/* Frontend-driver for TwinHan DST Frontend Copyright (C) 2003 Jamie Honan This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include #include #include #include "dvb_frontend.h" #include "dvb_functions.h" #include "dst-bt878.h" unsigned int dst_debug = 0; unsigned int dst_verbose = 0; MODULE_PARM(dst_verbose, "i"); MODULE_PARM_DESC(dst_verbose, "verbose startup messages, default is 1 (yes)"); MODULE_PARM(dst_debug, "i"); MODULE_PARM_DESC(dst_debug, "debug messages, default is 0 (no)"); #define DST_MAX_CARDS 6 unsigned int dst_cur_no = 0; unsigned int dst_type[DST_MAX_CARDS] = { [0 ... (DST_MAX_CARDS-1)] = (-1U)}; unsigned int dst_type_flags[DST_MAX_CARDS] = { [0 ... (DST_MAX_CARDS-1)] = (-1U)}; MODULE_PARM(dst_type, "1-" __stringify(DST_MAX_CARDS) "i"); MODULE_PARM_DESC(dst_type, "Type of DST card, 0 Satellite, 1 terrestial TV, 2 Cable, default driver determined"); MODULE_PARM(dst_type_flags, "1-" __stringify(DST_MAX_CARDS) "i"); MODULE_PARM_DESC(dst_type_flags, "Type flags of DST card, bitfield 1=10 byte tuner, 2=TS is 204, 4=symdiv"); #define dprintk if (dst_debug) printk #define DST_TYPE_IS_SAT 0 #define DST_TYPE_IS_TERR 1 #define DST_TYPE_IS_CABLE 2 #define DST_TYPE_HAS_NEWTUNE 1 #define DST_TYPE_HAS_TS204 2 #define DST_TYPE_HAS_SYMDIV 4 #define HAS_LOCK 1 #define ATTEMPT_TUNE 2 #define HAS_POWER 4 struct dst_data { u8 tx_tuna[10]; u8 rx_tuna[10]; u8 rxbuffer[10]; u8 diseq_flags; u8 dst_type; u32 type_flags; u32 frequency; /* intermediate frequency in kHz for QPSK */ fe_spectral_inversion_t inversion; u32 symbol_rate; /* symbol rate in Symbols per second */ fe_code_rate_t fec; fe_sec_voltage_t voltage; fe_sec_tone_mode_t tone; u32 decode_freq; u8 decode_lock; u16 decode_strength; u16 decode_snr; unsigned long cur_jiff; u8 k22; fe_bandwidth_t bandwidth; struct bt878 *bt; struct dvb_i2c_bus *i2c; } ; static struct dvb_frontend_info dst_info_sat = { .name = "DST SAT", .type = FE_QPSK, .frequency_min = 950000, .frequency_max = 2150000, .frequency_stepsize = 1000, /* kHz for QPSK frontends */ .frequency_tolerance = 29500, .symbol_rate_min = 1000000, .symbol_rate_max = 45000000, /* . symbol_rate_tolerance = ???,*/ .notifier_delay = 50, /* 1/20 s */ .caps = FE_CAN_FEC_AUTO | FE_CAN_QPSK }; static struct dvb_frontend_info dst_info_cable = { .name = "DST CABLE", .type = FE_QAM, .frequency_stepsize = 62500, .frequency_min = 51000000, .frequency_max = 858000000, .symbol_rate_min = 1000000, .symbol_rate_max = 45000000, /* . symbol_rate_tolerance = ???,*/ .notifier_delay = 50, /* 1/20 s */ .caps = FE_CAN_FEC_AUTO | FE_CAN_QAM_AUTO }; static struct dvb_frontend_info dst_info_tv = { .name = "DST TERR", .type = FE_OFDM, .frequency_min = 137000000, .frequency_max = 858000000, .frequency_stepsize = 166667, .caps = FE_CAN_FEC_AUTO | FE_CAN_QAM_AUTO | FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO }; static void dst_packsize(struct dst_data *dst, int psize) { union dst_gpio_packet bits; bits.psize = psize; bt878_device_control(dst->bt, DST_IG_TS, &bits); } static int dst_gpio_outb(struct dst_data *dst, u32 mask, u32 enbb, u32 outhigh) { union dst_gpio_packet enb; union dst_gpio_packet bits; int err; enb.enb.mask = mask; enb.enb.enable = enbb; if ((err = bt878_device_control(dst->bt, DST_IG_ENABLE, &enb)) < 0) { dprintk ("%s: dst_gpio_enb error (err == %i, mask == 