/* * skystar2.c - driver for the Technisat SkyStar2 PCI DVB card * based on the FlexCopII by B2C2,Inc. * * Copyright (C) 2003 Vadim Catana, skystar@moldova.cc * * FIX: DISEQC Tone Burst in flexcop_diseqc_ioctl() * FIX: FULL soft DiSEqC for skystar2 (FlexCopII rev 130) VP310 equipped * Vincenzo Di Massa, hawk.it at tiscalinet.it * * Converted to Linux coding style * Misc reorganization, polishing, restyling * Roberto Ragusa, r.ragusa at libero.it * * Added hardware filtering support, * Niklas Peinecke, peinecke at gdv.uni-hannover.de * * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public License * as published by the Free Software Foundation; either version 2.1 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include #include #include #include #include #include "dvb_i2c.h" #include "dvb_frontend.h" #include #include #include "dvb_demux.h" #include "dmxdev.h" #include "dvb_filter.h" #include "dvbdev.h" #include "demux.h" #include "dvb_net.h" #include "dvb_functions.h" static int debug = 0; #define dprintk(x...) do { if (debug>=1) printk(x); } while (0) #define ddprintk(x...) do { if (debug>=2) printk(x); } while (0) static int enable_hw_filters = 2; #define SIZE_OF_BUF_DMA1 0x3ac00 #define SIZE_OF_BUF_DMA2 0x758 #define MAX_N_HW_FILTERS (6+32) #define N_PID_SLOTS 256 struct dmaq { u32 bus_addr; u32 head; u32 tail; u32 buffer_size; u8 *buffer; }; struct adapter { struct pci_dev *pdev; u8 card_revision; u32 b2c2_revision; u32 pid_filter_max; u32 mac_filter_max; u32 irq; unsigned long io_mem; unsigned long io_port; u8 mac_addr[8]; u32 dw_sram_type; struct dvb_adapter *dvb_adapter; struct dvb_demux demux; struct dmxdev dmxdev; struct dmx_frontend hw_frontend; struct dmx_frontend mem_frontend; struct dvb_i2c_bus *i2c_bus; struct dvb_net dvbnet; struct semaphore i2c_sem; struct dmaq dmaq1; struct dmaq dmaq2; u32 dma_ctrl; u32 dma_status; int capturing; spinlock_t lock; int useable_hw_filters; u16 hw_pids[MAX_N_HW_FILTERS]; u16 pid_list[N_PID_SLOTS]; int pid_rc[N_PID_SLOTS]; // ref counters for the pids int pid_count; int whole_bandwidth_count; u32 mac_filter; }; #define write_reg_dw(adapter,reg,value) writel(value, adapter->io_mem + reg) #define read_reg_dw(adapter,reg) readl(adapter->io_mem + reg) static void write_reg_bitfield(struct adapter *adapter, u32 reg, u32 zeromask, u32 orvalue) { u32 tmp; tmp = read_reg_dw(adapter, reg); tmp = (tmp & ~zeromask) | orvalue; write_reg_dw(adapter, reg, tmp); } /* i2c functions */ static int i2c_main_write_for_flex2(struct adapter *adapter, u32 command, u8 *buf, int retries) { int i; u32 value; write_reg_dw(adapter, 0x100, 0); write_reg_dw(adapter, 0x100, command); for (i = 0; i < retries; i++) { value = read_reg_dw(adapter, 0x100); if ((value & 0x40000000) == 0) { if ((value & 0x81000000) == 0x80000000) { if (buf != 0) *buf = (value >> 0x10) & 0xff; return 1; } } else { write_reg_dw(adapter, 0x100, 0); write_reg_dw(adapter, 0x100, command); } } return 0; } /* device = 0x10000000 for tuner, 0x20000000 for eeprom */ static void i2c_main_setup(u32 device, u32 chip_addr, u8 op, u8 addr, u32 value, u32 len, u32 *command) { *command = device | ((len - 1) << 26) | (value << 16) | (addr << 8) | chip_addr; if (op != 0) *command = *command | 0x03000000; else *command = *command | 0x01000000; } static int flex_i2c_read4(struct adapter *adapter, u32 device, u32 chip_addr, u16 addr, u8 *buf, u8 len) { u32 command; u32 value; int result, i; i2c_main_setup(device, chip_addr, 1, addr, 0, len, &command); result = i2c_main_write_for_flex2(adapter, command, buf, 100000); if ((result & 0xff) != 0) { if (len > 1) { value = read_reg_dw(adapter, 0x104); for (i = 1; i < len; i++) { buf[i] = value & 0xff; value = value >> 8; } } } return result; } static int flex_i2c_write4(struct adapter *adapter, u32 device, u32 chip_addr, u32 addr, u8 *buf, u8 len) { u32 command; u32 value; int i; if (len > 1) { value = 0; for (i = len; i > 1; i--) { value = value << 8; value = value | buf[i - 1]; } write_reg_dw(adapter, 0x104, value); } i2c_main_setup(device, chip_addr, 0, addr, buf[0], len, &command); return i2c_main_write_for_flex2(adapter, command, NULL, 100000); } static void fixchipaddr(u32 device, u32 bus, u32 addr, u32 *ret) { if (device == 0x20000000) *ret = bus | ((addr >> 8) & 3); *ret = bus; } static u32 flex_i2c_read(struct adapter *adapter, u32 device, u32 bus, u32 addr, u8 *buf, u32 len) { u32 chipaddr; u32 bytes_to_transfer; u8 *start; ddprintk("%s:\n", __FUNCTION__); start = buf; while (len != 0) { bytes_to_transfer = len; if (bytes_to_transfer > 4) bytes_to_transfer = 4; fixchipaddr(device, bus, addr, &chipaddr); if (flex_i2c_read4(adapter, device, chipaddr, addr, buf, bytes_to_transfer) == 0) return buf - start; buf = buf + bytes_to_transfer; addr = addr + bytes_to_transfer; len = len - bytes_to_transfer; }; return buf - start; } static u32 flex_i2c_write(struct adapter *adapter, u32 device, u32 bus, u32 addr, u8 *buf, u32 len) { u32 chipaddr; u32 bytes_to_transfer; u8 *start; ddprintk("%s:\n", __FUNCTION__); start = buf; while (len != 0) { bytes_to_transfer = len; if (bytes_to_transfer > 4) bytes_to_transfer = 4; fixchipaddr(device, bus, addr, &chipaddr); if (flex_i2c_write4(adapter, device, chipaddr, addr, buf, bytes_to_transfer) == 0) return buf - start; buf = buf + bytes_to_transfer; addr = addr + bytes_to_transfer; len = len - bytes_to_transfer; } return buf - start; } static int master_xfer(struct dvb_i2c_bus *i2c, const struct i2c_msg *msgs, int num) { struct adapter *tmp = i2c->data; int i, ret = 0; if (down_interruptible(&tmp->i2c_sem)) return -ERESTARTSYS; ddprintk("%s: %d messages to transfer\n", __FUNCTION__, num); for (i = 0; i < num; i++) { ddprintk("message %d: flags=0x%x, addr=0x%x, buf=0x%x, len=%d \n", i, msgs[i].flags, msgs[i].addr, msgs[i].buf[0], msgs[i].len); /* allow only the mt312 and stv0299 frontends to access the bus */ if ((msgs[i].addr != 0x0e) && (msgs[i].addr != 0x68) && (msgs[i].addr != 0x61)) { up(&tmp->i2c_sem); return -EREMOTEIO; } } // read command if ((num == 2) && (msgs[0].flags == 0) && (msgs[1].flags == I2C_M_RD) && (msgs[0].buf != NULL) && (msgs[1].buf != NULL)) { ret = flex_i2c_read(tmp, 0x10000000, msgs[0].addr, msgs[0].buf[0], msgs[1].buf, msgs[1].len); up(&tmp->i2c_sem); if (ret != msgs[1].len) { printk("%s: read error !