buff number * @tlen: the total packet length * @hdr: the ethernet header * * Separate routine for better overall optimization */ static void ipath_rcv_layer(struct ipath_devdata *dd, u32 etail, u32 tlen, struct ether_header *hdr) { u32 elen; u8 pad, *bthbytes; struct sk_buff *skb, *nskb; if (dd->ipath_port0_skbs && hdr->sub_opcode == OPCODE_ENCAP) { /* * Allocate a new sk_buff to replace the one we give * to the network stack. */ nskb = ipath_alloc_skb(dd, GFP_ATOMIC); if (!nskb) { /* count OK packets that we drop */ ipath_stats.sps_krdrops++; return; } bthbytes = (u8 *) hdr->bth; pad = (bthbytes[1] >> 4) & 3; /* +CRC32 */ elen = tlen - (sizeof(*hdr) + pad + sizeof(u32)); skb = dd->ipath_port0_skbs[etail]; dd->ipath_port0_skbs[etail] = nskb; skb_put(skb, elen); dd->ipath_f_put_tid(dd, etail + (u64 __iomem *) ((char __iomem *) dd->ipath_kregbase + dd->ipath_rcvegrbase), 0, virt_to_phys(nskb->data)); __ipath_layer_rcv(dd, hdr, skb); /* another ether packet received */ ipath_stats.sps_ether_rpkts++; } else if (hdr->sub_opcode == OPCODE_LID_ARP) __ipath_layer_rcv_lid(dd, hdr); } /* * ipath_kreceive - receive a packet * @dd: the infinipath device * * called from interrupt handler for errors or receive interrupt */ void ipath_kreceive(struct ipath_devdata *dd) { u64 *rc; void *ebuf; const u32 rsize = dd->ipath_rcvhdrentsize; /* words */ const u32 maxcnt = dd->ipath_rcvhdrcnt * rsize; /* words */ u32 etail = -1, l, hdrqtail; struct ips_message_header *hdr; u32 eflags, i, etype, tlen, pkttot = 0; static u64 totcalls; /* stats, may eventually remove */ char emsg[128]; if (!dd->ipath_hdrqtailptr) { ipath_dev_err(dd, "hdrqtailptr not set, can't do receives\n"); goto bail; } /* There is already a thread processing this queue. */ if (test_and_set_bit(0, &dd->ipath_rcv_pending)) goto bail; if (dd->ipath_port0head == (u32)le64_to_cpu(*dd->ipath_hdrqtailptr)) goto done; gotmore: /* * read only once at start. If in flood situation, this helps * performance slightly. If more arrive while we are processing, * we'll come back here and do them */ hdrqtail = (u32)le64_to_cpu(*dd->ipath_hdrqtailptr); for (i = 0, l = dd->ipath_port0head; l != hdrqtail; i++) { u32 qp; u8 *bthbytes; rc = (u64 *) (dd->ipath_pd[0]->port_rcvhdrq + (l << 2)); hdr = (struct ips_message_header *)&rc[1]; /* * could make a network order version of IPATH_KD_QP, and * do the obvious shift before masking to speed this up. */ qp = ntohl(hdr->bth[1]) & 0xffffff; bthbytes = (u8 *) hdr->bth; eflags = ips_get_hdr_err_flags((__le32 *) rc); etype = ips_get_rcv_type((__le32 *) rc); /* total length */ tlen = ips_get_length_in_bytes((__le32 *) rc); ebuf = NULL; if (etype != RCVHQ_RCV_TYPE_EXPECTED) { /* * it turns out that the chips uses an eager buffer * for all non-expected packets, whether it "needs" * one or not. So always get the index, but don't * set ebuf (so we try to copy data) unless the * length requires it. */ etail = ips_get_index((__le32 *) rc); if (tlen > sizeof(*hdr) || etype == RCVHQ_RCV_TYPE_NON_KD) ebuf = ipath_get_egrbuf(dd, etail, 0); } /* * both tiderr and ipathhdrerr are set for all plain IB * packets; only ipathhdrerr should be set. */ if (etype != RCVHQ_RCV_TYPE_NON_KD && etype != RCVHQ_RCV_TYPE_ERROR && ips_get_ipath_ver( hdr->iph.ver_port_tid_offset) != IPS_PROTO_VERSION) { ipath_cdbg(PKT, "Bad InfiniPath protocol version " "%x\n", etype); } if (eflags & ~(INFINIPATH_RHF_H_TIDERR | INFINIPATH_RHF_H_IHDRERR)) { get_rhf_errstring(eflags, emsg, sizeof emsg); ipath_cdbg(PKT, "RHFerrs %x hdrqtail=%x typ=%u " "tlen=%x opcode=%x egridx=%x: %s\n", eflags, l, etype, tlen, bthbytes[0], ips_get_index((__le32 *) rc), emsg); } else if (etype == RCVHQ_RCV_TYPE_NON_KD) { int