/* * Common Flash Interface support: * AMD & Fujitsu Standard Vendor Command Set (ID 0x0002) * * Copyright (C) 2000 Crossnet Co. * * 2_by_8 routines added by Simon Munton * * This code is GPL * * $Id: cfi_cmdset_0002.c,v 1.74 2003/05/28 12:51:48 dwmw2 Exp $ * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define AMD_BOOTLOC_BUG static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *); static int cfi_amdstd_write(struct mtd_info *, loff_t, size_t, size_t *, const u_char *); static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *); static int cfi_amdstd_erase_onesize(struct mtd_info *, struct erase_info *); static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *); static void cfi_amdstd_sync (struct mtd_info *); static int cfi_amdstd_suspend (struct mtd_info *); static void cfi_amdstd_resume (struct mtd_info *); static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *); static void cfi_amdstd_destroy(struct mtd_info *); struct mtd_info *cfi_cmdset_0002(struct map_info *, int); static struct mtd_info *cfi_amdstd_setup (struct map_info *); static struct mtd_chip_driver cfi_amdstd_chipdrv = { .probe = NULL, /* Not usable directly */ .destroy = cfi_amdstd_destroy, .name = "cfi_cmdset_0002", .module = THIS_MODULE }; struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary) { struct cfi_private *cfi = map->fldrv_priv; unsigned char bootloc; int ofs_factor = cfi->interleave * cfi->device_type; int i; __u8 major, minor; __u32 base = cfi->chips[0].start; if (cfi->cfi_mode==CFI_MODE_CFI){ __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR; cfi_send_gen_cmd(0x98, 0x55, base, map, cfi, cfi->device_type, NULL); major = cfi_read_query(map, base + (adr+3)*ofs_factor); minor = cfi_read_query(map, base + (adr+4)*ofs_factor); printk(KERN_NOTICE " Amd/Fujitsu Extended Query Table v%c.%c at 0x%4.4X\n", major, minor, adr); cfi_send_gen_cmd(0xf0, 0x55, base, map, cfi, cfi->device_type, NULL); cfi_send_gen_cmd(0xaa, 0x555, base, map, cfi, cfi->device_type, NULL); cfi_send_gen_cmd(0x55, 0x2aa, base, map, cfi, cfi->device_type, NULL); cfi_send_gen_cmd(0x90, 0x555, base, map, cfi, cfi->device_type, NULL); /* FIXME - should have a delay before continuing */ cfi->mfr = cfi_read_query(map, base); cfi->id = cfi_read_query(map, base + ofs_factor); /* Wheee. Bring me the head of someone at AMD. */ #ifdef AMD_BOOTLOC_BUG if (((major << 8) | minor) < 0x3131) { /* CFI version 1.0 => don't trust bootloc */ if (cfi->id & 0x80) { printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id); bootloc = 3; /* top boot */ } else { bootloc = 2; /* bottom boot */ } } else #endif { cfi_send_gen_cmd(0x98, 0x55, base, map, cfi, cfi->device_type, NULL); bootloc = cfi_read_query(map, base + (adr+15)*ofs_factor); } if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) { printk(KERN_WARNING "%s: Swapping erase regions for broken CFI table.\n", map->name); for (i=0; icfiq->NumEraseRegions / 2; i++) { int j = (cfi->cfiq->NumEraseRegions-1)-i; __u32 swap; swap = cfi->cfiq->EraseRegionInfo[i]; cfi->cfiq->EraseRegionInfo[i] = cfi->cfiq->EraseRegionInfo[j]; cfi->cfiq->EraseRegionInfo[j] = swap; } } /* * FIXME - These might already be setup (more correctly) * buy jedec_probe.c. */ switch (cfi->device_type) { case CFI_DEVICETYPE_X8: cfi->addr_unlock1 = 0x555; cfi->addr_unlock2 = 0x2aa; break; case CFI_DEVICETYPE_X16: cfi->addr_unlock1 = 0xaaa; if (map->buswidth == cfi->interleave) { /* X16 chip(s) in X8 mode */ cfi->addr_unlock2 = 0x555; } else { cfi->addr_unlock2 = 0x554; } break; case CFI_DEVICETYPE_X32: cfi->addr_unlock1 = 0x1555; cfi->addr_unlock2 = 0xaaa; break; default: printk(KERN_NOTICE "Eep. Unknown cfi_cmdset_0002 device type %d\n", cfi->device_type); return NULL; } } /* CFI mode */ for (i=0; i< cfi->numchips; i++) { cfi->chips[i].word_write_time = 1<cfiq->WordWriteTimeoutTyp; cfi->chips[i].buffer_write_time = 1<cfiq->BufWriteTimeoutTyp; cfi->chips[i].erase_time = 1<cfiq->BlockEraseTimeoutTyp; } map->fldrv = &cfi_amdstd_chipdrv; cfi_send_gen_cmd(0xf0, 0x55, base, map, cfi, cfi->device_type, NULL); return cfi_amdstd_setup(map); } static struct mtd_info *cfi_amdstd_setup(struct map_info *map) { struct cfi_private *cfi = map->fldrv_priv; struct mtd_info *mtd; unsigned long devsize = (1<cfiq->DevSize) * cfi->interleave; mtd = kmalloc(sizeof(*mtd), GFP_KERNEL); printk(KERN_NOTICE "number of %s chips: %d\n", (cfi->cfi_mode == CFI_MODE_CFI)?"CFI":"JEDEC",cfi->numchips); if (!mtd) { printk(KERN_WARNING "Failed to allocate memory for MTD device\n"); goto setup_err; } memset(mtd, 0, sizeof(*mtd)); mtd->priv = map; mtd->type = MTD_NORFLASH; /* Also select the correct geometry setup too */ mtd->size = devsize * cfi->numchips; if (cfi->cfiq->NumEraseRegions == 1) { /* No need to muck about with multiple erase sizes */ mtd->erasesize = ((cfi->cfiq->EraseRegionInfo[0] >> 8) & ~0xff) * cfi->interleave; } else { unsigned long offset = 0; int i,j; mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips; mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info) * mtd->numeraseregions, GFP_KERNEL); if (!mtd->eraseregions) { printk(KERN_WARNING "Failed to allocate memory for MTD erase region info\n"); goto setup_err; } for (i=0; icfiq->NumEraseRegions; i++) { unsigned long ernum, ersize; ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave; ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1; if (mtd->erasesize < ersize) { mtd->erasesize = ersize; } for (j=0; jnumchips; j++) { mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset; mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize; mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum; } offset += (ersize * ernum); } if (offset != devsize) { /* Argh */ printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize); goto setup_err; } #if 0 // debug for (i=0; inumeraseregions;i++){ printk("%d: offset=0x%x,size=0x%x,blocks=%d\n", i,mtd->eraseregions[i].offset, mtd->eraseregions[i].erasesize, mtd->eraseregions[i].numblocks); } #endif } switch (CFIDEV_BUSWIDTH) { case 1: case 2: case 4: #if 1 if (mtd->numeraseregions > 1) mtd->erase = cfi_amdstd_erase_varsize; else #endif if (((cfi->cfiq->EraseRegionInfo[0] & 0xffff) + 1) == 1) mtd->erase = cfi_amdstd_erase_chip; else mtd->erase = cfi_amdstd_erase_onesize; mtd->read = cfi_amdstd_read; mtd->write = cfi_amdstd_write; break; default: printk(KERN_WARNING "Unsupported buswidth\n"); goto setup_err; break; } if (cfi->fast_prog) { /* In cfi_amdstd_write() we frob the protection stuff without paying any attention to the state machine. This upsets in-progress erases. So we turn this flag off for now till the code gets fixed. */ printk(KERN_NOTICE "cfi_cmdset_0002: Disabling fast programming due to code brokenness.\n"); cfi->fast_prog = 0; } /* does this chip have a secsi area? */ if(cfi->mfr==1){ switch(cfi->id){ case 0x50: case 0x53: case 0x55: case 0x56: case 0x5C: case 0x5F: /* Yes */ mtd->read_user_prot_reg = cfi_amdstd_secsi_read; mtd->read_fact_prot_reg = cfi_amdstd_secsi_read; default: ; } } mtd->sync = cfi_amdstd_sync; mtd->suspend = cfi_amdstd_suspend; mtd->resume = cfi_amdstd_resume; mtd->flags = MTD_CAP_NORFLASH; map->fldrv = &cfi_amdstd_chipdrv; mtd->name = map->name; __module_get(THIS_MODULE); return mtd; setup_err: if(mtd) { if(mtd->eraseregions) kfree(mtd->eraseregions); kfree(mtd); } kfree(cfi->cmdset_priv); kfree(cfi->cfiq); return NULL; } static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf) { DECLARE_WAITQUEUE(wait, current); unsigned