\n", __FUNCTION__); for (i = 0; i < 2; i++) { printk("message %d: flags=0x%x, addr=0x%x, buf=0x%x, len=%d \n", i, msgs[i].flags, msgs[i].addr, msgs[i].buf[0], msgs[i].len); } return -EREMOTEIO; } return num; } // write command for (i = 0; i < num; i++) { if ((msgs[i].flags != 0) || (msgs[i].buf == NULL) || (msgs[i].len < 2)) return -EINVAL; ret = flex_i2c_write(tmp, 0x10000000, msgs[i].addr, msgs[i].buf[0], &msgs[i].buf[1], msgs[i].len - 1); up(&tmp->i2c_sem); if (ret != msgs[0].len - 1) { printk("%s: write error %i !\n", __FUNCTION__, ret); printk("message %d: flags=0x%x, addr=0x%x, buf[0]=0x%x, len=%d \n", i, msgs[i].flags, msgs[i].addr, msgs[i].buf[0], msgs[i].len); return -EREMOTEIO; } return num; } printk("%s: unknown command format !\n", __FUNCTION__); return -EINVAL; } /* SRAM (Skystar2 rev2.3 has one "ISSI IS61LV256" chip on board, but it seems that FlexCopII can work with more than one chip) */ static void sram_set_net_dest(struct adapter *adapter, u8 dest) { u32 tmp; udelay(1000); tmp = (read_reg_dw(adapter, 0x714) & 0xfffffffc) | (dest & 3); udelay(1000); write_reg_dw(adapter, 0x714, tmp); write_reg_dw(adapter, 0x714, tmp); udelay(1000); /* return value is never used? */ /* return tmp; */ } static void sram_set_cai_dest(struct adapter *adapter, u8 dest) { u32 tmp; udelay(1000); tmp = (read_reg_dw(adapter, 0x714) & 0xfffffff3) | ((dest & 3) << 2); udelay(1000); udelay(1000); write_reg_dw(adapter, 0x714, tmp); write_reg_dw(adapter, 0x714, tmp); udelay(1000); /* return value is never used? */ /* return tmp; */ } static void sram_set_cao_dest(struct adapter *adapter, u8 dest) { u32 tmp; udelay(1000); tmp = (read_reg_dw(adapter, 0x714) & 0xffffffcf) | ((dest & 3) << 4); udelay(1000); udelay(1000); write_reg_dw(adapter, 0x714, tmp); write_reg_dw(adapter, 0x714, tmp); udelay(1000); /* return value is never used? */ /* return tmp; */ } static void sram_set_media_dest(struct adapter *adapter, u8 dest) { u32 tmp; udelay(1000); tmp = (read_reg_dw(adapter, 0x714) & 0xffffff3f) | ((dest & 3) << 6); udelay(1000); udelay(1000); write_reg_dw(adapter, 0x714, tmp); write_reg_dw(adapter, 0x714, tmp); udelay(1000); /* return value is never used? */ /* return tmp; */ } /* SRAM memory is accessed through a buffer register in the FlexCop chip (0x700). This register has the following structure: bits 0-14 : address bit 15 : read/write flag bits 16-23 : 8-bit word to write bits 24-27 : = 4 bits 28-29 : memory bank selector bit 31 : busy flag */ static void flex_sram_write(struct adapter *adapter, u32 bank, u32 addr, u8 *buf, u32 len) { int i, retries; u32 command; for (i = 0; i < len; i++) { command = bank | addr | 0x04000000 | (*buf << 0x10); retries = 2; while (((read_reg_dw(adapter, 0x700) & 0x80000000) != 0) && (retries > 0)) { mdelay(1); retries--; }; if (retries == 0) printk("%s: SRAM timeout\n", __FUNCTION__); write_reg_dw(adapter, 0x700, command); buf++; addr++; } } static void flex_sram_read(struct adapter *adapter, u32 bank, u32 addr, u8 *buf, u32 len) { int i, retries; u32 command, value; for (i = 0; i < len; i++) { command = bank | addr | 0x04008000; retries = 10000; while (((read_reg_dw(adapter, 0x700) & 0x80000000) != 0) && (retries > 0)) { mdelay(1); retries--; }; if (retries == 0) printk("%s: SRAM timeout\n", __FUNCTION__); write_reg_dw(adapter, 0x700, command); retries = 10000; while (((read_reg_dw(adapter, 0x700) & 0x80000000) != 0) && (retries > 0)) { mdelay(1); retries--; }; if (retries == 0) printk("%s: SRAM timeout\n", __FUNCTION__); value = read_reg_dw(adapter, 0x700) >> 0x10; *buf = (value & 0xff); addr++; buf++; } } static void sram_write_chunk(struct adapter *adapter, u32 addr, u8 *buf, u16 len) { u32 bank; bank = 0; if (adapter->dw_sram_type == 0x20000) { bank = (addr & 0x18000) << 0x0d; } if (adapter->dw_sram_type == 0x00000) { if ((addr >> 0x0f) == 0) bank = 0x20000000; else bank = 0x10000000; } flex_sram_write(adapter, bank, addr & 0x7fff, buf, len); } static void sram_read_chunk(struct adapter *adapter, u32 addr, u8 *buf, u16 len) { u32 bank; bank = 0; if (adapter->dw_sram_type == 0x20000) { bank = (addr & 0x18000) << 0x0d; } if (adapter->dw_sram_type == 0x00000) { if ((addr >> 0x0f) == 0) bank = 0x20000000; else bank = 0x10000000; } flex_sram_read(adapter, bank, addr & 0x7fff, buf, len); } static void sram_read(struct adapter *adapter, u32 addr, u8 *buf, u32 len) { u32 length; while (len != 0) { length = len; // check if the address range belongs to the same // 32K memory chip. If not, the data is read from // one chip at a time. if ((addr >> 0x0f) != ((addr + len - 1) >> 0x0f)) { length = (((addr >> 0x0f) + 1) << 0x0f) - addr; } sram_read_chunk(adapter, addr, buf, length); addr = addr + length; buf = buf + length; len = len - length; } } static void sram_write(struct adapter *adapter, u32 addr, u8 *buf, u32 len) { u32 length; while (len != 0) { length = len; // check if the address range belongs to the same // 32K memory chip. If not, the data is written to // one chip at a time. if ((addr >> 0x0f) != ((addr + len - 1) >> 0x0f)) { length = (((addr >> 0x0f) + 1) << 0x0f) - addr; } sram_write_chunk(adapter, addr, buf, length); addr = addr + length; buf = buf + length; len = len - length; } } static void sram_set_size(struct adapter *adapter, u32 mask) { write_reg_dw(adapter, 0x71c, (mask | (~0x30000 & read_reg_dw(adapter, 0x71c)))); } static void sram_init(struct adapter *adapter) { u32 tmp; tmp = read_reg_dw(adapter, 0x71c); write_reg_dw(adapter, 0x71c, 1); if (read_reg_dw(adapter, 0x71c) != 0) { write_reg_dw(adapter, 0x71c, tmp); adapter->dw_sram_type = tmp & 0x30000; ddprintk("%s: dw_sram_type = %x\n", __FUNCTION__, adapter->dw_sram_type); } else { adapter->dw_sram_type = 0x10000; ddprintk("%s: dw_sram_type = %x\n", __FUNCTION__, adapter->dw_sram_type); } /* return value is never used? */ /* return adapter->dw_sram_type; */ } static int sram_test_location(struct adapter *adapter, u32 mask, u32 addr) { u8 tmp1, tmp2; dprintk("%s: mask = %x, addr = %x\n", __FUNCTION__, mask, addr); sram_set_size(adapter, mask); sram_init(adapter); tmp2 = 0xa5; tmp1 = 0x4f; sram_write(adapter, addr, &tmp2, 1); sram_write(adapter, addr + 4, &tmp1, 1); tmp2 = 0; mdelay(20); sram_read(adapter, addr, &tmp2, 1); sram_read(adapter, addr, &tmp2, 1); dprintk("%s: wrote 0xa5, read 0x%2x\n", __FUNCTION__, tmp2); if (tmp2 != 0xa5) return 0; tmp2 = 0x5a; tmp1 = 0xf4; sram_write(adapter, addr, &tmp2, 1); sram_write(adapter, addr + 4, &tmp1, 1); tmp2 = 0; mdelay(20); sram_read(adapter, addr, &tmp2, 1); sram_read(adapter, addr, &tmp2, 1); dprintk("%s: wrote 0x5a, read 0x%2x\n", __FUNCTION__, tmp2); if (tmp2 != 0x5a) return 0; return 1; } static u32 sram_length(struct adapter *adapter) { if (adapter->dw_sram_type == 0x10000) return 32768; // 32K if (adapter->dw_sram_type == 0x00000) return 65536; // 64K if (adapter->dw_sram_type == 0x20000) return 131072; // 128K return 32768; // 32K } /* FlexcopII can work with 32K, 64K or 128K of external SRAM memory. - for 128K there are 4x32K chips at bank 0,1,2,3. - for 64K there are 2x32K chips at bank 1,2. - for 32K there is one 32K chip at bank 0. FlexCop works only with one bank at a time. The bank is selected by bits 28-29 of the 0x700 register. bank 0 covers addresses 0x00000-0x07fff bank 1 covers addresses 0x08000-0x0ffff bank 2 covers addresses 0x10000-0x17fff bank 3 covers addresses 0x18000-0x1ffff */ static int sram_detect_for_flex2(struct adapter *adapter) { u32 tmp, tmp2, tmp3; dprintk("%s:\n", __FUNCTION__); tmp = read_reg_dw(adapter, 0x208); write_reg_dw(adapter, 0x208, 0); tmp2 = read_reg_dw(adapter, 0x71c); dprintk("%s: tmp2 = %x\n", __FUNCTION__, tmp2); write_reg_dw(adapter, 0x71c, 1); tmp3 = read_reg_dw(adapter, 0x71c); dprintk("%s: tmp3 = %x\n", __FUNCTION__, tmp3); write_reg_dw(adapter, 0x71c, tmp2); // check for internal SRAM ??? tmp3--; if (tmp3 != 0) { sram_set_size(adapter, 0x10000); sram_init(adapter); write_reg_dw(adapter, 0x208, tmp); dprintk("%s: sram size = 32K\n", __FUNCTION__); return 32; } if (sram_test_location(adapter, 0x20000, 0x18000) != 0) { sram_set_size(adapter, 0x20000); sram_init(adapter); write_reg_dw(adapter, 0x208, tmp); dprintk("%s: sram size = 128K\n", __FUNCTION__); return 128; } if (sram_test_location(adapter, 0x00000, 0x10000) != 0) { sram_set_size(adapter, 0x00000); sram_init(adapter); write_reg_dw(adapter, 0x208, tmp); dprintk("%s: sram size = 64K\n", __FUNCTION__); return 64; } if (sram_test_location(adapter, 0x10000, 0x00000) != 0) { sram_set_size(adapter, 0x10000); sram_init(adapter); write_reg_dw(adapter, 0x208, tmp); dprintk("%s: sram size = 32K\n", __FUNCTION__); return 32; } sram_set_size(adapter, 0x10000); sram_init(adapter); write_reg_dw(adapter, 0x208, tmp); dprintk("%s: SRAM detection failed. Set to 32K \n", __FUNCTION__); return 0; } static void sll_detect_sram_size(struct adapter *adapter) { sram_detect_for_flex2(adapter); } /* EEPROM (Skystar2 has one "24LC08B" chip on board) */ /* static int eeprom_write(struct adapter *adapter, u16 addr, u8 *buf, u16 len) { return flex_i2c_write(adapter, 0x20000000, 0x50, addr, buf, len); } */ static int eeprom_read(struct adapter *adapter, u16 addr, u8 *buf, u16 len) { return flex_i2c_read(adapter, 0x20000000, 0x50, addr, buf, len); } u8 calc_lrc(u8 *buf, int len) { int i; u8 sum; sum = 0; for (i = 0; i < len; i++) sum = sum ^ buf[i]; return sum; } static int eeprom_lrc_read(struct adapter *adapter, u32 addr, u32 len, u8 *buf, int retries) { int i; for (i = 0; i < retries; i++) { if (eeprom_read(adapter, addr, buf, len) == len) { if (calc_lrc(buf, len - 1) == buf[len - 1]) return 1; } } return 0; } /* static int eeprom_lrc_write(struct adapter *adapter, u32 addr, u32 len, u8 *wbuf, u8 *rbuf, int retries) { int i; for (i = 0; i < retries; i++) { if (eeprom_write(adapter, addr, wbuf, len) == len) { if (eeprom_lrc_read(adapter, addr, len, rbuf, retries) == 1) return 1; } } return 0; } */ /* These functions could be used to unlock SkyStar2 cards. */ /* static int eeprom_writeKey(struct adapter *adapter, u8 *key, u32 len) { u8 rbuf[20]; u8 wbuf[20]; if (len != 16) return 0; memcpy(wbuf, key, len); wbuf[16] = 0; wbuf[17] = 0; wbuf[18] = 0; wbuf[19] = calc_lrc(wbuf, 19); return eeprom_lrc_write(adapter, 0x3e4, 20, wbuf, rbuf, 4); } static int eeprom_readKey(struct adapter *adapter, u8 *key, u32 len) { u8 buf[20]; if (len != 16) return 0; if (eeprom_lrc_read(adapter, 0x3e4, 20, buf, 4) == 0) return 0; memcpy(key, buf, len); return 1; } */ static int eeprom_get_mac_addr(struct adapter *adapter, char type, u8 *mac) { u8 tmp[8]; if (eeprom_lrc_read(adapter, 0x3f8, 8, tmp, 4) != 0) { if (type != 0) { mac[0] = tmp[0]; mac[1] = tmp[1]; mac[2] = tmp[2]; mac[3] = 0xfe; mac[4] = 0xff; mac[5] = tmp[3]; mac[6] = tmp[4]; mac[7] = tmp[5]; } else { mac[0] = tmp[0]; mac[1] = tmp[1]; mac[2] = tmp[2]; mac[3] = tmp[3]; mac[4] = tmp[4]; mac[5] = tmp[5]; } return 1; } else { if (type == 0) { memset(mac, 0, 6); } else { memset(mac, 0, 8); } return 0; } } /* static char eeprom_set_mac_addr(struct adapter *adapter, char type, u8 *mac) { u8 tmp[8]; if (type != 0) { tmp[0] = mac[0]; tmp[1] = mac[1]; tmp[2] = mac[2]; tmp[3] = mac[5]; tmp[4] = mac[6]; tmp[5] = mac[7]; } else { tmp[0] = mac[0]; tmp[1] = mac[1]; tmp[2] = mac[2]; tmp[3] = mac[3]; tmp[4] = mac[4]; tmp[5] = mac[5]; } tmp[6] = 0; tmp[7] = calc_lrc(tmp, 7); if (eeprom_write(adapter, 0x3f8, tmp, 8) == 8) return 1; return 0; } */ /* PID filter */ /* every flexcop has 6 "lower" hw PID filters */ /* these are enabled by setting bits 0-5 of 0x208 */ /* for the 32 additional filters we have to select one */ /* of them through 0x310 and modify through 0x314 */ /* op: 0=disable, 1=enable */ static void filter_enable_hw_filter(struct adapter *adapter, int id, u8 op) { dprintk("%s: id=%d op=%d\n", __FUNCTION__, id, op); if (id <= 5) { u32 mask = (0x00000001 << id); write_reg_bitfield(adapter, 0x208, mask, op ? mask : 0); } else { /* select */ write_reg_bitfield(adapter, 0x310, 0x1f, (id - 6) & 0x1f); /* modify */ write_reg_bitfield(adapter, 0x314, 0x00006000, op ? 0x00004000 : 0); } } /* this sets the PID that should pass the specified filter */ static void pid_set_hw_pid(struct adapter *adapter, int id, u16 pid) { dprintk("%s: id=%d pid=%d\n", __FUNCTION__, id, pid); if (id <= 5) { u32 adr = 0x300 + ((id & 6) << 1); int shift = (id & 1) ? 16 : 0; dprintk("%s: id=%d addr=%x %c pid=%d\n", __FUNCTION__, id, adr, (id & 1) ? 'h' : 'l', pid); write_reg_bitfield(adapter, adr, (0x7fff) << shift, (pid & 0x1fff) << shift); } else { /* select */ write_reg_bitfield(adapter, 0x310, 0x1f, (id - 6) & 0x1f); /* modify */ write_reg_bitfield(adapter, 0x314, 0x1fff, pid & 0x1fff); } } /* static void filter_enable_null_filter(struct adapter *adapter, u32 op) { dprintk("%s: op=%x\n", __FUNCTION__, op); write_reg_bitfield(adapter, 0x208, 0x00000040, op?0x00000040:0); } */ static void filter_enable_mask_filter(struct adapter *adapter, u32 op) { dprintk("%s: op=%x\n", __FUNCTION__, op); write_reg_bitfield(adapter, 0x208, 0x00000080, op ? 0x00000080 : 0); } static void ctrl_enable_mac(struct adapter *adapter, u32 op) { write_reg_bitfield(adapter, 0x208, 0x00004000, op ? 