0x%02x, enb == 0x%02x)\n", __FUNCTION__, err, mask, enbb); return -EREMOTEIO; } /* because complete disabling means no output, no need to do * output packet */ if (enbb == 0) return 0; bits.outp.mask = enbb; bits.outp.highvals = outhigh; if ((err = bt878_device_control(dst->bt, DST_IG_WRITE, &bits)) < 0) { dprintk ("%s: dst_gpio_outb error (err == %i, enbb == 0x%02x, outhigh == 0x%02x)\n", __FUNCTION__, err, enbb, outhigh); return -EREMOTEIO; } return 0; } static int dst_gpio_inb(struct dst_data *dst, u8 *result) { union dst_gpio_packet rd_packet; int err; *result = 0; if ((err = bt878_device_control(dst->bt, DST_IG_READ, &rd_packet)) < 0) { dprintk ("%s: dst_gpio_inb error (err == %i)\n", __FUNCTION__, err); return -EREMOTEIO; } *result = (u8)rd_packet.rd.value; return 0; } #define DST_I2C_ENABLE 1 #define DST_8820 2 static int dst_reset8820(struct dst_data *dst) { int retval; /* pull 8820 gpio pin low, wait, high, wait, then low */ // dprintk ("%s: reset 8820\n", __FUNCTION__); retval = dst_gpio_outb(dst, DST_8820, DST_8820, 0); if (retval < 0) return retval; dvb_delay(10); retval = dst_gpio_outb(dst, DST_8820, DST_8820, DST_8820); if (retval < 0) return retval; /* wait for more feedback on what works here * dvb_delay(10); retval = dst_gpio_outb(dst, DST_8820, DST_8820, 0); if (retval < 0) return retval; */ return 0; } static int dst_i2c_enable(struct dst_data *dst) { int retval; /* pull I2C enable gpio pin low, wait */ // dprintk ("%s: i2c enable\n", __FUNCTION__); retval = dst_gpio_outb(dst, ~0, DST_I2C_ENABLE, 0); if (retval < 0) return retval; // dprintk ("%s: i2c enable delay\n", __FUNCTION__); dvb_delay(33); return 0; } static int dst_i2c_disable(struct dst_data *dst) { int retval; /* release I2C enable gpio pin, wait */ // dprintk ("%s: i2c disable\n", __FUNCTION__); retval = dst_gpio_outb(dst, ~0, 0, 0); if (retval < 0) return retval; // dprintk ("%s: i2c disable delay\n", __FUNCTION__); dvb_delay(33); return 0; } static int dst_wait_dst_ready(struct dst_data *dst) { u8 reply; int retval; int i; for (i = 0; i < 200; i++) { retval = dst_gpio_inb(dst, &reply); if (retval < 0) return retval; if ((reply & DST_I2C_ENABLE) == 0) { dprintk ("%s: dst wait ready after %d\n", __FUNCTION__, i); return 1; } dvb_delay(5); } dprintk ("%s: dst wait NOT ready after %d\n", __FUNCTION__, i); return 0; } #define DST_I2C_ADDR 0x55 static int write_dst (struct dst_data *dst, u8 *data, u8 len) { struct i2c_msg msg = { .addr = DST_I2C_ADDR, .flags = 0, .buf = data, .len = len }; int err; int cnt; if (dst_debug && dst_verbose) { u8 i; dprintk("%s writing",__FUNCTION__); for (i = 0 ; i < len ; i++) { dprintk(" 0x%02x", data[i]); } dprintk("\n"); } dvb_delay(30); for (cnt = 0; cnt < 4; cnt++) { if ((err = dst->i2c->xfer (dst->i2c, &msg, 1)) < 0) { dprintk ("%s: write_dst error (err == %i, len == 0x%02x, b0 == 0x%02x)\n", __FUNCTION__, err, len, data[0]); dst_i2c_disable(dst); dvb_delay(500); dst_i2c_enable(dst); dvb_delay(500); continue; } else break; } if (cnt >= 4) return -EREMOTEIO; return 0; } static int read_dst (struct dst_data *dst, u8 *ret, u8 len) { struct i2c_msg msg = { .addr = DST_I2C_ADDR, .flags = I2C_M_RD, .buf = ret, .len = len }; int err; int cnt; for (cnt = 0; cnt < 4; cnt++) { if ((err = dst->i2c->xfer (dst->i2c, &msg, 1)) < 0) { dprintk ("%s: read_dst error (err == %i, len == 0x%02x, b0 == 0x%02x)\n", __FUNCTION__, err, len, ret[0]); dst_i2c_disable(dst); dst_i2c_enable(dst); continue; } else break; } if (cnt >= 4) return -EREMOTEIO; dprintk("%s reply is 0x%x\n", __FUNCTION__, ret[0]); if (dst_debug && dst_verbose) { for (err = 1; err < len; err++) dprintk(" 0x%x", ret[err]); if (err > 1) dprintk("\n"); } return 0; } static int dst_set_freq(struct dst_data *dst, u32 freq) { u8 *val; dst->frequency = freq; // dprintk("%s: set frequency %u\n", __FUNCTION__, freq); if (dst->dst_type == DST_TYPE_IS_SAT) { freq = freq / 1000; if (freq < 950 || freq > 2150) return -EINVAL; val = &dst->tx_tuna[0]; val[2] = (freq >> 8) & 0x7f; val[3] = (u8)freq; val[4] = 1; val[8] &= ~4; if (freq < 1531) val[8] |= 4; } else if (dst->dst_type == DST_TYPE_IS_TERR) { freq = freq / 1000; if (freq < 137000 || freq > 858000) return -EINVAL; val = &dst->tx_tuna[0]; val[2] = (freq >> 16) & 0xff; val[3] = (freq >> 8) & 0xff; val[4] = (u8)freq; val[5] = 0; switch (dst->bandwidth) { case BANDWIDTH_6_MHZ: val[6] = 6; break; case BANDWIDTH_7_MHZ: case BANDWIDTH_AUTO: val[6] = 7; break; case BANDWIDTH_8_MHZ: val[6] = 8; break; } val[7] = 0; val[8] = 0; } else if (dst->dst_type == DST_TYPE_IS_CABLE) { /* guess till will get one */ freq = freq / 1000; val = &dst->tx_tuna[0]; val[2] = (freq >> 16) & 0xff; val[3] = (freq >> 8) & 0xff; val[4] = (u8)freq; } else return -EINVAL; return 0; } static int dst_set_bandwidth(struct dst_data *dst, fe_bandwidth_t bandwidth) { u8 *val; dst->bandwidth = bandwidth; if (dst->dst_type != DST_TYPE_IS_TERR) return 0; val = &dst->tx_tuna[0]; switch (bandwidth) { case BANDWIDTH_6_MHZ: val[6] = 6; break; case BANDWIDTH_7_MHZ: val[6] = 7; break; case BANDWIDTH_8_MHZ: val[6] = 8; break; default: return -EINVAL; } return 0; } static int dst_set_inversion (struct dst_data *dst, fe_spectral_inversion_t inversion) { u8 *val; dst->inversion = inversion; val = &dst->tx_tuna[0]; val[8] &= ~0x80; switch (inversion) { case INVERSION_OFF: break; case INVERSION_ON: val[8] |= 0x80; break; default: return -EINVAL; } return 0; } static int dst_set_fec (struct dst_data *dst, fe_code_rate_t fec) { dst->fec = fec; return 0; } static fe_code_rate_t dst_get_fec (struct dst_data *dst) { return dst->fec; } static int dst_set_symbolrate (struct dst_data *dst, u32 srate) { u8 *val; u32 symcalc; u64 sval; dst->symbol_rate = srate; if (dst->dst_type == DST_TYPE_IS_TERR) { return 0; } // dprintk("%s: set srate %u\n", __FUNCTION__, srate); srate /= 1000; val = &dst->tx_tuna[0]; if (dst->type_flags & DST_TYPE_HAS_SYMDIV) { sval = srate; sval <<= 20; do_div(sval, 88000); symcalc = (u32)sval; // dprintk("%s: set symcalc %u\n", __FUNCTION__, symcalc); val[5] = (u8)(symcalc >> 12); val[6] = (u8)(symcalc >> 4); val[7] = (u8)(symcalc << 4); } else { val[5] = (u8)(srate >> 16) & 0x7f; val[6] = (u8)(srate >> 8); val[7] = (u8)srate; } val[8] &= ~0x20; if (srate > 8000) val[8] |= 0x20; return 0; } static u8 dst_check_sum(u8 *buf, u32 len) { u32 i; u8 val = 0; if (!len) return 0; for (i = 0; i < len; i++) { val += buf[i]; } return ((~val) + 1); } typedef struct dst_types { char *mstr; int offs; u8 dst_type; u32 type_flags; } DST_TYPES; struct dst_types dst_tlist[] = { { "DST-020", 0, DST_TYPE_IS_SAT, DST_TYPE_HAS_SYMDIV }, { "DST-030", 0, DST_TYPE_IS_SAT, DST_TYPE_HAS_TS204|DST_TYPE_HAS_NEWTUNE }, { "DST-03T", 0, DST_TYPE_IS_SAT, DST_TYPE_HAS_SYMDIV|DST_TYPE_HAS_TS204}, { "DST-MOT", 0, DST_TYPE_IS_SAT, DST_TYPE_HAS_SYMDIV }, { "DST-CI", 1, DST_TYPE_IS_SAT, DST_TYPE_HAS_TS204|DST_TYPE_HAS_NEWTUNE }, { "DSTMCI", 1, DST_TYPE_IS_SAT, DST_TYPE_HAS_NEWTUNE }, { "DSTFCI", 1, DST_TYPE_IS_SAT, DST_TYPE_HAS_NEWTUNE }, { "DCTNEW", 1, DST_TYPE_IS_CABLE, DST_TYPE_HAS_NEWTUNE }, { "DCT_CI", 1, DST_TYPE_IS_CABLE, DST_TYPE_HAS_NEWTUNE|DST_TYPE_HAS_TS204 }, { "DTTDIG" , 1, DST_TYPE_IS_TERR, 0} }; /* DCTNEW and DCT-CI are guesses */ static void dst_type_flags_print(u32 type_flags) { printk("DST type flags :"); if (type_flags & DST_TYPE_HAS_NEWTUNE) printk(" 0x%x newtuner", DST_TYPE_HAS_NEWTUNE); if (type_flags & DST_TYPE_HAS_TS204) printk(" 0x%x ts204", DST_TYPE_HAS_TS204); if (type_flags & DST_TYPE_HAS_SYMDIV) printk(" 0x%x symdiv", DST_TYPE_HAS_SYMDIV); printk("\n"); } static int dst_type_print(u8 type) { char *otype; switch (type) { case DST_TYPE_IS_SAT: otype = "satellite"; break; case DST_TYPE_IS_TERR: otype = "terrestial TV"; break; case DST_TYPE_IS_CABLE: otype = "terrestial TV"; break; default: printk("%s: invalid dst type %d\n", __FUNCTION__, type); return -EINVAL; } printk("DST type : %s\n", otype); return 0; } static int dst_check_ci (struct dst_data *dst) { u8 txbuf[8]; u8 rxbuf[8]; int retval; int i; struct dst_types *dsp; u8 use_dst_type; u32 use_type_flags; memset(txbuf, 0, sizeof(txbuf)); txbuf[1] = 6; txbuf[7] = dst_check_sum (txbuf, 7); dst_i2c_enable(dst); dst_reset8820(dst); retval = write_dst (dst, txbuf, 8); if (retval < 0) { dst_i2c_disable(dst); dprintk("%s: write not successful, maybe no card?\n", __FUNCTION__); return retval; } dvb_delay(3); retval = read_dst (dst, rxbuf, 1); dst_i2c_disable(dst); if (retval < 0) { dprintk("%s: read not successful, maybe no card?\n", __FUNCTION__); return retval; } if (rxbuf[0] != 0xff) { dprintk("%s: write reply not 0xff, not ci (%02x)\n", __FUNCTION__, rxbuf[0]); return retval; } if (!dst_wait_dst_ready(dst)) return 0; // dst_i2c_enable(i2c); Dimitri retval = read_dst (dst, rxbuf, 8); dst_i2c_disable(dst); if (retval < 0) { dprintk("%s: read not successful\n", __FUNCTION__); return retval; } if (rxbuf[7] != dst_check_sum (rxbuf, 7)) { dprintk("%s: checksum failure\n", __FUNCTION__); return retval; } rxbuf[7] = '\0'; for (i = 0, dsp = &dst_tlist[0]; i < sizeof(dst_tlist) / sizeof(dst_tlist[0]); i++, dsp++) { if (!strncmp(&rxbuf[dsp->offs], dsp->mstr, strlen(dsp->mstr))) { use_type_flags = dsp->type_flags; use_dst_type = dsp->dst_type; printk("%s: recognize %s\n", __FUNCTION__, dsp->mstr); break; } } if (i >= sizeof(dst_tlist) / sizeof(dst_tlist[0])) { printk("%s: unable to recognize %s or %s\n", __FUNCTION__, &rxbuf[0], &rxbuf[1]); printk("%s please email linux-dvb@linuxtv.org with this type in\n", __FUNCTION__); use_dst_type = DST_TYPE_IS_SAT; use_type_flags = DST_TYPE_HAS_SYMDIV; } switch (dst_type[dst_cur_no]) { case (-1U): /* not used */ break; case DST_TYPE_IS_SAT: case DST_TYPE_IS_TERR: case DST_TYPE_IS_CABLE: use_dst_type = (u8)(dst_type[dst_cur_no]); break; default: printk("%s: invalid user override dst type %d, not used\n", __FUNCTION__, dst_type[dst_cur_no]); break; } dst_type_print(use_dst_type); if (dst_type_flags[dst_cur_no] != (-1U)) { printk("%s: user override dst