/* * PCI handling of I2O controller * * Copyright (C) 1999-2002 Red Hat Software * * Written by Alan Cox, Building Number Three Ltd * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * * A lot of the I2O message side code from this is taken from the Red * Creek RCPCI45 adapter driver by Red Creek Communications * * Fixes/additions: * Philipp Rumpf * Juha Sievänen * Auvo Häkkinen * Deepak Saxena * Boji T Kannanthanam * Alan Cox : * Ported to Linux 2.5. * Markus Lidel : * Minor fixes for 2.6. * Markus Lidel : * Support for sysfs included. */ #include #include #include #ifdef CONFIG_MTRR #include #endif // CONFIG_MTRR /* Module internal functions from other sources */ extern struct i2o_controller *i2o_iop_alloc(void); extern void i2o_iop_free(struct i2o_controller *); extern int i2o_iop_add(struct i2o_controller *); extern void i2o_iop_remove(struct i2o_controller *); extern int i2o_driver_dispatch(struct i2o_controller *, u32, struct i2o_message *); /* PCI device id table for all I2O controllers */ static struct pci_device_id __devinitdata i2o_pci_ids[] = { {PCI_DEVICE_CLASS(PCI_CLASS_INTELLIGENT_I2O << 8, 0xffff00)}, {PCI_DEVICE(PCI_VENDOR_ID_DPT, 0xa511)}, {0} }; /** * i2o_dma_realloc - Realloc DMA memory * @dev: struct device pointer to the PCI device of the I2O controller * @addr: pointer to a i2o_dma struct DMA buffer * @len: new length of memory * @gfp_mask: GFP mask * * If there was something allocated in the addr, free it first. If len > 0 * than try to allocate it and write the addresses back to the addr * structure. If len == 0 set the virtual address to NULL. * * Returns the 0 on success or negative error code on failure. */ int i2o_dma_realloc(struct device *dev, struct i2o_dma *addr, size_t len, unsigned int gfp_mask) { i2o_dma_free(dev, addr); if (len) return i2o_dma_alloc(dev, addr, len, gfp_mask); return 0; }; /** * i2o_pci_free - Frees the DMA memory for the I2O controller * @c: I2O controller to free * * Remove all allocated DMA memory and unmap memory IO regions. If MTRR * is enabled, also remove it again. */ static void i2o_pci_free(struct i2o_controller *c) { struct device *dev; dev = &c->pdev->dev; i2o_dma_free(dev, &c->out_queue); i2o_dma_free(dev, &c->status_block); if (c->lct) kfree(c->lct); i2o_dma_free(dev, &c->dlct); i2o_dma_free(dev, &c->hrt); i2o_dma_free(dev, &c->status); #ifdef CONFIG_MTRR if (c->mtrr_reg0 >= 0) mtrr_del(c->mtrr_reg0, 0, 0); if (c->mtrr_reg1 >= 0) mtrr_del(c->mtrr_reg1, 0, 0); #endif if (c->raptor && c->in_queue.virt) iounmap(c->in_queue.virt); if (c->base.virt) iounmap(c->base.virt); } /** * i2o_pci_alloc - Allocate DMA memory, map IO memory for I2O controller * @c: I2O controller * * Allocate DMA memory for a PCI (or in theory AGP) I2O controller. All * IO mappings are also done here. If MTRR is enabled, also do add memory * regions here. * * Returns 0 on success or negative error code on failure. */ static int __devinit i2o_pci_alloc(struct i2o_controller *c) { struct pci_dev *pdev = c->pdev; struct device *dev = &pdev->dev; int i; for (i = 0; i < 6; i++) { /* Skip I/O spaces */ if (!(pci_resource_flags(pdev, i) & IORESOURCE_IO)) { if (!c->base.phys) { c->base.phys = pci_resource_start(pdev, i); c->base.len = pci_resource_len(pdev, i); /* * If we know what card it is, set the size * correctly. Code is taken from dpt_i2o.c */ if (pdev->device == 0xa501) { if (pdev->subsystem_device >= 0xc032 && pdev->subsystem_device <= 0xc03b) { if (c->base.len > 0x400000) c->base.len = 0x400000; } else { if (c->base.len > 0x100000) c->base.len = 0x100000; } } if (!c->raptor) break; } else { c->in_queue.phys = pci_resource_start(pdev, i); c->in_queue.len = pci_resource_len(pdev, i); break; } } } if (i == 6) { printk(KERN_ERR "%s: I2O controller has no memory regions" " defined.