0x00004000 : 0); } static int ca_set_mac_dst_addr_filter(struct adapter *adapter, u8 *mac) { u32 tmp1, tmp2; tmp1 = (mac[3] << 0x18) | (mac[2] << 0x10) | (mac[1] << 0x08) | mac[0]; tmp2 = (mac[5] << 0x08) | mac[4]; write_reg_dw(adapter, 0x418, tmp1); write_reg_dw(adapter, 0x41c, tmp2); return 0; } /* static void set_ignore_mac_filter(struct adapter *adapter, u8 op) { if (op != 0) { write_reg_bitfield(adapter, 0x208, 0x00004000, 0); adapter->mac_filter = 1; } else { if (adapter->mac_filter != 0) { adapter->mac_filter = 0; write_reg_bitfield(adapter, 0x208, 0x00004000, 0x00004000); } } } */ /* static void check_null_filter_enable(struct adapter *adapter) { filter_enable_null_filter(adapter, 1); filter_enable_mask_filter(adapter, 1); } */ static void pid_set_group_pid(struct adapter *adapter, u16 pid) { u32 value; dprintk("%s: pid=%x\n", __FUNCTION__, pid); value = (pid & 0x3fff) | (read_reg_dw(adapter, 0x30c) & 0xffff0000); write_reg_dw(adapter, 0x30c, value); } static void pid_set_group_mask(struct adapter *adapter, u16 pid) { u32 value; dprintk("%s: pid=%x\n", __FUNCTION__, pid); value = ((pid & 0x3fff) << 0x10) | (read_reg_dw(adapter, 0x30c) & 0xffff); write_reg_dw(adapter, 0x30c, value); } /* static int pid_get_group_pid(struct adapter *adapter) { return read_reg_dw(adapter, 0x30c) & 0x00001fff; } static int pid_get_group_mask(struct adapter *adapter) { return (read_reg_dw(adapter, 0x30c) >> 0x10)& 0x00001fff; } */ /* static void reset_hardware_pid_filter(struct adapter *adapter) { pid_set_stream1_pid(adapter, 0x1fff); pid_set_stream2_pid(adapter, 0x1fff); filter_enable_stream2_filter(adapter, 0); pid_set_pcr_pid(adapter, 0x1fff); filter_enable_pcr_filter(adapter, 0); pid_set_pmt_pid(adapter, 0x1fff); filter_enable_pmt_filter(adapter, 0); pid_set_ecm_pid(adapter, 0x1fff); filter_enable_ecm_filter(adapter, 0); pid_set_emm_pid(adapter, 0x1fff); filter_enable_emm_filter(adapter, 0); } */ static void init_pids(struct adapter *adapter) { int i; adapter->pid_count = 0; adapter->whole_bandwidth_count = 0; for (i = 0; i < adapter->useable_hw_filters; i++) { dprintk("%s: setting filter %d to 0x1fff\n", __FUNCTION__, i); adapter->hw_pids[i] = 0x1fff; pid_set_hw_pid(adapter, i, 0x1fff); } pid_set_group_pid(adapter, 0); pid_set_group_mask(adapter, 0x1fe0); } static void open_whole_bandwidth(struct adapter *adapter) { dprintk("%s:\n", __FUNCTION__); pid_set_group_pid(adapter, 0); pid_set_group_mask(adapter, 0); /* filter_enable_mask_filter(adapter, 1); */ } static void close_whole_bandwidth(struct adapter *adapter) { dprintk("%s:\n", __FUNCTION__); pid_set_group_pid(adapter, 0); pid_set_group_mask(adapter, 0x1fe0); /* filter_enable_mask_filter(adapter, 1); */ } static void whole_bandwidth_inc(struct adapter *adapter) { if (adapter->whole_bandwidth_count++ == 0) open_whole_bandwidth(adapter); } static void whole_bandwidth_dec(struct adapter *adapter) { if (--adapter->whole_bandwidth_count <= 0) close_whole_bandwidth(adapter); } /* The specified PID has to be let through the hw filters. We try to allocate an hardware filter and open whole bandwidth when allocation is impossible. All pids<=0x1f pass through the group filter. Returns 1 on success, -1 on error */ static int add_hw_pid(struct adapter *adapter, u16 pid) { int i; dprintk("%s: pid=%d\n", __FUNCTION__, pid); if (pid <= 0x1f) return 1; /* we can't use a filter for 0x2000, so no search */ if (pid != 0x2000) { /* find an unused hardware filter */ for (i = 0; i < adapter->useable_hw_filters; i++) { dprintk("%s: pid=%d searching slot=%d\n", __FUNCTION__, pid, i); if (adapter->hw_pids[i] == 0x1fff) { dprintk("%s: pid=%d slot=%d\n", __FUNCTION__, pid, i); adapter->hw_pids[i] = pid; pid_set_hw_pid(adapter, i, pid); filter_enable_hw_filter(adapter, i, 1); return 1; } } } /* if we have not used a filter, this pid depends on whole bandwidth */ dprintk("%s: pid=%d whole_bandwidth\n", __FUNCTION__, pid); whole_bandwidth_inc(adapter); return 1; } /* returns -1 if the pid was not present in the filters */ static int remove_hw_pid(struct adapter *adapter, u16 pid) { int i; dprintk("%s: pid=%d\n", __FUNCTION__, pid); if (pid <= 0x1f) return 1; /* we can't use a filter for 0x2000, so no search */ if (pid != 0x2000) { for (i = 0; i < adapter->useable_hw_filters; i++) { dprintk("%s: pid=%d searching slot=%d\n", __FUNCTION__, pid, i); if (adapter->hw_pids[i] == pid) { // find the pid slot dprintk("%s: pid=%d slot=%d\n", __FUNCTION__, pid, i); adapter->hw_pids[i] = 0x1fff; pid_set_hw_pid(adapter, i, 0x1fff); filter_enable_hw_filter(adapter, i, 0); return 1; } } } /* if we have not used a filter, this pid depended on whole bandwith */ dprintk("%s: pid=%d whole_bandwidth\n", __FUNCTION__, pid); whole_bandwidth_dec(adapter); return 1; } /* Adds a PID to the filters. Adding a pid more than once is possible, we keep reference counts. Whole stream available through pid==0x2000. Returns 1 on success, -1 on error */ static int add_pid(struct adapter *adapter, u16 pid) { int i; dprintk("%s: pid=%d\n", __FUNCTION__, pid); if (pid > 0x1ffe && pid != 0x2000) return -1; // check if the pid is already present for (i = 0; i < adapter->pid_count; i++) if (adapter->pid_list[i] == pid) { adapter->pid_rc[i]++; // increment ref counter return 1; } if (adapter->pid_count == N_PID_SLOTS) return -1; // no more pids can be added adapter->pid_list[adapter->pid_count] = pid; // register pid adapter->pid_rc[adapter->pid_count] = 1; adapter->pid_count++; // hardware setting add_hw_pid(adapter, pid); return 1; } /* Removes a PID from the filters. */ static int remove_pid(struct adapter *adapter, u16 pid) { int i; dprintk("%s: pid=%d\n", __FUNCTION__, pid); if (pid > 0x1ffe && pid != 0x2000) return -1; // check if the pid is present (it must be!) for (i = 0; i < adapter->pid_count; i++) { if (adapter->pid_list[i] == pid) { adapter->pid_rc[i]--; if (adapter->pid_rc[i] <= 0) { // remove from the list adapter->pid_count--; adapter->pid_list[i]=adapter->pid_list[adapter->pid_count]; adapter->pid_rc[i] = adapter->pid_rc[adapter->pid_count]; // hardware setting remove_hw_pid(adapter, pid); } return 1; } } return -1; } /* dma & irq */ static void ctrl_enable_smc(struct adapter *adapter, u32 op) { write_reg_bitfield(adapter, 0x208, 0x00000800, op ? 