type flags 0x%x\n", __FUNCTION__, dst_type_flags[dst_cur_no]); use_type_flags = dst_type_flags[dst_cur_no]; } dst->type_flags = use_type_flags; dst->dst_type= use_dst_type; dst_type_flags_print(dst->type_flags); if (dst->type_flags & DST_TYPE_HAS_TS204) { dst_packsize(dst, 204); } return 0; } static int dst_command (struct dst_data *dst, u8 *data, u8 len) { int retval; u8 reply; dst_i2c_enable(dst); dst_reset8820(dst); retval = write_dst (dst, data, len); if (retval < 0) { dst_i2c_disable(dst); dprintk("%s: write not successful\n", __FUNCTION__); return retval; } dvb_delay(33); retval = read_dst (dst, &reply, 1); dst_i2c_disable(dst); if (retval < 0) { dprintk("%s: read verify not successful\n", __FUNCTION__); return retval; } if (reply != 0xff) { dprintk("%s: write reply not 0xff 0x%02x \n", __FUNCTION__, reply); return 0; } if (len >= 2 && data[0] == 0 && (data[1] == 1 || data[1] == 3)) return 0; if (!dst_wait_dst_ready(dst)) return 0; // dst_i2c_enable(i2c); Per dimitri retval = read_dst (dst, dst->rxbuffer, 8); dst_i2c_disable(dst); if (retval < 0) { dprintk("%s: read not successful\n", __FUNCTION__); return 0; } if (dst->rxbuffer[7] != dst_check_sum (dst->rxbuffer, 7)) { dprintk("%s: checksum failure\n", __FUNCTION__); return 0; } return 0; } static int dst_get_signal(struct dst_data *dst) { int retval; u8 get_signal[] = {0x00, 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0xfb}; if ((dst->diseq_flags & ATTEMPT_TUNE) == 0) { dst->decode_lock = dst->decode_strength = dst->decode_snr = 0; return 0; } if (0 == (dst->diseq_flags & HAS_LOCK)) { dst->decode_lock = dst->decode_strength = dst->decode_snr = 0; return 0; } if (time_after_eq(jiffies, dst->cur_jiff + (HZ/5))) { retval = dst_command(dst, get_signal, 8); if (retval < 0) return retval; if (dst->dst_type == DST_TYPE_IS_SAT) { dst->decode_lock = ((dst->rxbuffer[6] & 0x10) == 0) ? 1 : 0; dst->decode_strength = dst->rxbuffer[5] << 8; dst->decode_snr = dst->rxbuffer[2] << 8 | dst->rxbuffer[3]; } else if ((dst->dst_type == DST_TYPE_IS_TERR) || (dst->dst_type == DST_TYPE_IS_CABLE)) { dst->decode_lock = (dst->rxbuffer[1]) ? 1 : 0; dst->decode_strength = dst->rxbuffer[4] << 8; dst->decode_snr = dst->rxbuffer[3] << 8; } dst->cur_jiff = jiffies; } return 0; } /* * line22k0 0x00, 0x09, 0x00, 0xff, 0x01, 0x00, 0x00, 0x00 * line22k1 0x00, 0x09, 0x01, 0xff, 0x01, 0x00, 0x00, 0x00 * line22k2 0x00, 0x09, 0x02, 0xff, 0x01, 0x00, 0x00, 0x00 * tone 0x00, 0x09, 0xff, 0x00, 0x01, 0x00, 0x00, 0x00 * data 0x00, 0x09, 0xff, 0x01, 0x01, 0x00, 0x00, 0x00 * power_off 0x00, 0x09, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00 * power_on 0x00, 0x09, 0xff, 0xff, 0x01, 0x00, 0x00, 0x00 * Diseqc 1 0x00, 0x08, 0x04, 0xe0, 0x10, 0x38, 0xf0, 0xec * Diseqc 2 0x00, 0x08, 0x04, 0xe0, 0x10, 0x38, 0xf4, 0xe8 * Diseqc 3 0x00, 0x08, 0x04, 0xe0, 0x10, 0x38, 0xf8, 0xe4 * Diseqc 4 0x00, 0x08, 0x04, 0xe0, 0x10, 0x38, 0xfc, 0xe0 */ static int dst_set_diseqc (struct dst_data *dst, u8 *cmd, u8 len) { u8 paket[8] = {0x00, 0x08, 0x04, 0xe0, 0x10, 0x38, 0xf0, 0xec }; if (dst->dst_type == DST_TYPE_IS_TERR) return 0; if (len == 0 || len > 4) return -EINVAL; memcpy(&paket[3], cmd, len); paket[7] = dst_check_sum (&paket[0], 7); dst_command(dst, paket, 8); return 0; } static int dst_tone_power_cmd (struct dst_data *dst) { u8 paket[8] = {0x00, 0x09, 