\n", c->name); i2o_pci_free(c); return -EINVAL; } /* Map the I2O controller */ if (c->raptor) { printk(KERN_INFO "%s: PCI I2O controller\n", c->name); printk(KERN_INFO " BAR0 at 0x%08lX size=%ld\n", (unsigned long)c->base.phys, (unsigned long)c->base.len); printk(KERN_INFO " BAR1 at 0x%08lX size=%ld\n", (unsigned long)c->in_queue.phys, (unsigned long)c->in_queue.len); } else printk(KERN_INFO "%s: PCI I2O controller at %08lX size=%ld\n", c->name, (unsigned long)c->base.phys, (unsigned long)c->base.len); c->base.virt = ioremap(c->base.phys, c->base.len); if (!c->base.virt) { printk(KERN_ERR "%s: Unable to map controller.\n", c->name); return -ENOMEM; } if (c->raptor) { c->in_queue.virt = ioremap(c->in_queue.phys, c->in_queue.len); if (!c->in_queue.virt) { printk(KERN_ERR "%s: Unable to map controller.\n", c->name); i2o_pci_free(c); return -ENOMEM; } } else c->in_queue = c->base; c->irq_mask = c->base.virt + 0x34; c->post_port = c->base.virt + 0x40; c->reply_port = c->base.virt + 0x44; #ifdef CONFIG_MTRR /* Enable Write Combining MTRR for IOP's memory region */ c->mtrr_reg0 = mtrr_add(c->in_queue.phys, c->in_queue.len, MTRR_TYPE_WRCOMB, 1); c->mtrr_reg1 = -1; if (c->mtrr_reg0 < 0) printk(KERN_WARNING "%s: could not enable write combining " "MTRR\n", c->name); else printk(KERN_INFO "%s: using write combining MTRR\n", c->name); /* * If it is an INTEL i960 I/O processor then set the first 64K to * Uncacheable since the region contains the messaging unit which * shouldn't be cached. */ if ((pdev->vendor == PCI_VENDOR_ID_INTEL || pdev->vendor == PCI_VENDOR_ID_DPT) && !c->raptor) { printk(KERN_INFO "%s: MTRR workaround for Intel i960 processor" "\n", c->name); c->mtrr_reg1 = mtrr_add(c->base.phys, 0x10000, MTRR_TYPE_UNCACHABLE, 1); if (c->mtrr_reg1 < 0) { printk(KERN_WARNING "%s: Error in setting " "MTRR_TYPE_UNCACHABLE\n", c->name); mtrr_del(c->mtrr_reg0, c->in_queue.phys, c->in_queue.len); c->mtrr_reg0 = -1; } } #endif if (i2o_dma_alloc(dev, &c->status, 8, GFP_KERNEL)) { i2o_pci_free(c); return -ENOMEM; } if (i2o_dma_alloc(dev, &c->hrt, sizeof(i2o_hrt), GFP_KERNEL)) { i2o_pci_free(c); return -ENOMEM; } if (i2o_dma_alloc(dev, &c->dlct, 8192, GFP_KERNEL)) { i2o_pci_free(c); return -ENOMEM; } if (i2o_dma_alloc(dev, &c->status_block, sizeof(i2o_status_block), GFP_KERNEL)) { i2o_pci_free(c); return -ENOMEM; } if (i2o_dma_alloc(dev, &c->out_queue, MSG_POOL_SIZE, GFP_KERNEL)) { i2o_pci_free(c); return -ENOMEM; } pci_set_drvdata(pdev, c); return 0; } /** * i2o_pci_interrupt - Interrupt handler for I2O controller * @irq: interrupt line * @dev_id: pointer to the I2O controller * @r: pointer to registers * * Handle an interrupt from a PCI based I2O controller. This turns out * to be rather simple. We keep the controller pointer in the cookie. */ static irqreturn_t i2o_pci_interrupt(int irq, void *dev_id, struct pt_regs *r) { struct i2o_controller *c = dev_id; struct device *dev = &c->pdev->dev; struct i2o_message *m; u32 mv; /* * Old 960 steppings had a bug in the I2O unit that caused * the queue to appear empty when it wasn't. */ mv = I2O_REPLY_READ32(c); if (mv == I2O_QUEUE_EMPTY) { mv = I2O_REPLY_READ32(c); if (unlikely(mv == I2O_QUEUE_EMPTY)) { return IRQ_NONE; } else pr_debug("%s: 960 bug detected\n", c->name); } while (mv != I2O_QUEUE_EMPTY) { /* * Map the message from the page frame map to kernel virtual. * Because bus_to_virt is deprecated, we have calculate the * location by ourself! */ m = i2o_msg_out_to_virt(c, mv); /* * Ensure this message is seen coherently but cachably by * the processor */ dma_sync_single_for_cpu(dev, mv, MSG_FRAME_SIZE * 4, PCI_DMA_FROMDEVICE); /* dispatch it */ if (i2o_driver_dispatch(c, mv, m)) /* flush it if result != 0 */ i2o_flush_reply(c, mv); /* * That 960 bug again... */ mv = I2O_REPLY_READ32(c); if (mv == I2O_QUEUE_EMPTY) mv = I2O_REPLY_READ32(c); } return IRQ_HANDLED; } /** * i2o_pci_irq_enable - Allocate interrupt for I2O controller * * Allocate an interrupt for the I2O controller, and activate interrupts * on the I2O controller. * * Returns 0 on success or negative error code on failure. */ static int i2o_pci_irq_enable(struct i2o_controller *c) { struct pci_dev *pdev = c->pdev; int rc; I2O_IRQ_WRITE32(c, 0xffffffff); if (pdev->irq) { rc = request_irq(pdev->irq, i2o_pci_interrupt, SA_SHIRQ, c->name, c); if (rc < 0) { printk(KERN_ERR "%s: unable to allocate interrupt %d." "\n", c->name, pdev->irq); return rc; } } I2O_IRQ_WRITE32(c, 0x00000000); printk(KERN_INFO "%s: Installed at IRQ %d\n", c->name, pdev->irq); return 0; } /** * i2o_pci_irq_disable - Free interrupt for I2O controller * @c: I2O controller * * Disable interrupts in I2O controller and then free interrupt. */ static void i2o_pci_irq_disable(struct i2o_controller *c) { I2O_IRQ_WRITE32(c, 0xffffffff); if (c->pdev->irq > 0) free_irq(c->pdev->irq, c); } /** * i2o_pci_probe - Probe the PCI device for an I2O controller * @dev: PCI device to test * @id: id which matched with the PCI device id table * * Probe the PCI device for any device which is a memory of the * Intelligent, I2O class or an Adaptec Zero Channel Controller. We * attempt to set up each such device and register it with the core. * * Returns 0 on success or negative error code on failure. */ static int __devinit i2o_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id) { struct i2o_controller *c; int rc; printk(KERN_INFO "i2o: Checking for PCI I2O controllers...\n"); if ((pdev->class & 0xff) > 1) { printk(KERN_WARNING "i2o: I2O controller found but does not " "support I2O 1.5 (skipping).\n"); return -ENODEV; } if ((rc = pci_enable_device(pdev))) { printk(KERN_WARNING "i2o: I2O controller found but could not be" " enabled.\n"); return rc; } printk(KERN_INFO "i2o: I2O controller found on bus %d at %d.\n", pdev->bus->number, pdev->devfn); if (pci_set_dma_mask(pdev, DMA_32BIT_MASK)) { printk(KERN_WARNING "i2o: I2O controller on bus %d at %d: No " "suitable DMA available!\n", pdev->bus->number, pdev->devfn); rc = -ENODEV; goto disable; } pci_set_master(pdev); c = i2o_iop_alloc(); if (IS_ERR(c)) { printk(KERN_ERR "i2o: memory for I2O controller could not be " "allocated\n"); rc = PTR_ERR(c); goto disable; } c->pdev = pdev; c->device = pdev->dev; /* Cards that fall apart if you hit them with large I/O loads... */ if (pdev->vendor == PCI_VENDOR_ID_NCR && pdev->device == 0x0630) { c->short_req = 1; printk(KERN_INFO "%s: Symbios FC920 workarounds activated.\n", c->name); } if (pdev->subsystem_vendor == PCI_VENDOR_ID_PROMISE) { c->promise = 1; printk(KERN_INFO "%s: Promise workarounds activated.\n", c->name); } /* Cards that go bananas if you quiesce them before you reset them. */ if (pdev->vendor == PCI_VENDOR_ID_DPT) { c->no_quiesce = 1; if (pdev->device == 0xa511) c->raptor = 1; } if ((rc = i2o_pci_alloc(c))) { printk(KERN_ERR "%s: DMA / IO allocation for I2O controller " " failed\n", c->name); goto free_controller; } if (i2o_pci_irq_enable(c)) { printk(KERN_ERR "%s: unable to enable interrupts for I2O " "controller\n", c->name); goto free_pci; } if ((rc = i2o_iop_add(c))) goto uninstall; return 0; uninstall: i2o_pci_irq_disable(c); free_pci: i2o_pci_free(c); free_controller: i2o_iop_free(c); disable: pci_disable_device(pdev); return rc; } /** * i2o_pci_remove - Removes a I2O controller from the system * pdev: I2O controller which should be removed * * Reset the I2O controller, disable interrupts and remove all allocated * resources. */ static void __devexit i2o_pci_remove(struct pci_dev *pdev) { struct i2o_controller *c; c = pci_get_drvdata(pdev); i2o_iop_remove(c); i2o_pci_irq_disable(c); i2o_pci_free(c); printk(KERN_INFO "%s: Controller removed.\n", c->name); i2o_iop_free(c); pci_disable_device(pdev); }; /* PCI driver for I2O controller */ static struct pci_driver i2o_pci_driver = { .name = "I2O controller", .id_table = i2o_pci_ids, .probe = i2o_pci_probe, .remove = __devexit_p(i2o_pci_remove), }; /** * i2o_pci_init - registers I2O PCI driver in PCI subsystem * * Returns > 0 on success or negative error code on failure. */ int __init i2o_pci_init(void) { return pci_register_driver(&i2o_pci_driver); }; /** * i2o_pci_exit - unregisters I2O PCI driver from PCI subsystem */ void __exit i2o_pci_exit(void) { pci_unregister_driver(&i2o_pci_driver); }; EXPORT_SYMBOL(i2o_dma_realloc);