0x00000800 : 0); } static void dma_enable_disable_irq(struct adapter *adapter, u32 flag1, u32 flag2, u32 flag3) { adapter->dma_ctrl = adapter->dma_ctrl & 0x000f0000; if (flag1 == 0) { if (flag2 == 0) adapter->dma_ctrl = adapter->dma_ctrl & ~0x00010000; else adapter->dma_ctrl = adapter->dma_ctrl | 0x00010000; if (flag3 == 0) adapter->dma_ctrl = adapter->dma_ctrl & ~0x00020000; else adapter->dma_ctrl = adapter->dma_ctrl | 0x00020000; } else { if (flag2 == 0) adapter->dma_ctrl = adapter->dma_ctrl & ~0x00040000; else adapter->dma_ctrl = adapter->dma_ctrl | 0x00040000; if (flag3 == 0) adapter->dma_ctrl = adapter->dma_ctrl & ~0x00080000; else adapter->dma_ctrl = adapter->dma_ctrl | 0x00080000; } } static void irq_dma_enable_disable_irq(struct adapter *adapter, u32 op) { u32 value; value = read_reg_dw(adapter, 0x208) & 0xfff0ffff; if (op != 0) value = value | (adapter->dma_ctrl & 0x000f0000); write_reg_dw(adapter, 0x208, value); } /* FlexCopII has 2 dma channels. DMA1 is used to transfer TS data to system memory. The DMA1 buffer is divided in 2 subbuffers of equal size. FlexCopII will transfer TS data to one subbuffer, signal an interrupt when the subbuffer is full and continue fillig the second subbuffer. For DMA1: subbuffer size in 32-bit words is stored in the first 24 bits of register 0x004. The last 8 bits of register 0x004 contain the number of subbuffers. the first 30 bits of register 0x000 contain the address of the first subbuffer. The last 2 bits contain 0, when dma1 is disabled and 1, when dma1 is enabled. the first 30 bits of register 0x00c contain the address of the second subbuffer. the last 2 bits contain 1. register 0x008 will contain the address of the subbuffer that was filled with TS data, when FlexCopII will generate an interrupt. For DMA2: subbuffer size in 32-bit words is stored in the first 24 bits of register 0x014. The last 8 bits of register 0x014 contain the number of subbuffers. the first 30 bits of register 0x010 contain the address of the first subbuffer. The last 2 bits contain 0, when dma1 is disabled and 1, when dma1 is enabled. the first 30 bits of register 0x01c contain the address of the second subbuffer. the last 2 bits contain 1. register 0x018 contains the address of the subbuffer that was filled with TS data, when FlexCopII generates an interrupt. */ static int dma_init_dma(struct adapter *adapter, u32 dma_channel) { u32 subbuffers, subbufsize, subbuf0, subbuf1; if (dma_channel == 0) { dprintk("%s: Initializing DMA1 channel\n", __FUNCTION__); subbuffers = 2; subbufsize = (((adapter->dmaq1.buffer_size / 2) / 4) << 8) | subbuffers; subbuf0 = adapter->dmaq1.bus_addr & 0xfffffffc; subbuf1 = ((adapter->dmaq1.bus_addr + adapter->dmaq1.buffer_size / 2) & 0xfffffffc) | 1; dprintk("%s: first subbuffer address = 0x%x\n", __FUNCTION__, subbuf0); udelay(1000); write_reg_dw(adapter, 0x000, subbuf0); dprintk("%s: subbuffer size = 0x%x\n", __FUNCTION__, (subbufsize >> 8) * 4); udelay(1000); write_reg_dw(adapter, 0x004, subbufsize); dprintk("%s: second subbuffer address = 0x%x\n", __FUNCTION__, subbuf1); udelay(1000); write_reg_dw(adapter, 0x00c, subbuf1); dprintk("%s: counter = 0x%x\n", __FUNCTION__, adapter->dmaq1.bus_addr & 0xfffffffc); write_reg_dw(adapter, 0x008, adapter->dmaq1.bus_addr & 0xfffffffc); udelay(1000); if (subbuffers == 0) dma_enable_disable_irq(adapter, 0, 1, 0); else dma_enable_disable_irq(adapter, 0, 1, 1); irq_dma_enable_disable_irq(adapter, 1); sram_set_media_dest(adapter, 1); sram_set_net_dest(adapter, 1); sram_set_cai_dest(adapter, 2); sram_set_cao_dest(adapter, 2); } if (dma_channel == 1) { dprintk("%s: Initializing DMA2 channel\n", __FUNCTION__); subbuffers = 2; subbufsize = (((adapter->dmaq2.buffer_size / 2) / 4) << 8) | subbuffers; subbuf0 = adapter->dmaq2.bus_addr & 0xfffffffc; subbuf1 = ((adapter->dmaq2.bus_addr + adapter->dmaq2.buffer_size / 2) & 0xfffffffc) | 1; dprintk("%s: first subbuffer address = 0x%x\n", __FUNCTION__, subbuf0); udelay(1000); write_reg_dw(adapter, 0x010, subbuf0); dprintk("%s: subbuffer size = 0x%x\n", __FUNCTION__, (subbufsize >> 8) * 4); udelay(1000); write_reg_dw(adapter, 0x014, subbufsize); dprintk("%s: second buffer address = 0x%x\n", __FUNCTION__, subbuf1); udelay(1000); write_reg_dw(adapter, 0x01c, subbuf1); sram_set_cai_dest(adapter, 2); } return 0; } static void ctrl_enable_receive_data(struct adapter *adapter, u32 op) { if (op == 0) { write_reg_bitfield(adapter, 0x208, 0x00008000, 0); adapter->dma_status = adapter->dma_status & ~0x00000004; } else { write_reg_bitfield(adapter, 0x208, 0x00008000, 0x00008000); adapter->dma_status = adapter->dma_status | 0x00000004; } } /* bit 0 of dma_mask is set to 1 if dma1 channel has to be enabled/disabled bit 1 of dma_mask is set to 1 if dma2 channel has to be enabled/disabled */ static void dma_start_stop(struct adapter *adapter, u32 dma_mask, int start_stop) { u32 dma_enable, dma1_enable, dma2_enable; dprintk("%s: dma_mask=%x\n", __FUNCTION__, dma_mask); if (start_stop == 1) { dprintk("%s: starting dma\n", __FUNCTION__); dma1_enable = 0; dma2_enable = 0; if (((dma_mask & 1) != 0) && ((adapter->dma_status & 1) == 0) && (adapter->dmaq1.bus_addr != 0)) { adapter->dma_status = adapter->dma_status | 1; dma1_enable = 1; } if (((dma_mask & 2) != 0) && ((adapter->dma_status & 2) == 0) && (adapter->dmaq2.bus_addr != 0)) { adapter->dma_status = adapter->dma_status | 2; dma2_enable = 1; } // enable dma1 and dma2 if ((dma1_enable == 1) && (dma2_enable == 1)) { write_reg_dw(adapter, 0x000, adapter->dmaq1.bus_addr | 1); write_reg_dw(adapter, 0x00c, (adapter->dmaq1.bus_addr + adapter->dmaq1.buffer_size / 2) | 1); write_reg_dw(adapter, 0x010, adapter->dmaq2.bus_addr | 1); ctrl_enable_receive_data(adapter, 1); return; } // enable dma1 if ((dma1_enable == 1) && (dma2_enable == 0)) { write_reg_dw(adapter, 0x000, adapter->dmaq1.bus_addr | 1); write_reg_dw(adapter, 0x00c, (adapter->dmaq1.bus_addr + adapter->dmaq1.buffer_size / 2) | 1); ctrl_enable_receive_data(adapter, 1); return; } // enable dma2 if ((dma1_enable == 0) && (dma2_enable == 1)) { write_reg_dw(adapter, 0x010, adapter->dmaq2.bus_addr | 1); ctrl_enable_receive_data(adapter, 1); return; } // start dma if ((dma1_enable == 0) && (dma2_enable == 0)) { ctrl_enable_receive_data(adapter, 1); return; } } else { dprintk("%s: stopping dma\n", __FUNCTION__); dma_enable = adapter->dma_status & 0x00000003; if (((dma_mask & 1) != 0) && ((adapter->dma_status & 1) != 0)) { dma_enable = dma_enable & 0xfffffffe; } if (((dma_mask & 2) != 0) && ((adapter->dma_status & 2) != 0)) { dma_enable = dma_enable & 0xfffffffd; } //stop dma if ((dma_enable == 0) && ((adapter->dma_status & 4) != 0)) { ctrl_enable_receive_data(adapter, 0); udelay(3000); } //disable dma1 if (((dma_mask & 1) != 0) && ((adapter->dma_status & 1) != 0) && (adapter->dmaq1.bus_addr != 