ret = __ipath_verbs_rcv(dd, rc + 1, ebuf, tlen); if (ret == -ENODEV) ipath_cdbg(VERBOSE, "received IB packet, " "not SMA (QP=%x)\n", qp); } else if (etype == RCVHQ_RCV_TYPE_EAGER) { if (qp == IPATH_KD_QP && bthbytes[0] == ipath_layer_rcv_opcode && ebuf) ipath_rcv_layer(dd, etail, tlen, (struct ether_header *)hdr); else ipath_cdbg(PKT, "typ %x, opcode %x (eager, " "qp=%x), len %x; ignored\n", etype, bthbytes[0], qp, tlen); } else if (etype == RCVHQ_RCV_TYPE_EXPECTED) ipath_dbg("Bug: Expected TID, opcode %x; ignored\n", be32_to_cpu(hdr->bth[0]) & 0xff); else if (eflags & (INFINIPATH_RHF_H_TIDERR | INFINIPATH_RHF_H_IHDRERR)) { /* * This is a type 3 packet, only the LRH is in the * rcvhdrq, the rest of the header is in the eager * buffer. */ u8 opcode; if (ebuf) { bthbytes = (u8 *) ebuf; opcode = *bthbytes; } else opcode = 0; get_rhf_errstring(eflags, emsg, sizeof emsg); ipath_dbg("Err %x (%s), opcode %x, egrbuf %x, " "len %x\n", eflags, emsg, opcode, etail, tlen); } else { /* * error packet, type of error unknown. * Probably type 3, but we don't know, so don't * even try to print the opcode, etc. */ ipath_dbg("Error Pkt, but no eflags! egrbuf %x, " "len %x\nhdrq@%lx;hdrq+%x rhf: %llx; " "hdr %llx %llx %llx %llx %llx\n", etail, tlen, (unsigned long) rc, l, (unsigned long long) rc[0], (unsigned long long) rc[1], (unsigned long long) rc[2], (unsigned long long) rc[3], (unsigned long long) rc[4], (unsigned long long) rc[5]); } l += rsize; if (l >= maxcnt) l = 0; /* * update for each packet, to help prevent overflows if we * have lots of packets. */ (void)ipath_write_ureg(dd, ur_rcvhdrhead, dd->ipath_rhdrhead_intr_off | l, 0); if (etype != RCVHQ_RCV_TYPE_EXPECTED) (void)ipath_write_ureg(dd, ur_rcvegrindexhead, etail, 0); } pkttot += i; dd->ipath_port0head = l; if (hdrqtail != (u32)le64_to_cpu(*dd->ipath_hdrqtailptr)) /* more arrived while we handled first batch */ goto gotmore; if (pkttot > ipath_stats.sps_maxpkts_call) ipath_stats.sps_maxpkts_call = pkttot; ipath_stats.sps_port0pkts += pkttot; ipath_stats.sps_avgpkts_call = ipath_stats.sps_port0pkts / ++totcalls; done: clear_bit(0, &dd->ipath_rcv_pending); smp_mb__after_clear_bit(); bail:; } /** * ipath_update_pio_bufs - update shadow copy of the PIO availability map * @dd: the infinipath device * * called whenever our local copy indicates we have run out of send buffers * NOTE: This can be called from interrupt context by some code * and from non-interrupt context by ipath_getpiobuf(). */ static void ipath_update_pio_bufs(struct ipath_devdata *dd) { unsigned long flags; int i; const unsigned piobregs = (unsigned)dd->ipath_pioavregs; /* If the generation (check) bits have changed, then we update the * busy bit for the corresponding PIO buffer. This algorithm will * modify positions to the value they already have in some cases * (i.e., no change), but it's faster than changing only the bits * that have changed. * * We would like to do this atomicly, to avoid spinlocks in the * critical send path, but that's not really possible, given the * type of changes, and that this routine could be called on * multiple cpu's simultaneously, so we lock in this routine only, * to avoid conflicting updates; all we change is the shadow, and * it's a single 64 bit memory location, so by definition the update * is atomic in terms of what other cpu's can see in testing the * bits. The spin_lock overhead isn't too bad, since it only * happens when all buffers are in use, so only cpu overhead, not * latency or bandwidth is affected. */ #define _IPATH_ALL_CHECKBITS 0x5555555555555555ULL if (!dd->ipath_pioavailregs_dma) { ipath_dbg("Update shadow pioavail, but regs_dma NULL!