0xff, 0xff, 0x01, 0x00, 0x00, 0x00}; if (dst->dst_type == DST_TYPE_IS_TERR) return 0; if (dst->voltage == SEC_VOLTAGE_OFF) paket[4] = 0; else paket[4] = 1; if (dst->tone == SEC_TONE_ON) paket[2] = dst->k22; else paket[2] = 0; paket[7] = dst_check_sum (&paket[0], 7); dst_command(dst, paket, 8); return 0; } static int dst_set_voltage (struct dst_data *dst, fe_sec_voltage_t voltage) { u8 *val; int need_cmd; dst->voltage = voltage; if (dst->dst_type == DST_TYPE_IS_TERR) return 0; need_cmd = 0; val = &dst->tx_tuna[0]; val[8] &= ~0x40; switch (voltage) { case SEC_VOLTAGE_13: if ((dst->diseq_flags & HAS_POWER) == 0) need_cmd = 1; dst->diseq_flags |= HAS_POWER; break; case SEC_VOLTAGE_18: if ((dst->diseq_flags & HAS_POWER) == 0) need_cmd = 1; dst->diseq_flags |= HAS_POWER; val[8] |= 0x40; break; case SEC_VOLTAGE_OFF: need_cmd = 1; dst->diseq_flags &= ~(HAS_POWER|HAS_LOCK|ATTEMPT_TUNE); break; default: return -EINVAL; } if (need_cmd) { dst_tone_power_cmd(dst); } return 0; } static int dst_set_tone (struct dst_data *dst, fe_sec_tone_mode_t tone) { u8 *val; dst->tone = tone; if (dst->dst_type == DST_TYPE_IS_TERR) return 0; val = &dst->tx_tuna[0]; val[8] &= ~0x1; switch (tone) { case SEC_TONE_OFF: break; case SEC_TONE_ON: val[8] |= 1; break; default: return -EINVAL; } dst_tone_power_cmd(dst); return 0; } static int dst_get_tuna (struct dst_data *dst) { int retval; if ((dst->diseq_flags & ATTEMPT_TUNE) == 0) return 0; dst->diseq_flags &= ~(HAS_LOCK); if (!dst_wait_dst_ready(dst)) return 0; if (dst->type_flags & DST_TYPE_HAS_NEWTUNE) { /* how to get variable length reply ???? */ retval = read_dst (dst, dst->rx_tuna, 10); } else { retval = read_dst (dst, &dst->rx_tuna[2], 8); } if (retval < 0) { dprintk("%s: read not successful\n", __FUNCTION__); return 0; } if (dst->type_flags & DST_TYPE_HAS_NEWTUNE) { if (dst->rx_tuna[9] != dst_check_sum (&dst->rx_tuna[0], 9)) { dprintk("%s: checksum failure?\n", __FUNCTION__); return 0; } } else { if (dst->rx_tuna[9] != dst_check_sum (&dst->rx_tuna[2], 7)) { dprintk("%s: checksum failure?\n", __FUNCTION__); return 0; } } if (dst->rx_tuna[2] == 0 && dst->rx_tuna[3] == 0) return 0; dst->decode_freq = ((dst->rx_tuna[2] & 0x7f) << 8) + dst->rx_tuna[3]; dst->decode_lock = 1; /* dst->decode_n1 = (dst->rx_tuna[4] << 8) + (dst->rx_tuna[5]); dst->decode_n2 = (dst->rx_tuna[8] << 8) + (dst->rx_tuna[7]); */ dst->diseq_flags |= HAS_LOCK; /* dst->cur_jiff = jiffies; */ return 1; } static int dst_write_tuna (struct dst_data *dst) { int retval; u8 reply; dprintk("%s: type_flags 0x%x \n", __FUNCTION__, dst->type_flags); dst->decode_freq = 0; dst->decode_lock = dst->decode_strength = dst->decode_snr = 0; if (dst->dst_type == DST_TYPE_IS_SAT) { if (!(dst->diseq_flags & HAS_POWER)) dst_set_voltage (dst, SEC_VOLTAGE_13); } dst->diseq_flags &= ~(HAS_LOCK|ATTEMPT_TUNE); dst_i2c_enable(dst); if (dst->type_flags & DST_TYPE_HAS_NEWTUNE) { dst_reset8820(dst); dst->tx_tuna[9] = dst_check_sum (&dst->tx_tuna[0], 9); retval = write_dst (dst, &dst->tx_tuna[0], 10); } else { dst->tx_tuna[9] = dst_check_sum (&dst->tx_tuna[2], 7); retval = write_dst (dst, &dst->tx_tuna[2], 8); } if (retval < 0) { dst_i2c_disable(dst); dprintk("%s: write not successful\n", __FUNCTION__); return retval; } dvb_delay(3); retval = read_dst (dst, &reply, 1); dst_i2c_disable(dst); if (retval < 