0)) { write_reg_dw(adapter, 0x000, adapter->dmaq1.bus_addr); write_reg_dw(adapter, 0x00c, (adapter->dmaq1.bus_addr + adapter->dmaq1.buffer_size / 2) | 1); adapter->dma_status = adapter->dma_status & ~0x00000001; } //disable dma2 if (((dma_mask & 2) != 0) && ((adapter->dma_status & 2) != 0) && (adapter->dmaq2.bus_addr != 0)) { write_reg_dw(adapter, 0x010, adapter->dmaq2.bus_addr); adapter->dma_status = adapter->dma_status & ~0x00000002; } } } static void open_stream(struct adapter *adapter, u16 pid) { u32 dma_mask; ++adapter->capturing; filter_enable_mask_filter(adapter, 1); add_pid(adapter, pid); dprintk("%s: adapter->dma_status=%x\n", __FUNCTION__, adapter->dma_status); if ((adapter->dma_status & 7) != 7) { dma_mask = 0; if (((adapter->dma_status & 0x10000000) != 0) && ((adapter->dma_status & 1) == 0)) { dma_mask = dma_mask | 1; adapter->dmaq1.head = 0; adapter->dmaq1.tail = 0; memset(adapter->dmaq1.buffer, 0, adapter->dmaq1.buffer_size); } if (((adapter->dma_status & 0x20000000) != 0) && ((adapter->dma_status & 2) == 0)) { dma_mask = dma_mask | 2; adapter->dmaq2.head = 0; adapter->dmaq2.tail = 0; } if (dma_mask != 0) { irq_dma_enable_disable_irq(adapter, 1); dma_start_stop(adapter, dma_mask, 1); } } } static void close_stream(struct adapter *adapter, u16 pid) { if (adapter->capturing > 0) --adapter->capturing; dprintk("%s: dma_status=%x\n", __FUNCTION__, adapter->dma_status); if (adapter->capturing == 0) { u32 dma_mask = 0; if ((adapter->dma_status & 1) != 0) dma_mask = dma_mask | 0x00000001; if ((adapter->dma_status & 2) != 0) dma_mask = dma_mask | 0x00000002; if (dma_mask != 0) { dma_start_stop(adapter, dma_mask, 0); } } remove_pid(adapter, pid); } static void interrupt_service_dma1(struct adapter *adapter) { struct dvb_demux *dvbdmx = &adapter->demux; int n_cur_dma_counter; u32 n_num_bytes_parsed; u32 n_num_new_bytes_transferred; u32 dw_default_packet_size = 188; u8 gb_tmp_buffer[188]; u8 *pb_dma_buf_cur_pos; n_cur_dma_counter = readl(adapter->io_mem + 0x008) - adapter->dmaq1.bus_addr; n_cur_dma_counter = (n_cur_dma_counter / dw_default_packet_size) * dw_default_packet_size; if ((n_cur_dma_counter < 0) || (n_cur_dma_counter > adapter->dmaq1.buffer_size)) { dprintk("%s: dma counter outside dma buffer\n", __FUNCTION__); return; } adapter->dmaq1.head = n_cur_dma_counter; if (adapter->dmaq1.tail <= n_cur_dma_counter) { n_num_new_bytes_transferred = n_cur_dma_counter - adapter->dmaq1.tail; } else { n_num_new_bytes_transferred = (adapter->dmaq1.buffer_size - adapter->dmaq1.tail) + n_cur_dma_counter; } ddprintk("%s: n_cur_dma_counter = %d\n", __FUNCTION__, n_cur_dma_counter); ddprintk("%s: dmaq1.tail = %d\n", __FUNCTION__, adapter->dmaq1.tail); ddprintk("%s: bytes_transferred = %d\n", __FUNCTION__, n_num_new_bytes_transferred); if (n_num_new_bytes_transferred < dw_default_packet_size) return; n_num_bytes_parsed = 0; while (n_num_bytes_parsed < n_num_new_bytes_transferred) { pb_dma_buf_cur_pos = adapter->dmaq1.buffer + adapter->dmaq1.tail; if (adapter->dmaq1.buffer + adapter->dmaq1.buffer_size < adapter->dmaq1.buffer + adapter->dmaq1.tail + 188) { memcpy(gb_tmp_buffer, adapter->dmaq1.buffer + adapter->dmaq1.tail, adapter->dmaq1.buffer_size - adapter->dmaq1.tail); memcpy(gb_tmp_buffer + (adapter->dmaq1.buffer_size - adapter->dmaq1.tail), adapter->dmaq1.buffer, (188 - (adapter->dmaq1.buffer_size - adapter->dmaq1.tail))); pb_dma_buf_cur_pos = gb_tmp_buffer; } if (adapter->capturing != 0) { dvb_dmx_swfilter_packets(dvbdmx, pb_dma_buf_cur_pos, dw_default_packet_size / 188); } n_num_bytes_parsed = n_num_bytes_parsed + dw_default_packet_size; adapter->dmaq1.tail = adapter->dmaq1.tail + dw_default_packet_size; if (adapter->dmaq1.tail >= adapter->dmaq1.buffer_size) adapter->dmaq1.tail = adapter->dmaq1.tail - adapter->dmaq1.buffer_size; }; } static void interrupt_service_dma2(struct adapter *adapter) { printk("%s:\n", __FUNCTION__); } static irqreturn_t isr(int irq, void *dev_id, struct pt_regs *regs) { struct adapter *tmp = dev_id; u32 value; ddprintk("%s:\n", __FUNCTION__); spin_lock_irq(&tmp->lock); if (0 == ((value = read_reg_dw(tmp, 0x20c)) & 0x0f)) { spin_unlock_irq(&tmp->lock); return IRQ_NONE; } while (value != 0) { if ((value & 0x03) != 0) interrupt_service_dma1(tmp); if ((value & 0x0c) != 0) interrupt_service_dma2(tmp); value = read_reg_dw(tmp, 0x20c) & 0x0f; } spin_unlock_irq(&tmp->lock); return IRQ_HANDLED; } static void init_dma_queue(struct adapter *adapter) { dma_addr_t dma_addr; if (adapter->dmaq1.buffer != 0) return; adapter->dmaq1.head = 0; adapter->dmaq1.tail = 0; adapter->dmaq1.buffer = NULL; adapter->dmaq1.buffer = pci_alloc_consistent(adapter->pdev, SIZE_OF_BUF_DMA1 + 0x80, &dma_addr); if (adapter->dmaq1.buffer != 0) { memset(adapter->dmaq1.buffer, 0, SIZE_OF_BUF_DMA1); adapter->dmaq1.bus_addr = dma_addr; adapter->dmaq1.buffer_size = SIZE_OF_BUF_DMA1; dma_init_dma(adapter, 0); adapter->dma_status = adapter->dma_status | 0x10000000; ddprintk("%s: allocated dma buffer at 0x%p, length=%d\n", __FUNCTION__, adapter->dmaq1.buffer, SIZE_OF_BUF_DMA1); } else { adapter->dma_status = adapter->dma_status & ~0x10000000; } if (adapter->dmaq2.buffer != 0) return; adapter->dmaq2.head = 0; adapter->dmaq2.tail = 0; adapter->dmaq2.buffer = NULL; adapter->dmaq2.buffer = pci_alloc_consistent(adapter->pdev, SIZE_OF_BUF_DMA2 + 0x80, &dma_addr); if (adapter->dmaq2.buffer != 0) { memset(adapter->dmaq2.buffer, 0, SIZE_OF_BUF_DMA2); adapter->dmaq2.bus_addr = dma_addr; adapter->dmaq2.buffer_size = SIZE_OF_BUF_DMA2; dma_init_dma(adapter, 1); adapter->dma_status = adapter->dma_status | 0x20000000; ddprintk("%s: allocated dma buffer at 0x%p, length=%d\n", __FUNCTION__, adapter->dmaq2.buffer, (int) SIZE_OF_BUF_DMA2); } else { adapter->dma_status = adapter->dma_status & ~0x20000000; } } static void free_dma_queue(struct adapter *adapter) { if (adapter->dmaq1.buffer != 0) { pci_free_consistent(adapter->pdev, SIZE_OF_BUF_DMA1 + 0x80, adapter->dmaq1.buffer, adapter->dmaq1.bus_addr); adapter->dmaq1.bus_addr = 0; adapter->dmaq1.head = 0; adapter->dmaq1.tail = 0; adapter->dmaq1.buffer_size = 0; adapter->dmaq1.buffer = NULL; } if (adapter->dmaq2.buffer != 0) { pci_free_consistent(adapter->pdev, SIZE_OF_BUF_DMA2 + 0x80, adapter->dmaq2.buffer, adapter->dmaq2.bus_addr); adapter->dmaq2.bus_addr = 0; adapter->dmaq2.head = 0; adapter->dmaq2.tail = 0; adapter->dmaq2.buffer_size = 0; adapter->dmaq2.buffer = NULL; } } static void free_adapter_object(struct adapter *adapter) { dprintk("%s:\n", __FUNCTION__); close_stream(adapter, 