\n"); return; } if (ipath_debug & __IPATH_VERBDBG) { /* only if packet debug and verbose */ volatile __le64 *dma = dd->ipath_pioavailregs_dma; unsigned long *shadow = dd->ipath_pioavailshadow; ipath_cdbg(PKT, "Refill avail, dma0=%llx shad0=%lx, " "d1=%llx s1=%lx, d2=%llx s2=%lx, d3=%llx " "s3=%lx\n", (unsigned long long) le64_to_cpu(dma[0]), shadow[0], (unsigned long long) le64_to_cpu(dma[1]), shadow[1], (unsigned long long) le64_to_cpu(dma[2]), shadow[2], (unsigned long long) le64_to_cpu(dma[3]), shadow[3]); if (piobregs > 4) ipath_cdbg( PKT, "2nd group, dma4=%llx shad4=%lx, " "d5=%llx s5=%lx, d6=%llx s6=%lx, " "d7=%llx s7=%lx\n", (unsigned long long) le64_to_cpu(dma[4]), shadow[4], (unsigned long long) le64_to_cpu(dma[5]), shadow[5], (unsigned long long) le64_to_cpu(dma[6]), shadow[6], (unsigned long long) le64_to_cpu(dma[7]), shadow[7]); } spin_lock_irqsave(&ipath_pioavail_lock, flags); for (i = 0; i < piobregs; i++) { u64 pchbusy, pchg, piov, pnew; /* * Chip Errata: bug 6641; even and odd qwords>3 are swapped */ if (i > 3) { if (i & 1) piov = le64_to_cpu( dd->ipath_pioavailregs_dma[i - 1]); else piov = le64_to_cpu( dd->ipath_pioavailregs_dma[i + 1]); } else piov = le64_to_cpu(dd->ipath_pioavailregs_dma[i]); pchg = _IPATH_ALL_CHECKBITS & ~(dd->ipath_pioavailshadow[i] ^ piov); pchbusy = pchg << INFINIPATH_SENDPIOAVAIL_BUSY_SHIFT; if (pchg && (pchbusy & dd->ipath_pioavailshadow[i])) { pnew = dd->ipath_pioavailshadow[i] & ~pchbusy; pnew |= piov & pchbusy; dd->ipath_pioavailshadow[i] = pnew; } } spin_unlock_irqrestore(&ipath_pioavail_lock, flags); } /** * ipath_setrcvhdrsize - set the receive header size * @dd: the infinipath device * @rhdrsize: the receive header size * * called from user init code, and also layered driver init */ int ipath_setrcvhdrsize(struct ipath_devdata *dd, unsigned rhdrsize) { int ret = 0; if (dd->ipath_flags & IPATH_RCVHDRSZ_SET) { if (dd->ipath_rcvhdrsize != rhdrsize) { dev_info(&dd->pcidev->dev, "Error: can't set protocol header " "size %u, already %u\n", rhdrsize, dd->ipath_rcvhdrsize); ret = -EAGAIN; } else ipath_cdbg(VERBOSE, "Reuse same protocol header " "size %u\n", dd->ipath_rcvhdrsize); } else if (rhdrsize > (dd->ipath_rcvhdrentsize - (sizeof(u64) / sizeof(u32)))) { ipath_dbg("Error: can't set protocol header size %u " "(> max %u)\n", rhdrsize, dd->ipath_rcvhdrentsize - (u32) (sizeof(u64) / sizeof(u32))); ret = -EOVERFLOW; } else { dd->ipath_flags |= IPATH_RCVHDRSZ_SET; dd->ipath_rcvhdrsize = rhdrsize; ipath_write_kreg(dd, dd->ipath_kregs->kr_rcvhdrsize, dd->ipath_rcvhdrsize); ipath_cdbg(VERBOSE, "Set protocol header size to %u\n", dd->ipath_rcvhdrsize); } return ret; } /** * ipath_getpiobuf - find an available pio buffer * @dd: the infinipath device * @pbufnum: the buffer number is placed here * * do appropriate marking as busy, etc. * returns buffer number if one found (>=0), negative number is error. * Used by ipath_sma_send_pkt and ipath_layer_send */ u32 __iomem *ipath_getpiobuf(struct ipath_devdata *dd, u32 * pbufnum) { int i, j, starti, updated = 0; unsigned piobcnt, iter; unsigned long flags; unsigned long *shadow = dd->ipath_pioavailshadow; u32 __iomem *buf; piobcnt = (unsigned)(dd->ipath_piobcnt2k + dd->ipath_piobcnt4k); starti = dd->ipath_lastport_piobuf; iter = piobcnt - starti; if (dd->ipath_upd_pio_shadow) { /* * Minor optimization. If we had no buffers on last call, * start out by doing the update; continue and do scan even * if no buffers were updated, to be paranoid */ ipath_update_pio_bufs(dd); /* we scanned here, don't do it at end of scan */ updated = 1; i = starti; } else i = dd->ipath_lastpioindex; rescan: /* * while test_and_set_bit() is atomic, we do that