long timeo = jiffies + HZ; retry: cfi_spin_lock(chip->mutex); if (chip->state != FL_READY){ #if 0 printk(KERN_DEBUG "Waiting for chip to read, status = %d\n", chip->state); #endif set_current_state(TASK_UNINTERRUPTIBLE); add_wait_queue(&chip->wq, &wait); cfi_spin_unlock(chip->mutex); schedule(); remove_wait_queue(&chip->wq, &wait); #if 0 if(signal_pending(current)) return -EINTR; #endif timeo = jiffies + HZ; goto retry; } adr += chip->start; chip->state = FL_READY; map_copy_from(map, buf, adr, len); wake_up(&chip->wq); cfi_spin_unlock(chip->mutex); return 0; } static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) { struct map_info *map = mtd->priv; struct cfi_private *cfi = map->fldrv_priv; unsigned long ofs; int chipnum; int ret = 0; /* ofs: offset within the first chip that the first read should start */ chipnum = (from >> cfi->chipshift); ofs = from - (chipnum << cfi->chipshift); *retlen = 0; while (len) { unsigned long thislen; if (chipnum >= cfi->numchips) break; if ((len + ofs -1) >> cfi->chipshift) thislen = (1<chipshift) - ofs; else thislen = len; ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf); if (ret) break; *retlen += thislen; len -= thislen; buf += thislen; ofs = 0; chipnum++; } return ret; } static inline int do_read_secsi_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf) { DECLARE_WAITQUEUE(wait, current); unsigned long timeo = jiffies + HZ; struct cfi_private *cfi = map->fldrv_priv; retry: cfi_spin_lock(chip->mutex); if (chip->state != FL_READY){ #if 0 printk(KERN_DEBUG "Waiting for chip to read, status = %d\n", chip->state); #endif set_current_state(TASK_UNINTERRUPTIBLE); add_wait_queue(&chip->wq, &wait); cfi_spin_unlock(chip->mutex); schedule(); remove_wait_queue(&chip->wq, &wait); #if 0 if(signal_pending(current)) return -EINTR; #endif timeo = jiffies + HZ; goto retry; } adr += chip->start; chip->state = FL_READY; cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL); cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); map_copy_from(map, buf, adr, len); cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL); cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); wake_up(&chip->wq); cfi_spin_unlock(chip->mutex); return 0; } static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) { struct map_info *map = mtd->priv; struct cfi_private *cfi = map->fldrv_priv; unsigned long ofs; int chipnum; int ret = 0; /* ofs: offset within the first chip that the first read should start */ /* 8 secsi bytes per chip */ chipnum=from>>3; ofs=from & 7; *retlen = 0; while (len) { unsigned long thislen; if (chipnum >= cfi->numchips) break; if ((len + ofs -1) >> 3) thislen = (1<<3) - ofs; else thislen = len; ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf); if (ret) break; *retlen += thislen; len -= thislen; buf += thislen; ofs = 0; chipnum++; } return ret; } static int do_write_oneword(struct map_info *map, struct flchip *chip, unsigned long adr, cfi_word datum, int fast) { unsigned long timeo = jiffies + HZ; unsigned int oldstatus, status, prev_oldstatus, prev_status; unsigned int dq6; struct cfi_private *cfi = map->fldrv_priv; /* We use a 1ms + 1 jiffies generic timeout for writes (most devices have a max write time of a few hundreds usec). However, we should use the maximum timeout value given by the chip at probe time instead. Unfortunately, struct flchip does have a field for maximum timeout, only for typical which can be far too short depending of the conditions. The ' + 1' is to avoid having a timeout of 0 jiffies if HZ is smaller than 1000. Using a static variable allows makes us save the costly divide operation at each word write.