0) { dprintk("%s: read verify not successful\n", __FUNCTION__); return retval; } if (reply != 0xff) { dprintk("%s: write reply not 0xff 0x%02x \n", __FUNCTION__, reply); return 0; } dst->diseq_flags |= ATTEMPT_TUNE; return dst_get_tuna(dst); } static void dst_init (struct dst_data *dst) { static u8 ini_satci_tuna[] = { 9, 0, 3, 0xb6, 1, 0, 0x73, 0x21, 0, 0 }; static u8 ini_satfta_tuna[] = { 0, 0, 3, 0xb6, 1, 0x55, 0xbd, 0x50, 0, 0 }; static u8 ini_tvfta_tuna[] = { 0, 0, 3, 0xb6, 1, 7, 0x0, 0x0, 0, 0 }; static u8 ini_tvci_tuna[] = { 9, 0, 3, 0xb6, 1, 7, 0x0, 0x0, 0, 0 }; static u8 ini_cabfta_tuna[] = { 0, 0, 3, 0xb6, 1, 7, 0x0, 0x0, 0, 0 }; static u8 ini_cabci_tuna[] = { 9, 0, 3, 0xb6, 1, 7, 0x0, 0x0, 0, 0 }; dst->inversion = INVERSION_ON; dst->voltage = SEC_VOLTAGE_13; dst->tone = SEC_TONE_OFF; dst->symbol_rate = 29473000; dst->fec = FEC_AUTO; dst->diseq_flags = 0; dst->k22 = 0x02; dst->bandwidth = BANDWIDTH_7_MHZ; dst->cur_jiff = jiffies; if (dst->dst_type == DST_TYPE_IS_SAT) { dst->frequency = 950000; memcpy(dst->tx_tuna, ((dst->type_flags & DST_TYPE_HAS_NEWTUNE )? ini_satci_tuna : ini_satfta_tuna), sizeof(ini_satfta_tuna)); } else if (dst->dst_type == DST_TYPE_IS_TERR) { dst->frequency = 137000000; memcpy(dst->tx_tuna, ((dst->type_flags & DST_TYPE_HAS_NEWTUNE )? ini_tvci_tuna : ini_tvfta_tuna), sizeof(ini_tvfta_tuna)); } else if (dst->dst_type == DST_TYPE_IS_CABLE) { dst->frequency = 51000000; memcpy(dst->tx_tuna, ((dst->type_flags & DST_TYPE_HAS_NEWTUNE )? ini_cabci_tuna : ini_cabfta_tuna), sizeof(ini_cabfta_tuna)); } } struct lkup { unsigned int cmd; char *desc; } looker[] = { {FE_GET_INFO, "FE_GET_INFO:"}, {FE_READ_STATUS, "FE_READ_STATUS:" }, {FE_READ_BER, "FE_READ_BER:" }, {FE_READ_SIGNAL_STRENGTH, "FE_READ_SIGNAL_STRENGTH:" }, {FE_READ_SNR, "FE_READ_SNR:" }, {FE_READ_UNCORRECTED_BLOCKS, "FE_READ_UNCORRECTED_BLOCKS:" }, {FE_SET_FRONTEND, "FE_SET_FRONTEND:" }, {FE_GET_FRONTEND, "FE_GET_FRONTEND:" }, {FE_SLEEP, "FE_SLEEP:" }, {FE_INIT, "FE_INIT:" }, {FE_SET_TONE, "FE_SET_TONE:" }, {FE_SET_VOLTAGE, "FE_SET_VOLTAGE:" }, }; static int dst_ioctl (struct dvb_frontend *fe, unsigned int cmd, void *arg) { struct dst_data *dst = fe->data; int retval; /* char *cc; cc = "FE_UNSUPP:"; for(retval = 0; retval < sizeof(looker) / sizeof(looker[0]); retval++) { if (looker[retval].cmd == cmd) { cc = looker[retval].desc; break; } } dprintk("%s cmd %s (0x%x)\n",__FUNCTION__, cc, cmd); */ // printk("%s: dst %8.8x bt %8.8x i2c %8.8x\n", __FUNCTION__, dst, dst->bt, dst->i2c); /* should be set by attach, but just in case */ dst->i2c = fe->i2c; switch (cmd) { case FE_GET_INFO: { struct dvb_frontend_info *info; info = &dst_info_sat; if (dst->dst_type == DST_TYPE_IS_TERR) info = &dst_info_tv; else if (dst->dst_type == DST_TYPE_IS_CABLE) info = &dst_info_cable; memcpy (arg, info, sizeof(struct dvb_frontend_info)); break; } case FE_READ_STATUS: { fe_status_t *status = arg; *status = 0; if (dst->diseq_flags & HAS_LOCK) { dst_get_signal(dst); if (dst->decode_lock) *status |= FE_HAS_LOCK | FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_SYNC | FE_HAS_VITERBI; } break; } case FE_READ_BER: { /* guess */ // *(u32*) arg = dst->decode_n1; *(u32*) arg = 0; return -EOPNOTSUPP; } case FE_READ_SIGNAL_STRENGTH: { dst_get_signal(dst); *((u16*) arg) = dst->decode_strength; break; } case FE_READ_SNR: { dst_get_signal(dst); *((u16*) arg) = dst->decode_snr; break; } case FE_READ_UNCORRECTED_BLOCKS: { *((u32*) arg) = 0; /* the stv0299 can't measure BER and */ return -EOPNOTSUPP; /* errors at the same time.... */ } case FE_SET_FRONTEND: { struct dvb_frontend_parameters *p = arg; dst_set_freq (dst, p->frequency); dst_set_inversion (dst, p->inversion); if (dst->dst_type == DST_TYPE_IS_SAT) { dst_set_fec (dst, p->u.qpsk.fec_inner); dst_set_symbolrate (dst, p->u.qpsk.symbol_rate); } else if (dst->dst_type == DST_TYPE_IS_TERR) { dst_set_bandwidth(dst, p->u.ofdm.bandwidth); } else if (dst->dst_type == DST_TYPE_IS_CABLE) { dst_set_fec (dst, p->u.qam.fec_inner); dst_set_symbolrate (dst, p->u.qam.symbol_rate); } dst_write_tuna (dst); break; } case FE_GET_FRONTEND: { struct dvb_frontend_parameters *p = arg; p->frequency = dst->decode_freq; p->inversion = dst->inversion; if (dst->dst_type == DST_TYPE_IS_SAT) { p->u.qpsk.symbol_rate = dst->symbol_rate; p->u.qpsk.fec_inner = dst_get_fec (dst); } else if (dst->dst_type == DST_TYPE_IS_TERR) { p->u.ofdm.bandwidth = dst->bandwidth; } else if (dst->dst_type == DST_TYPE_IS_CABLE) { p->u.qam.symbol_rate = dst->symbol_rate; p->u.qam.fec_inner = dst_get_fec (dst); p->u.qam.modulation = QAM_AUTO; } break; } case FE_SLEEP: return 0; case FE_INIT: dst_init(dst); break; case FE_DISEQC_SEND_MASTER_CMD: { struct dvb_diseqc_master_cmd *cmd = (struct dvb_diseqc_master_cmd *)arg; retval = dst_set_diseqc (dst, cmd->msg, cmd->msg_len); if (retval < 0) return retval; break; } case FE_SET_TONE: retval = dst_set_tone (dst, (fe_sec_tone_mode_t) arg); if (retval < 0) return retval; break; case FE_SET_VOLTAGE: retval = dst_set_voltage (dst, (fe_sec_voltage_t) arg); if (retval < 0) return retval; break; default: return -EOPNOTSUPP; }; return 0; } static int dst_attach (struct dvb_i2c_bus *i2c, void **data) { struct dst_data *dst; struct bt878 *bt; struct dvb_frontend_info *info; dprintk("%s: check ci\n", __FUNCTION__); if (dst_cur_no >= DST_MAX_CARDS) { dprintk("%s: can't have more than %d cards\n", __FUNCTION__, DST_MAX_CARDS); return -ENODEV; } bt = bt878_find_by_dvb_adap(i2c->adapter); if (!bt) return -ENODEV; dst = kmalloc(sizeof(struct dst_data), GFP_KERNEL); if (dst == NULL) { printk(KERN_INFO "%s: Out of memory.\n", __FUNCTION__); return -ENOMEM; } memset(dst, 0, sizeof(*dst)); *data = dst; dst->bt = bt; dst->i2c = i2c; if (dst_check_ci(dst) < 0) { kfree(dst); return -ENODEV; } dst_init (dst); dprintk("%s: register dst %8.8x bt %8.8x i2c %8.8x\n", __FUNCTION__, (u32)dst, (u32)(dst->bt), (u32)(dst->i2c)); info = &dst_info_sat; if (dst->dst_type == DST_TYPE_IS_TERR) info = &dst_info_tv; else if (dst->dst_type == DST_TYPE_IS_CABLE) info = &dst_info_cable; dvb_register_frontend (dst_ioctl, i2c, dst, info); dst_cur_no++; return 0; } static void dst_detach (struct dvb_i2c_bus *i2c, void *data) { dvb_unregister_frontend (dst_ioctl, i2c); dprintk("%s: unregister dst %8.8x\n", __FUNCTION__, (u32)(data)); if (data) kfree(data); } static int __init init_dst (void) { return dvb_register_i2c_device (THIS_MODULE, dst_attach, dst_detach); } static void __exit exit_dst (void) { dvb_unregister_i2c_device (dst_attach); } module_init(init_dst); module_exit(exit_dst); MODULE_DESCRIPTION("DST DVB-S Frontend"); MODULE_AUTHOR("Jamie Honan"); MODULE_LICENSE("GPL");