and then the * change_bit(), and the pair is not. See if this is the cause * of the remaining armlaunch errors. */ spin_lock_irqsave(&ipath_pioavail_lock, flags); for (j = 0; j < iter; j++, i++) { if (i >= piobcnt) i = starti; /* * To avoid bus lock overhead, we first find a candidate * buffer, then do the test and set, and continue if that * fails. */ if (test_bit((2 * i) + 1, shadow) || test_and_set_bit((2 * i) + 1, shadow)) continue; /* flip generation bit */ change_bit(2 * i, shadow); break; } spin_unlock_irqrestore(&ipath_pioavail_lock, flags); if (j == iter) { volatile __le64 *dma = dd->ipath_pioavailregs_dma; /* * first time through; shadow exhausted, but may be real * buffers available, so go see; if any updated, rescan * (once) */ if (!updated) { ipath_update_pio_bufs(dd); updated = 1; i = starti; goto rescan; } dd->ipath_upd_pio_shadow = 1; /* * not atomic, but if we lose one once in a while, that's OK */ ipath_stats.sps_nopiobufs++; if (!(++dd->ipath_consec_nopiobuf % 100000)) { ipath_dbg( "%u pio sends with no bufavail; dmacopy: " "%llx %llx %llx %llx; shadow: " "%lx %lx %lx %lx\n", dd->ipath_consec_nopiobuf, (unsigned long long) le64_to_cpu(dma[0]), (unsigned long long) le64_to_cpu(dma[1]), (unsigned long long) le64_to_cpu(dma[2]), (unsigned long long) le64_to_cpu(dma[3]), shadow[0], shadow[1], shadow[2], shadow[3]); /* * 4 buffers per byte, 4 registers above, cover rest * below */ if ((dd->ipath_piobcnt2k + dd->ipath_piobcnt4k) > (sizeof(shadow[0]) * 4 * 4)) ipath_dbg("2nd group: dmacopy: %llx %llx " "%llx %llx; shadow: %lx %lx " "%lx %lx\n", (unsigned long long) le64_to_cpu(dma[4]), (unsigned long long) le64_to_cpu(dma[5]), (unsigned long long) le64_to_cpu(dma[6]), (unsigned long long) le64_to_cpu(dma[7]), shadow[4], shadow[5], shadow[6], shadow[7]); } buf = NULL; goto bail; } if (updated) /* * ran out of bufs, now some (at least this one we just * got) are now available, so tell the layered driver. */ __ipath_layer_intr(dd, IPATH_LAYER_INT_SEND_CONTINUE); /* * set next starting place. Since it's just an optimization, * it doesn't matter who wins on this, so no locking */ dd->ipath_lastpioindex = i + 1; if (dd->ipath_upd_pio_shadow) dd->ipath_upd_pio_shadow = 0; if (dd->ipath_consec_nopiobuf) dd->ipath_consec_nopiobuf = 0; if (i < dd->ipath_piobcnt2k) buf = (u32 __iomem *) (dd->ipath_pio2kbase + i * dd->ipath_palign); else buf = (u32 __iomem *) (dd->ipath_pio4kbase + (i - dd->ipath_piobcnt2k) * dd->ipath_4kalign); ipath_cdbg(VERBOSE, "Return piobuf%u %uk @ %p\n", i, (i < dd->ipath_piobcnt2k) ? 2 : 4, buf); if (pbufnum) *pbufnum = i; bail: return buf; } /** * ipath_create_rcvhdrq - create a receive header queue * @dd: the infinipath device * @pd: the port data * * this *must* be physically contiguous memory, and for now, * that limits it to what kmalloc can do. */ int ipath_create_rcvhdrq(struct ipath_devdata *dd, struct ipath_portdata *pd) { int ret = 0, amt; amt = ALIGN(dd->ipath_rcvhdrcnt * dd->ipath_rcvhdrentsize * sizeof(u32), PAGE_SIZE); if (!pd->port_rcvhdrq) { /* * not using REPEAT isn't viable; at 128KB, we can easily * fail this. The problem with REPEAT is we can block here * "forever". There isn't an inbetween, unfortunately. We * could reduce the risk by never freeing the rcvhdrq except * at unload, but even then, the first time a port is used, * we could delay for some time... */ gfp_t gfp_flags = GFP_USER | __GFP_COMP; pd->port_rcvhdrq = dma_alloc_coherent( &dd->pcidev->dev, amt, &pd->port_rcvhdrq_phys, gfp_flags); if (!pd->port_rcvhdrq) { ipath_dev_err(dd, "attempt to allocate %d bytes " "for port %u rcvhdrq failed\n", amt, pd->port_port); ret = -ENOMEM; goto bail; } pd->port_rcvhdrq_size = amt; ipath_cdbg(VERBOSE, "%d pages at %p (phys %lx) size=%lu " "for port %u rcvhdr Q\n", amt >> PAGE_SHIFT, pd->port_rcvhdrq, (unsigned long) pd->port_rcvhdrq_phys, (unsigned long) pd->port_rcvhdrq_size, pd->port_port); } else { /* * clear for security, sanity, and/or debugging, each * time we reuse */ memset(pd->port_rcvhdrq, 0, amt); } /* * tell chip each time we init it, even if we are re-using previous * memory (we zero it at process close) */ ipath_cdbg(VERBOSE, "writing port %d rcvhdraddr as %lx\n", pd->port_port, (unsigned long) pd->port_rcvhdrq_phys); ipath_write_kreg_port(dd, dd->ipath_kregs->kr_rcvhdraddr, pd->port_port, pd->port_rcvhdrq_phys); ret = 0; bail: return ret; } int ipath_waitfor_complete(struct ipath_devdata *dd, ipath_kreg reg_id, u64 bits_to_wait_for, u64 * valp) { unsigned long timeout; u64 lastval, val; int ret; lastval = ipath_read_kreg64(dd, reg_id); /* wait a ridiculously long time */ timeout = jiffies + msecs_to_jiffies(5); do { val = ipath_read_kreg64(dd, reg_id); /* set so they have something, even on failures. */ *valp = val; if ((val & bits_to_wait_for) == bits_to_wait_for) { ret = 0; break; } if (val != lastval) ipath_cdbg(VERBOSE, "Changed from %llx to %llx, " "waiting for %llx bits\n", (unsigned long long) lastval, (unsigned long long) val, (unsigned long long) bits_to_wait_for); cond_resched(); if (time_after(jiffies, timeout)) { ipath_dbg("Didn't get bits %llx in register 0x%x, " "got %llx\n", (unsigned long long) bits_to_wait_for, reg_id, (unsigned long long) *valp); ret = -ENODEV; break; } } while (1); return ret; } /** * ipath_waitfor_mdio_cmdready - wait for last command to complete * @dd: the infinipath device * * Like ipath_waitfor_complete(), but we wait for the CMDVALID bit to go * away indicating the last command has completed. It doesn't return data */ int ipath_waitfor_mdio_cmdready(struct ipath_devdata *dd) { unsigned long timeout; u64 val; int ret; /* wait a ridiculously long time */ timeout = jiffies + msecs_to_jiffies(5); do { val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_mdio); if (!(val & IPATH_MDIO_CMDVALID)) { ret = 0; break; } cond_resched(); if (time_after(jiffies, timeout)) { ipath_dbg("CMDVALID stuck in mdio reg? (%llx)\n", (unsigned long long) val); ret = -ENODEV; break; } } while (1); return ret; } void ipath_set_ib_lstate(struct ipath_devdata *dd, int which) { static const char *what[4] = { [0] = "DOWN", [INFINIPATH_IBCC_LINKCMD_INIT] = "INIT", [INFINIPATH_IBCC_LINKCMD_ARMED] = "ARMED", [INFINIPATH_IBCC_LINKCMD_ACTIVE] = "ACTIVE" }; ipath_cdbg(SMA, "Trying to move unit %u to %s, current ltstate " "is %s\n", dd->ipath_unit, what[(which >> INFINIPATH_IBCC_LINKCMD_SHIFT) & INFINIPATH_IBCC_LINKCMD_MASK], ipath_ibcstatus_str[ (ipath_read_kreg64 (dd, dd->ipath_kregs->kr_ibcstatus) >> INFINIPATH_IBCS_LINKTRAININGSTATE_SHIFT) & INFINIPATH_IBCS_LINKTRAININGSTATE_MASK]); ipath_write_kreg(dd, dd->ipath_kregs->kr_ibcctrl, dd->ipath_ibcctrl | which); } /** * ipath_read_kreg64_port - read a device's per-port 64-bit kernel register * @dd: the infinipath device * @regno: the register number to read * @port: the port containing the register * * Registers that vary with the chip implementation constants (port) * use this routine. */ u64 ipath_read_kreg64_port(const struct ipath_devdata *dd, ipath_kreg regno, unsigned port) { u16 where; if (port < dd->ipath_portcnt && (regno == dd->ipath_kregs->kr_rcvhdraddr || regno == dd->ipath_kregs->kr_rcvhdrtailaddr)) where = regno + port; else where = -1; return ipath_read_kreg64(dd, where); } /** * ipath_write_kreg_port - write a device's per-port 64-bit kernel register * @dd: the infinipath device * @regno: the register number to write * @port: the port containing the register * @value: the value to write * * Registers that vary with the chip implementation constants (port) * use this routine. */ void ipath_write_kreg_port(const struct ipath_devdata *dd, ipath_kreg regno, unsigned port, u64 value) { u16 where; if (port < dd->ipath_portcnt && (regno == dd->ipath_kregs->kr_rcvhdraddr || regno == dd->ipath_kregs->kr_rcvhdrtailaddr)) where = regno + port; else where = -1; ipath_write_kreg(dd, where, value); } /** * ipath_shutdown_device - shut down a device * @dd: the infinipath device * * This is called to make the device quiet when we are about to * unload the driver, and also when the device is administratively * disabled. It does not free any data structures. * Everything it does has to be setup again by ipath_init_chip(dd,1) */ void ipath_shutdown_device(struct ipath_devdata *dd) { u64 val; ipath_dbg("Shutting down the device\n"); dd->ipath_flags |= IPATH_LINKUNK; dd->ipath_flags &= ~(IPATH_INITTED | IPATH_LINKDOWN | IPATH_LINKINIT | IPATH_LINKARMED | IPATH_LINKACTIVE); *dd->ipath_statusp &= ~(IPATH_STATUS_IB_CONF | IPATH_STATUS_IB_READY); /* mask interrupts, but not errors */ ipath_write_kreg(dd, dd->ipath_kregs->kr_intmask, 0ULL); dd->ipath_rcvctrl = 0; ipath_write_kreg(dd, dd->ipath_kregs->kr_rcvctrl, dd->ipath_rcvctrl); /* * gracefully stop all sends allowing any in progress to trickle out * first. */ ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl, 0ULL); /* flush it */ val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch); /* * enough for anything that's going to trickle out to have actually * done so. */ udelay(5); /* * abort any armed or launched PIO buffers that didn't go. (self * clearing). Will cause any packet currently being transmitted to * go out with an EBP, and may also cause a short packet error on * the receiver. */ ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl, INFINIPATH_S_ABORT); ipath_set_ib_lstate(dd, INFINIPATH_IBCC_LINKINITCMD_DISABLE << INFINIPATH_IBCC_LINKINITCMD_SHIFT); /* * we are shutting down, so tell the layered driver. We don't do * this on just a link state change, much like ethernet, a cable * unplug, etc. doesn't change driver state */ ipath_layer_intr(dd, IPATH_LAYER_INT_IF_DOWN); /* disable IBC */ dd->ipath_control &= ~INFINIPATH_C_LINKENABLE; ipath_write_kreg(dd, dd->ipath_kregs->kr_control, dd->ipath_control); /* * clear SerdesEnable and turn the leds off; do this here because * we are unloading, so don't count on interrupts to move along * Turn the LEDs off explictly for the same reason. */ dd->ipath_f_quiet_serdes(dd); dd->ipath_f_setextled(dd, 0, 0); if (dd->ipath_stats_timer_active) { del_timer_sync(&dd->ipath_stats_timer); dd->ipath_stats_timer_active = 0; } /* * clear all interrupts and errors, so that the next time the driver * is loaded or device is enabled, we know that whatever is set * happened while we were unloaded */ ipath_write_kreg(dd, dd->ipath_kregs->kr_hwerrclear, ~0ULL & ~INFINIPATH_HWE_MEMBISTFAILED); ipath_write_kreg(dd, dd->ipath_kregs->kr_errorclear, -1LL); ipath_write_kreg(dd, dd->ipath_kregs->kr_intclear, -1LL); } /** * ipath_free_pddata - free a port's allocated data * @dd: the infinipath device * @port: the port * @freehdrq: free the port data structure if true * * when closing, free up any allocated data for a port, if the * reference count goes to zero * Note: this also optionally frees the portdata itself! * Any changes here have to be matched up with the reinit case * of ipath_init_chip(), which calls this routine on reinit after reset. */ void ipath_free_pddata(struct ipath_devdata *dd, u32 port, int