0); if (adapter->irq != 0) free_irq(adapter->irq, adapter); free_dma_queue(adapter); if (adapter->io_mem != 0) iounmap((void *) adapter->io_mem); if (adapter != 0) kfree(adapter); } static struct pci_driver skystar2_pci_driver; static int claim_adapter(struct adapter *adapter) { struct pci_dev *pdev = adapter->pdev; u16 var; if (!request_region(pci_resource_start(pdev, 1), pci_resource_len(pdev, 1), skystar2_pci_driver.name)) return -EBUSY; if (!request_mem_region(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0), skystar2_pci_driver.name)) return -EBUSY; pci_read_config_byte(pdev, PCI_CLASS_REVISION, &adapter->card_revision); dprintk("%s: card revision %x \n", __FUNCTION__, adapter->card_revision); if (pci_enable_device(pdev)) return -EIO; pci_read_config_word(pdev, 4, &var); if ((var & 4) == 0) pci_set_master(pdev); adapter->io_port = pdev->resource[1].start; adapter->io_mem = (unsigned long) ioremap(pdev->resource[0].start, 0x800); if (adapter->io_mem == 0) { dprintk("%s: can not map io memory\n", __FUNCTION__); return 2; } dprintk("%s: io memory maped at %lx\n", __FUNCTION__, adapter->io_mem); return 1; } /* static int sll_reset_flexcop(struct adapter *adapter) { write_reg_dw(adapter, 0x208, 0); write_reg_dw(adapter, 0x210, 0xb2ff); return 0; } */ static void decide_how_many_hw_filters(struct adapter *adapter) { int hw_filters; int mod_option_hw_filters; // FlexCop IIb & III have 6+32 hw filters // FlexCop II has 6 hw filters, every other should have at least 6 switch (adapter->b2c2_revision) { case 0x82: /* II */ hw_filters = 6; break; case 0xc3: /* IIB */ hw_filters = 6 + 32; break; case 0xc0: /* III */ hw_filters = 6 + 32; break; default: hw_filters = 6; break; } printk("%s: the chip has %i hardware filters", __FILE__, hw_filters); mod_option_hw_filters = 0; if (enable_hw_filters >= 1) mod_option_hw_filters += 6; if (enable_hw_filters >= 2) mod_option_hw_filters += 32; if (mod_option_hw_filters >= hw_filters) { adapter->useable_hw_filters = hw_filters; } else { adapter->useable_hw_filters = mod_option_hw_filters; printk(", but only %d will be used because of module option", mod_option_hw_filters); } printk("\n"); dprintk("%s: useable_hardware_filters set to %i\n", __FILE__, adapter->useable_hw_filters); } static int driver_initialize(struct pci_dev *pdev) { struct adapter *adapter; u32 tmp; if (!(adapter = kmalloc(sizeof(struct adapter), GFP_KERNEL))) { dprintk("%s: out of memory!\n", __FUNCTION__); return -ENOMEM; } memset(adapter, 0, sizeof(struct adapter)); pci_set_drvdata(pdev,adapter); adapter->pdev = pdev; adapter->irq = pdev->irq; if ((claim_adapter(adapter)) != 1) { free_adapter_object(adapter); return -ENODEV; } irq_dma_enable_disable_irq(adapter, 0); if (request_irq(pdev->irq, isr, 0x4000000, "Skystar2", adapter) != 0) { dprintk("%s: unable to allocate irq=%d !\n", __FUNCTION__, pdev->irq); free_adapter_object(adapter); return -ENODEV; } read_reg_dw(adapter, 0x208); write_reg_dw(adapter, 0x208, 0); write_reg_dw(adapter, 0x210, 0xb2ff); write_reg_dw(adapter, 0x208, 0x40); init_dma_queue(adapter); if ((adapter->dma_status & 0x30000000) == 0) { free_adapter_object(adapter); return -ENODEV; } adapter->b2c2_revision = (read_reg_dw(adapter, 0x204) >> 0x18); switch (adapter->b2c2_revision) { case 0x82: printk("%s: FlexCopII(rev.130) chip found\n", __FILE__); break; case 0xc3: printk("%s: FlexCopIIB(rev.195) chip found\n", __FILE__); break; case 0xc0: printk("%s: FlexCopIII(rev.192) chip found\n", __FILE__); break; default: printk("%s: The revision of the FlexCop chip on your card is %d\n", __FILE__, adapter->b2c2_revision); printk("%s: This driver works only with FlexCopII(rev.130), FlexCopIIB(rev.195) and FlexCopIII(rev.192).\n", __FILE__); free_adapter_object(adapter); pci_set_drvdata(pdev, NULL); release_region(pci_resource_start(pdev, 1), pci_resource_len(pdev, 1)); release_mem_region(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0)); return -ENODEV; } decide_how_many_hw_filters(adapter); init_pids(adapter); tmp = read_reg_dw(adapter, 0x204); write_reg_dw(adapter, 0x204, 0); mdelay(20); write_reg_dw(adapter, 0x204, tmp); mdelay(10); tmp = read_reg_dw(adapter, 0x308); write_reg_dw(adapter, 0x308, 0x4000 | tmp); adapter->dw_sram_type = 0x10000; sll_detect_sram_size(adapter); dprintk("%s sram length = %d, sram type= %x\n", __FUNCTION__, sram_length(adapter), adapter->dw_sram_type); sram_set_media_dest(adapter, 1); sram_set_net_dest(adapter, 1); ctrl_enable_smc(adapter, 0); sram_set_cai_dest(adapter, 2); sram_set_cao_dest(adapter, 2); dma_enable_disable_irq(adapter, 1, 0, 0); if (eeprom_get_mac_addr(adapter, 0, adapter->mac_addr) != 0) { printk("%s MAC address = %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x \n", __FUNCTION__, adapter->mac_addr[0], adapter->mac_addr[1], adapter->mac_addr[2], adapter->mac_addr[3], adapter->mac_addr[4], adapter->mac_addr[5], adapter->mac_addr[6], adapter->mac_addr[7] ); ca_set_mac_dst_addr_filter(adapter, adapter->mac_addr); ctrl_enable_mac(adapter, 1); } adapter->lock = SPIN_LOCK_UNLOCKED; return 0; } static void driver_halt(struct pci_dev *pdev) { struct adapter *adapter; adapter = pci_get_drvdata(pdev); irq_dma_enable_disable_irq(adapter, 0); ctrl_enable_receive_data(adapter, 0); free_adapter_object(adapter); pci_set_drvdata(pdev, NULL); release_region(pci_resource_start(pdev, 1), pci_resource_len(pdev, 1)); release_mem_region(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0)); } static int dvb_start_feed(struct dvb_demux_feed *dvbdmxfeed) { struct dvb_demux *dvbdmx = dvbdmxfeed->demux; struct adapter *adapter = (struct adapter *) dvbdmx->priv; dprintk("%s: PID=%d, type=%d\n", __FUNCTION__, dvbdmxfeed->pid, dvbdmxfeed->type); open_stream(adapter, dvbdmxfeed->pid); return 0; } static int dvb_stop_feed(struct dvb_demux_feed *dvbdmxfeed) { struct dvb_demux *dvbdmx = dvbdmxfeed->demux; struct adapter *adapter = (struct adapter *) dvbdmx->priv; dprintk("%s: PID=%d, type=%d\n", __FUNCTION__, dvbdmxfeed->pid, dvbdmxfeed->type); close_stream(adapter, dvbdmxfeed->pid); return 0; } /* lnb control */ static void set_tuner_tone(struct adapter *adapter, u8 tone) { u16 wz_half_period_for_45_mhz[] = { 0x01ff, 0x0154, 0x00ff, 0x00cc }; u16 ax; dprintk("%s: %u\n", __FUNCTION__, tone); switch (tone) { case 1: ax = wz_half_period_for_45_mhz[0]; break; case 2: ax = wz_half_period_for_45_mhz[1]; break; case 3: ax = wz_half_period_for_45_mhz[2]; break; case 4: ax = wz_half_period_for_45_mhz[3]; break; default: ax = 0; } if (ax != 0) { write_reg_dw(adapter, 0x200, ((ax << 0x0f) + (ax & 0x7fff)) | 0x40000000); } else { write_reg_dw(adapter, 0x200, 0x40ff8000); } } static void set_tuner_polarity(struct adapter *adapter, u8 polarity) { u32 var; dprintk("%s : polarity = %u \n", __FUNCTION__, polarity); var = read_reg_dw(adapter, 0x204); if (polarity == 0) { dprintk("%s: LNB power off\n", __FUNCTION__); var = var | 1; }; if (polarity == 1) { var = var & ~1; var = var & ~4; }; if (polarity == 2) { var = var & ~1; var = var | 4; } write_reg_dw(adapter, 0x204, var); } static void diseqc_send_bit(struct adapter *adapter, int data) { set_tuner_tone(adapter, 1); udelay(data ? 