freehdrq) { struct ipath_portdata *pd = dd->ipath_pd[port]; if (!pd) return; if (freehdrq) /* * only clear and free portdata if we are going to also * release the hdrq, otherwise we leak the hdrq on each * open/close cycle */ dd->ipath_pd[port] = NULL; if (freehdrq && pd->port_rcvhdrq) { ipath_cdbg(VERBOSE, "free closed port %d rcvhdrq @ %p " "(size=%lu)\n", pd->port_port, pd->port_rcvhdrq, (unsigned long) pd->port_rcvhdrq_size); dma_free_coherent(&dd->pcidev->dev, pd->port_rcvhdrq_size, pd->port_rcvhdrq, pd->port_rcvhdrq_phys); pd->port_rcvhdrq = NULL; } if (port && pd->port_rcvegrbuf) { /* always free this */ if (pd->port_rcvegrbuf) { unsigned e; for (e = 0; e < pd->port_rcvegrbuf_chunks; e++) { void *base = pd->port_rcvegrbuf[e]; size_t size = pd->port_rcvegrbuf_size; ipath_cdbg(VERBOSE, "egrbuf free(%p, %lu), " "chunk %u/%u\n", base, (unsigned long) size, e, pd->port_rcvegrbuf_chunks); dma_free_coherent( &dd->pcidev->dev, size, base, pd->port_rcvegrbuf_phys[e]); } vfree(pd->port_rcvegrbuf); pd->port_rcvegrbuf = NULL; vfree(pd->port_rcvegrbuf_phys); pd->port_rcvegrbuf_phys = NULL; } pd->port_rcvegrbuf_chunks = 0; } else if (port == 0 && dd->ipath_port0_skbs) { unsigned e; struct sk_buff **skbs = dd->ipath_port0_skbs; dd->ipath_port0_skbs = NULL; ipath_cdbg(VERBOSE, "free closed port %d ipath_port0_skbs " "@ %p\n", pd->port_port, skbs); for (e = 0; e < dd->ipath_rcvegrcnt; e++) if (skbs[e]) dev_kfree_skb(skbs[e]); vfree(skbs); } if (freehdrq) { kfree(pd->port_tid_pg_list); kfree(pd); } } static int __init infinipath_init(void) { int ret; ipath_dbg(KERN_INFO DRIVER_LOAD_MSG "%s", ipath_core_version); /* * These must be called before the driver is registered with * the PCI subsystem. */ idr_init(&unit_table); if (!idr_pre_get(&unit_table, GFP_KERNEL)) { ret = -ENOMEM; goto bail; } ret = pci_register_driver(&ipath_driver); if (ret < 0) { printk(KERN_ERR IPATH_DRV_NAME ": Unable to register driver: error %d\n", -ret); goto bail_unit; } ret = ipath_driver_create_group(&ipath_driver.driver); if (ret < 0) { printk(KERN_ERR IPATH_DRV_NAME ": Unable to create driver " "sysfs entries: error %d\n", -ret); goto bail_pci; } ret = ipath_init_ipathfs(); if (ret < 0) { printk(KERN_ERR IPATH_DRV_NAME ": Unable to create " "ipathfs: error %d\n", -ret); goto bail_group; } goto bail; bail_group: ipath_driver_remove_group(&ipath_driver.driver); bail_pci: pci_unregister_driver(&ipath_driver); bail_unit: idr_destroy(&unit_table); bail: return ret; } static void cleanup_device(struct ipath_devdata *dd) { int port; ipath_shutdown_device(dd); if (*dd->ipath_statusp & IPATH_STATUS_CHIP_PRESENT) { /* can't do anything more with chip; needs re-init */ *dd->ipath_statusp &= ~IPATH_STATUS_CHIP_PRESENT; if (dd->ipath_kregbase) { /* * if we haven't already cleaned up before these are * to ensure any register reads/writes "fail" until * re-init */ dd->ipath_kregbase = NULL; dd->ipath_kregvirt = NULL; dd->ipath_uregbase = 0; dd->ipath_sregbase = 0; dd->ipath_cregbase = 0; dd->ipath_kregsize = 0; } ipath_disable_wc(dd); } if (dd->ipath_pioavailregs_dma) { dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE, (void *) dd->ipath_pioavailregs_dma, dd->ipath_pioavailregs_phys); dd->ipath_pioavailregs_dma = NULL; } if (dd->ipath_pageshadow) { struct page **tmpp = dd->ipath_pageshadow; int i, cnt = 0; ipath_cdbg(VERBOSE, "Unlocking any expTID pages still " "locked\n"); for (port = 0; port < dd->ipath_cfgports; port++) { int port_tidbase = port * dd->ipath_rcvtidcnt; int maxtid = port_tidbase + dd->ipath_rcvtidcnt; for (i = port_tidbase; i < maxtid; i++) { if (!tmpp[i]) continue; ipath_release_user_pages(&tmpp[i], 1); tmpp[i] = NULL; cnt++; } } if (cnt) { ipath_stats.sps_pageunlocks += cnt; ipath_cdbg(VERBOSE, "There were still %u expTID " "entries locked\n", cnt); } if (ipath_stats.sps_pagelocks || ipath_stats.sps_pageunlocks) ipath_cdbg(VERBOSE, "%llu pages locked, %llu " "unlocked via ipath_m{un}lock\n", (unsigned long long) ipath_stats.sps_pagelocks, (unsigned long long) ipath_stats.sps_pageunlocks); ipath_cdbg(VERBOSE, "Free shadow page tid array at %p\n", dd->ipath_pageshadow); vfree(dd->ipath_pageshadow); dd->ipath_pageshadow = NULL; } /* * free any resources still in use (usually just kernel ports) * at unload */ for (port = 0; port < dd->ipath_cfgports; port++) ipath_free_pddata(dd, port, 1); kfree(dd->ipath_pd); /* * debuggability, in case some cleanup path tries to use it * after this */ dd->ipath_pd = NULL; } static void __exit infinipath_cleanup(void) { struct ipath_devdata *dd, *tmp; unsigned long flags; ipath_exit_ipathfs(); ipath_driver_remove_group(&ipath_driver.driver); spin_lock_irqsave(&ipath_devs_lock, flags); /* * turn off rcv, send, and interrupts for all ports, all drivers * should also hard reset the chip here? * free up port 0 (kernel) rcvhdr, egr bufs, and eventually tid bufs * for all versions of the driver, if they were allocated */ list_for_each_entry_safe(dd, tmp, &ipath_dev_list, ipath_list) { spin_unlock_irqrestore(&ipath_devs_lock, flags); if (dd->ipath_kregbase) cleanup_device(dd); if (dd->pcidev) { if (dd->pcidev->irq) { ipath_cdbg(VERBOSE, "unit %u free_irq of irq %x\n", dd->ipath_unit, dd->pcidev->irq); free_irq(dd->pcidev->irq, dd); } else ipath_dbg("irq is 0, not doing free_irq " "for unit %u\n", dd->ipath_unit); /* * we check for NULL here, because it's outside * the kregbase check, and we need to call it * after the free_irq. Thus it's possible that * the function pointers were never initialized. */ if (dd->ipath_f_cleanup) /* clean up chip-specific stuff */ dd->ipath_f_cleanup(dd); dd->pcidev = NULL; } spin_lock_irqsave(&ipath_devs_lock, flags); } spin_unlock_irqrestore(&ipath_devs_lock, flags); ipath_cdbg(VERBOSE, "Unregistering pci driver\n"); pci_unregister_driver(&ipath_driver); idr_destroy(&unit_table); } /** * ipath_reset_device - reset the chip if possible * @unit: the device to reset * * Whether or not reset is successful, we attempt to re-initialize the chip * (that is, much like a driver unload/reload). We clear the INITTED flag * so that the various entry points will fail until we reinitialize. For * now, we only allow this if no user ports are open that use chip resources */ int ipath_reset_device(int unit) { int ret, i; struct ipath_devdata *dd = ipath_lookup(unit); if (!dd) { ret = -ENODEV; goto bail; } dev_info(&dd->pcidev->dev, "Reset on unit %u requested\n", unit); if (!dd->ipath_kregbase || !(dd->ipath_flags & IPATH_PRESENT)) { dev_info(&dd->pcidev->dev, "Invalid unit number %u or " "not initialized or not present\n", unit); ret = -ENXIO; goto bail; } if (dd->ipath_pd) for (i = 1; i < dd->ipath_cfgports; i++) { if (dd->ipath_pd[i] && dd->ipath_pd[i]->port_cnt) { ipath_dbg("unit %u port %d is in use " "(PID %u cmd %s), can't reset\n", unit, i, dd->ipath_pd[i]->port_pid, dd->ipath_pd[i]->port_comm); ret = -EBUSY; goto bail; } } dd->ipath_flags &= ~IPATH_INITTED; ret = dd->ipath_f_reset(dd); if (ret != 1) ipath_dbg("reset was not successful\n"); ipath_dbg("Trying to reinitialize unit %u after reset attempt\n", unit); ret = ipath_init_chip(dd, 1); if (ret) ipath_dev_err(dd, "Reinitialize unit %u after " "reset failed with %d\n", unit, ret); else dev_info(&dd->pcidev->dev, "Reinitialized unit %u after " "resetting\n", unit); bail: return ret; } module_init(infinipath_init); module_exit(infinipath_cleanup);