500 : 1000); set_tuner_tone(adapter, 0); udelay(data ? 1000 : 500); } static void diseqc_send_byte(struct adapter *adapter, int data) { int i, par = 1, d; for (i = 7; i >= 0; i--) { d = (data >> i) & 1; par ^= d; diseqc_send_bit(adapter, d); } diseqc_send_bit(adapter, par); } static int send_diseqc_msg(struct adapter *adapter, int len, u8 *msg, unsigned long burst) { int i; set_tuner_tone(adapter, 0); mdelay(16); for (i = 0; i < len; i++) diseqc_send_byte(adapter, msg[i]); mdelay(16); if (burst != -1) { if (burst) diseqc_send_byte(adapter, 0xff); else { set_tuner_tone(adapter, 1); udelay(12500); set_tuner_tone(adapter, 0); } dvb_delay(20); } return 0; } int soft_diseqc(struct adapter *adapter, unsigned int cmd, void *arg) { switch (cmd) { case FE_SET_TONE: switch ((fe_sec_tone_mode_t) arg) { case SEC_TONE_ON: set_tuner_tone(adapter, 1); break; case SEC_TONE_OFF: set_tuner_tone(adapter, 0); break; default: return -EINVAL; }; break; case FE_DISEQC_SEND_MASTER_CMD: { struct dvb_diseqc_master_cmd *cmd = arg; send_diseqc_msg(adapter, cmd->msg_len, cmd->msg, 0); break; } case FE_DISEQC_SEND_BURST: send_diseqc_msg(adapter, 0, NULL, (unsigned long) arg); break; default: return -EOPNOTSUPP; }; return 0; } static int flexcop_diseqc_ioctl(struct dvb_frontend *fe, unsigned int cmd, void *arg) { struct adapter *adapter = fe->before_after_data; struct dvb_frontend_info info; fe->ioctl(fe, FE_GET_INFO, &info); // we must use different DiSEqC hw if (strcmp(info.name, "Zarlink MT312") == 0) { //VP310 using mt312 driver for tuning only: diseqc not wired //use FCII instead if (!soft_diseqc(adapter, cmd, arg)) return 0; } switch (cmd) { case FE_SLEEP: { dprintk("%s: FE_SLEEP\n", __FUNCTION__); set_tuner_polarity(adapter, 0); // return -EOPNOTSUPP, to make DVB core also send "FE_SLEEP" command to frontend. return -EOPNOTSUPP; } case FE_SET_VOLTAGE: { dprintk("%s: FE_SET_VOLTAGE\n", __FUNCTION__); switch ((fe_sec_voltage_t) arg) { case SEC_VOLTAGE_13: dprintk("%s: SEC_VOLTAGE_13, %x\n", __FUNCTION__, SEC_VOLTAGE_13); set_tuner_polarity(adapter, 1); return 0; case SEC_VOLTAGE_18: dprintk("%s: SEC_VOLTAGE_18, %x\n", __FUNCTION__, SEC_VOLTAGE_18); set_tuner_polarity(adapter, 2); return 0; default: return -EINVAL; }; } default: return -EOPNOTSUPP; }; return 0; } static int skystar2_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct adapter *adapter; struct dvb_adapter *dvb_adapter; struct dvb_demux *dvbdemux; int ret; if (pdev == NULL) return -ENODEV; if (driver_initialize(pdev) != 0) return -ENODEV; dvb_register_adapter(&dvb_adapter, skystar2_pci_driver.name, THIS_MODULE); if (dvb_adapter == NULL) { printk("%s: Error registering DVB adapter\n", __FUNCTION__); driver_halt(pdev); return -ENODEV; } adapter = (struct adapter *) pci_get_drvdata(pdev); adapter->dvb_adapter = dvb_adapter; init_MUTEX(&adapter->i2c_sem); adapter->i2c_bus = dvb_register_i2c_bus(master_xfer, adapter, adapter->dvb_adapter, 0); if (!adapter->i2c_bus) return -ENOMEM; dvb_add_frontend_ioctls(adapter->dvb_adapter, flexcop_diseqc_ioctl, NULL, adapter); dvbdemux = &adapter->demux; dvbdemux->priv = (void *) adapter; dvbdemux->filternum = N_PID_SLOTS; dvbdemux->feednum = N_PID_SLOTS; dvbdemux->start_feed = dvb_start_feed; dvbdemux->stop_feed = dvb_stop_feed; dvbdemux->write_to_decoder = NULL; dvbdemux->dmx.capabilities = (DMX_TS_FILTERING | DMX_SECTION_FILTERING | DMX_MEMORY_BASED_FILTERING); dvb_dmx_init(&adapter->demux); adapter->hw_frontend.source = DMX_FRONTEND_0; adapter->dmxdev.filternum = N_PID_SLOTS; adapter->dmxdev.demux = &dvbdemux->dmx; adapter->dmxdev.capabilities = 0; dvb_dmxdev_init(&adapter->dmxdev, adapter->dvb_adapter); ret = dvbdemux->dmx.add_frontend(&dvbdemux->dmx, &adapter->hw_frontend); if (ret < 0) return ret; adapter->mem_frontend.source = DMX_MEMORY_FE; ret = dvbdemux->dmx.add_frontend(&dvbdemux->dmx, &adapter->mem_frontend); if (ret < 0) return ret; ret = dvbdemux->dmx.connect_frontend(&dvbdemux->dmx, &adapter->hw_frontend); if (ret < 0) return ret; dvb_net_init(adapter->dvb_adapter, &adapter->dvbnet, &dvbdemux->dmx); return 0; } static void skystar2_remove(struct pci_dev *pdev) { struct adapter *adapter; struct dvb_demux *dvbdemux; if (pdev == NULL) return; adapter = pci_get_drvdata(pdev); if (adapter != NULL) { dvb_net_release(&adapter->dvbnet); dvbdemux = &adapter->demux; dvbdemux->dmx.close(&dvbdemux->dmx); dvbdemux->dmx.remove_frontend(&dvbdemux->dmx, &adapter->hw_frontend); dvbdemux->dmx.remove_frontend(&dvbdemux->dmx, &adapter->mem_frontend); dvb_dmxdev_release(&adapter->dmxdev); dvb_dmx_release(&adapter->demux); if (adapter->dvb_adapter != NULL) { dvb_remove_frontend_ioctls(adapter->dvb_adapter, flexcop_diseqc_ioctl, NULL); if (adapter->i2c_bus != NULL) dvb_unregister_i2c_bus(master_xfer, adapter->i2c_bus->adapter, adapter->i2c_bus->id); dvb_unregister_adapter(adapter->dvb_adapter); } driver_halt(pdev); } } static struct pci_device_id skystar2_pci_tbl[] = { {0x000013d0, 0x00002103, 0xffffffff, 0xffffffff, 0x00000000, 0x00000000, 0x00000000}, {0x000013d0, 0x00002200, 0xffffffff, 0xffffffff, 0x00000000, 0x00000000, 0x00000000}, //FCIII {0,}, }; MODULE_DEVICE_TABLE(pci, skystar2_pci_tbl); static struct pci_driver skystar2_pci_driver = { .name = "SkyStar2", .id_table = skystar2_pci_tbl, .probe = skystar2_probe, .remove = skystar2_remove, }; static int skystar2_init(void) { return pci_module_init(&skystar2_pci_driver); } static void skystar2_cleanup(void) { pci_unregister_driver(&skystar2_pci_driver); } module_init(skystar2_init); module_exit(skystar2_cleanup); MODULE_PARM(debug, "i"); MODULE_PARM_DESC(debug, "enable verbose debug messages: supported values: 1 and 2"); MODULE_PARM(enable_hw_filters, "i"); MODULE_PARM_DESC(enable_hw_filters, "enable hardware filters: supported values: 0 (none), 1, 2"); MODULE_DESCRIPTION("Technisat SkyStar2 DVB PCI Driver"); MODULE_LICENSE("GPL");