*/ static unsigned long uWriteTimeout = ( HZ / 1000 ) + 1; DECLARE_WAITQUEUE(wait, current); int ret = 0; int ta = 0; retry: cfi_spin_lock(chip->mutex); if (chip->state != FL_READY) { #if 0 printk(KERN_DEBUG "Waiting for chip to write, status = %d\n", chip->state); #endif set_current_state(TASK_UNINTERRUPTIBLE); add_wait_queue(&chip->wq, &wait); cfi_spin_unlock(chip->mutex); schedule(); remove_wait_queue(&chip->wq, &wait); #if 0 printk(KERN_DEBUG "Wake up to write:\n"); if(signal_pending(current)) return -EINTR; #endif timeo = jiffies + HZ; goto retry; } chip->state = FL_WRITING; adr += chip->start; DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): WRITE 0x%.8lx(0x%.8x)\n", __func__, adr, datum ); ENABLE_VPP(map); if (fast) { /* Unlock bypass */ cfi_send_gen_cmd(0xA0, 0, chip->start, map, cfi, cfi->device_type, NULL); } else { cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, CFI_DEVICETYPE_X8, NULL); cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, CFI_DEVICETYPE_X8, NULL); cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, CFI_DEVICETYPE_X8, NULL); } cfi_write(map, datum, adr); cfi_spin_unlock(chip->mutex); cfi_udelay(chip->word_write_time); cfi_spin_lock(chip->mutex); /* * Polling toggle bits instead of reading back many times * This ensures that write operation is really completed, * or tells us why it failed. * * It appears tha the polling and decoding of error state might * be simplified. Don't do it unless you really know what you * are doing. You must remember that JESD21-C 3.5.3 states that * the status must be read back an _additional_ two times before * a failure is determined. This is because these devices have * internal state machines that are asynchronous to the external * data bus. During an erase or write the read-back status of the * polling bits might be transitioning internaly when the external * read-back occurs. This means that the bits aren't in the final * state and they might appear to report an error as they transition * and are in a weird state. This will produce infrequent errors * that will usually disappear the next time an erase or write * happens (Try tracking those errors down!). To ensure that * the bits are not in transition the location must be read-back * two more times and compared against what was written - BOTH reads * MUST match what was written - don't think this can be simplified * to only the last read matching. If the comparison fails, error * state can then be decoded. * * - Thayne Harbaugh */ dq6 = CMD(1<<6); /* See comment above for timeout value. */ timeo = jiffies + uWriteTimeout; oldstatus = cfi_read(map, adr); status = cfi_read(map, adr); DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): Check 0x%.8x 0x%.8x\n", __func__, oldstatus, status ); /* * This only checks if dq6 is still toggling and that our * timer hasn't expired. We purposefully ignore the chips * internal timer that will assert dq5 and leave dq6 toggling. * This is done for a variety of reasons: * 1) Not all chips support dq5. * 2) Dealing with asynchronous status bit and data updates * and reading a device two more times creates _messy_ * logic when trying to deal with interleaved devices - * some may be changing while others are still busy. * 3) Checking dq5 only helps to optimize an error case that * should at worst be infrequent and at best non-existent. * * If our timeout occurs _then_ we will check dq5 to see * if the device also had an internal timeout. */ while( ( ( status ^ oldstatus ) & dq6 ) && ! ( ta = time_after(jiffies, timeo) ) ) { if (need_resched()) { cfi_spin_unlock(chip->mutex); yield(); cfi_spin_lock(chip->mutex); } else udelay(1); oldstatus = cfi_read( map, adr ); status = cfi_read( map, adr ); DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): Check 0x%.8x 0x%.8x\n", __func__, oldstatus, status ); } /* * Something kicked us out of the read-back loop. We'll * check success befor checking failure. * Even though dq6 might be true data, it is unkown if * all of the other bits have changed to true data due to * the asynchronous nature of the internal state machine. * We will read two more times and use this to either * verify that the write completed successfully or * that something really went wrong. BOTH reads * must match what was written - this certifies that * bits aren't still changing and that the status * bits erroneously match the datum that was written. */ prev_oldstatus = oldstatus; prev_status = status; oldstatus = cfi_read(map, adr); status = cfi_read(map, adr); DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): Check 0x%.8x 0x%.8x\n", __func__, oldstatus, status ); if ( oldstatus == datum && status == datum ) { /* success - do nothing */ goto write_done; } if ( ta ) { int dq5mask = ( ( status ^ oldstatus ) & dq6 ) >> 1; if ( status & dq5mask ) { /* dq5 asserted - decode interleave chips */ printk( KERN_WARNING "MTD %s(): FLASH internal timeout: 0x%.8x\n", __func__, status & dq5mask ); } else { printk( KERN_WARNING "MTD %s(): Software timed out during write.\n", __func__ ); } goto write_failed; } /* * If we get to here then it means that something * is wrong and it's not a timeout. Something * is seriously wacky! Dump some debug info. */ printk(KERN_WARNING "MTD %s(): Wacky! Unable to decode failure status\n", __func__ ); printk(KERN_WARNING "MTD %s(): 0x%.8lx(0x%.8x): 0x%.8x 0x%.8x 0x%.8x 0x%.8x\n", __func__, adr, datum, prev_oldstatus, prev_status, oldstatus, status); write_failed: ret = -EIO; /* reset on all failures. */ cfi_write( map, CMD(0xF0), chip->start ); /* FIXME - should have reset delay before continuing */ write_done: DISABLE_VPP(map); chip->state = FL_READY; wake_up(&chip->wq); cfi_spin_unlock(chip->mutex); return ret; } static int cfi_amdstd_write (struct mtd_info *mtd, loff_t to , size_t len, size_t *retlen, const u_char *buf) { struct map_info *map = mtd->priv; struct cfi_private *cfi = map->fldrv_priv; int ret = 0; int chipnum; unsigned long ofs, chipstart; *retlen = 0; if (!len) return 0; chipnum = to >> cfi->chipshift; ofs = to - (chipnum << cfi->chipshift); chipstart = cfi->chips[chipnum].start; /* If it's not bus-aligned, do the first byte write */ if (ofs & (CFIDEV_BUSWIDTH-1)) { unsigned long bus_ofs = ofs & ~(CFIDEV_BUSWIDTH-1); int i = ofs - bus_ofs; int n = 0; u_char tmp_buf[8]; cfi_word datum; map_copy_from(map, tmp_buf, bus_ofs + cfi->chips[chipnum].start, CFIDEV_BUSWIDTH); while (len && i < CFIDEV_BUSWIDTH) tmp_buf[i++] = buf[n++], len--; if (cfi_buswidth_is_2()) { datum = *(__u16*)tmp_buf; } else if (cfi_buswidth_is_4()) { datum = *(__u32*)tmp_buf; } else { return -EINVAL; /* should never happen, but be safe */ } ret = do_write_oneword(map, &cfi->chips[chipnum], bus_ofs, datum, 0); if (ret) return ret; ofs += n; buf += n; (*retlen) += n; if (ofs >> cfi->chipshift) { chipnum ++; ofs = 0; if (chipnum == cfi->numchips) return 0; } } if (cfi->fast_prog) { /* Go into unlock bypass mode */ cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chipstart, map, cfi, CFI_DEVICETYPE_X8, NULL); cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chipstart, map, cfi, CFI_DEVICETYPE_X8, NULL); cfi_send_gen_cmd(0x20, cfi->addr_unlock1, chipstart, map, cfi, CFI_DEVICETYPE_X8, NULL); } /* We are now aligned, write as much as possible */ while(len >= CFIDEV_BUSWIDTH) { cfi_word datum; if (cfi_buswidth_is_1()) { datum = *(__u8*)buf; } else if (cfi_buswidth_is_2()) { datum = *(__u16*)buf; } else if (cfi_buswidth_is_4()) { datum = *(__u32*)buf; } else { return -EINVAL; } ret = do_write_oneword(map, &cfi->chips[chipnum], ofs, datum, cfi->fast_prog); if (ret) { if (cfi->fast_prog){ /* Get out of unlock bypass mode */ cfi_send_gen_cmd(0x90, 0, chipstart, map, cfi, cfi->device_type, NULL); cfi_send_gen_cmd(0x00, 0, chipstart, map, cfi, cfi->device_type, NULL); } return ret; } ofs += CFIDEV_BUSWIDTH; buf += CFIDEV_BUSWIDTH; (*retlen) += CFIDEV_BUSWIDTH; len -= CFIDEV_BUSWIDTH; if (ofs >> cfi->chipshift) { if (cfi->fast_prog){ /* Get out of unlock bypass mode */ cfi_send_gen_cmd(0x90, 0, chipstart, map, cfi, cfi->device_type, NULL); cfi_send_gen_cmd(0x00, 0, chipstart, map, cfi, cfi->device_type, NULL); } chipnum ++; ofs = 0; if (chipnum == cfi->numchips) return 0; chipstart = cfi->chips[chipnum].start; if (cfi->fast_prog){ /* Go into unlock bypass mode for next set of chips */ cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chipstart, map, cfi, CFI_DEVICETYPE_X8, NULL); cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chipstart, map, cfi, CFI_DEVICETYPE_X8, NULL); cfi_send_gen_cmd(0x20, cfi->addr_unlock1, chipstart, map, cfi, CFI_DEVICETYPE_X8, NULL); } } } if (cfi->fast_prog){ /* Get out of unlock bypass mode */ cfi_send_gen_cmd(0x90, 0, chipstart, map, cfi, cfi->device_type, NULL); cfi_send_gen_cmd(0x00, 0, chipstart, map, cfi, cfi->device_type, NULL); } /* Write the trailing bytes if any */ if (len & (CFIDEV_BUSWIDTH-1)) { int i = 0, n = 0; u_char tmp_buf[8]; cfi_word datum; map_copy_from(map, tmp_buf, ofs + cfi->chips[chipnum].start, CFIDEV_BUSWIDTH); while (len--) tmp_buf[i++] = buf[n++]; if (cfi_buswidth_is_2()) { datum = *(__u16*)tmp_buf; } else if (cfi_buswidth_is_4()) { datum = *(__u32*)tmp_buf; } else { return -EINVAL; /* should never happen, but be safe */ } ret = do_write_oneword(map, &cfi->chips[chipnum], ofs, datum, 0); if (ret) return ret; (*retlen) += n; } return 0; } static inline int do_erase_chip(struct map_info *map, struct flchip *chip) { unsigned int oldstatus, status, prev_oldstatus, prev_status; unsigned int dq6; unsigned long timeo = jiffies + HZ; unsigned long int adr; struct cfi_private *cfi = map->fldrv_priv; DECLARE_WAITQUEUE(wait, current); int ret = 0; int ta = 0; cfi_word ones = 0; retry: cfi_spin_lock(chip->mutex); if (chip->state != FL_READY){ set_current_state(TASK_UNINTERRUPTIBLE); add_wait_queue(&chip->wq, &wait); cfi_spin_unlock(chip->mutex); schedule(); remove_wait_queue(&chip->wq, &wait); #if 0 if(signal_pending(current)) return -EINTR; #endif timeo = jiffies + HZ; goto retry; } chip->state = FL_ERASING; DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): ERASE 0x%.8lx\n", __func__, chip->start ); /* Handle devices with one erase region, that only implement * the chip erase command. */ ENABLE_VPP(map); cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, CFI_DEVICETYPE_X8, NULL); cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, CFI_DEVICETYPE_X8, NULL); cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, CFI_DEVICETYPE_X8, NULL); cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, CFI_DEVICETYPE_X8, NULL); cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, CFI_DEVICETYPE_X8, NULL); cfi_send_gen_cmd(0x10, cfi->addr_unlock1, chip->start, map, cfi, CFI_DEVICETYPE_X8, NULL); timeo = jiffies + (HZ*20); adr = cfi->addr_unlock1; /* Wait for the end of programing/erasure by using the toggle method. * As long as there is a programming procedure going on, bit 6 * is toggling it's state with each consecutive read. * The toggling stops as soon as the procedure is completed. * * If the process has gone on for too long on the chip bit 5 gets. * After bit5 is set you can kill the operation by sending a reset * command to the chip. */ /* see comments in do_write_oneword */ dq6 = CMD(1<<6); oldstatus = cfi_read(map, adr); status = cfi_read(map, adr); DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): Check 0x%.8x 0x%.8x\n", __func__, oldstatus, status ); while( ( ( status ^ oldstatus ) & dq6 ) && ! ( ta = time_after(jiffies, timeo) ) ) { int wait_reps; /* an initial short sleep */ cfi_spin_unlock(chip->mutex); schedule_timeout(HZ/100); cfi_spin_lock(chip->mutex); if (chip->state != FL_ERASING) { /* Someone's suspended the erase. Sleep */ set_current_state(TASK_UNINTERRUPTIBLE); add_wait_queue(&chip->wq, &wait); cfi_spin_unlock(chip->mutex); printk("erase suspended. Sleeping\n"); schedule(); remove_wait_queue(&chip->wq, &wait); #if 0 if (signal_pending(current)) return -EINTR; #endif timeo = jiffies + (HZ*2); /* FIXME */ cfi_spin_lock(chip->mutex); continue; } /* Busy wait for 1/10 of a milisecond */ for(wait_reps = 0; (wait_reps < 100) && ( ( status ^ oldstatus ) & dq6 ); wait_reps++) { /* Latency issues. Drop the lock, wait a while and retry */ cfi_spin_unlock(chip->mutex); cfi_udelay(1); cfi_spin_lock(chip->mutex); oldstatus = cfi_read(map, adr); status = cfi_read(map, adr); DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): Check 0x%.8x 0x%.8x\n", __func__, oldstatus, status ); } oldstatus = cfi_read(map, adr); status = cfi_read(map, adr); DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): Check 0x%.8x 0x%.8x\n", __func__, oldstatus, status ); } prev_oldstatus = oldstatus; prev_status = status; oldstatus = cfi_read(map, adr); status = cfi_read(map, adr); DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): Check 0x%.8x 0x%.8x\n", __func__, oldstatus, status ); if ( cfi_buswidth_is_1() ) { ones = (__u8)~0; } else if ( cfi_buswidth_is_2() ) { ones = (__u16)~0; } else if ( cfi_buswidth_is_4() ) { ones = (__u32)~0; } else { printk(KERN_WARNING "Unsupported buswidth\n"); goto erase_failed; } if ( oldstatus == ones && status == ones ) { /* success - do nothing */ goto erase_done; } if ( ta ) { int dq5mask = ( ( status ^ oldstatus ) & dq6 ) >> 1; if ( status & dq5mask ) { /* dq5 asserted - decode interleave chips */ printk( KERN_WARNING "MTD %s(): FLASH internal timeout: 0x%.8x\n", __func__, status & dq5mask ); } else { printk( KERN_WARNING "MTD %s(): Software timed out during write.\n", __func__ ); } goto erase_failed; } printk(KERN_WARNING "MTD %s(): Wacky! Unable to decode failure status\n", __func__ ); printk(KERN_WARNING "MTD %s(): 0x%.8lx(0x%.8x): 0x%.8x 0x%.8x 0x%.8x 0x%.8x\n", __func__, adr, ones, prev_oldstatus, prev_status, oldstatus, status); erase_failed: ret = -EIO; /* reset on all failures. */ cfi_write( map, CMD(0xF0), chip->start ); /* FIXME - should have reset delay before continuing */ erase_done: DISABLE_VPP(map); chip->state = FL_READY; wake_up(&chip->wq); cfi_spin_unlock(chip->mutex); return ret; } static inline int do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr) { unsigned int oldstatus, status, prev_oldstatus, prev_status; unsigned int dq6; unsigned long timeo = jiffies + HZ; struct cfi_private *cfi = map->fldrv_priv; DECLARE_WAITQUEUE(wait, current); int ret = 0; int ta = 0; cfi_word ones = 0; retry: cfi_spin_lock(chip->mutex); if (chip->state != FL_READY){ set_current_state(TASK_UNINTERRUPTIBLE); add_wait_queue(&chip->wq, &wait); cfi_spin_unlock(chip->mutex); schedule(); remove_wait_queue(&chip->wq, &wait); #if 0 if(signal_pending(current)) return -EINTR; #endif timeo = jiffies + HZ; goto retry; } chip->state = FL_ERASING; adr += chip->start; DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): ERASE 0x%.8lx\n", __func__, adr ); ENABLE_VPP(map); cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, CFI_DEVICETYPE_X8, NULL); cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, CFI_DEVICETYPE_X8, NULL); cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, CFI_DEVICETYPE_X8, NULL); cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, CFI_DEVICETYPE_X8, NULL); cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, CFI_DEVICETYPE_X8, NULL); cfi_write(map, CMD(0x30), adr); timeo = jiffies + (HZ*20); /* Wait for the end of programing/erasure by using the toggle method. * As long as there is a programming procedure going on, bit 6 * is toggling it's state with each consecutive read. * The toggling stops as soon as the procedure is completed. * * If the process has gone on for too long on the chip bit 5 gets. * After bit5 is set you can kill the operation by sending a reset * command to the chip. */ /* see comments in do_write_oneword */ dq6 = CMD(1<<6); oldstatus = cfi_read(map, adr); status = cfi_read(map, adr); DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): Check 0x%.8x 0x%.8x\n", __func__, oldstatus, status ); while( ( ( status ^ oldstatus ) & dq6 ) && ! ( ta = time_after(jiffies, timeo) ) ) { int wait_reps; /* an initial short sleep */ cfi_spin_unlock(chip->mutex); schedule_timeout(HZ/100); cfi_spin_lock(chip->mutex); if (chip->state != FL_ERASING) { /* Someone's suspended the erase. Sleep */ set_current_state(TASK_UNINTERRUPTIBLE); add_wait_queue(&chip->wq, &wait); cfi_spin_unlock(chip->mutex); printk(KERN_DEBUG "erase suspended. Sleeping\n"); schedule(); remove_wait_queue(&chip->wq, &wait); #if 0 if (signal_pending(current)) return -EINTR; #endif timeo = jiffies + (HZ*2); /* FIXME */ cfi_spin_lock(chip->mutex); continue; } /* Busy wait for 1/10 of a milisecond */ for(wait_reps = 0; (wait_reps < 100) && ( ( status ^ oldstatus ) & dq6 ); wait_reps++) { /* Latency issues. Drop the lock, wait a while and retry */ cfi_spin_unlock(chip->mutex); cfi_udelay(1); cfi_spin_lock(chip->mutex); oldstatus = cfi_read(map, adr); status = cfi_read(map, adr); DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): Check 0x%.8x 0x%.8x\n", __func__, oldstatus, status ); } oldstatus = cfi_read(map, adr); status = cfi_read(map, adr); DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): Check 0x%.8x 0x%.8x\n", __func__, oldstatus, status ); } prev_oldstatus = oldstatus; prev_status = status; oldstatus = cfi_read(map, adr); status = cfi_read(map, adr); DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): Check 0x%.8x 0x%.8x\n", __func__, oldstatus, status ); if ( cfi_buswidth_is_1() ) { ones = (__u8)~0; } else if ( cfi_buswidth_is_2() ) { ones = (__u16)~0; } else if ( cfi_buswidth_is_4() ) { ones = (__u32)~0; } else { printk(KERN_WARNING "Unsupported buswidth\n"); goto erase_failed; } if ( oldstatus == ones && status == ones ) { /* success - do nothing */ goto erase_done; } if ( ta ) { int dq5mask = ( ( status ^ oldstatus ) & dq6 ) >> 1; if ( status & dq5mask ) { /* dq5 asserted - decode interleave chips */ printk( KERN_WARNING "MTD %s(): FLASH internal timeout: 0x%.8x\n", __func__, status & dq5mask ); } else { printk( KERN_WARNING "MTD %s(): Software timed out during write.\n", __func__ ); } goto erase_failed; } printk(KERN_WARNING "MTD %s(): Wacky! Unable to decode failure status\n", __func__ ); printk(KERN_WARNING "MTD %s(): 0x%.8lx(0x%.8x): 0x%.8x 0x%.8x 0x%.8x 0x%.8x\n", __func__, adr, ones, prev_oldstatus, prev_status, oldstatus, status); erase_failed: ret = -EIO; /* reset on all failures. */ cfi_write( map, CMD(0xF0), chip->start ); /* FIXME - should have reset delay before continuing */ erase_done: DISABLE_VPP(map); chip->state = FL_READY; wake_up(&chip->wq); cfi_spin_unlock(chip->mutex); return ret; } static int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr) { struct map_info *map = mtd->priv; struct cfi_private *cfi = map->fldrv_priv; unsigned long adr, len; int chipnum, ret = 0; int i, first; struct mtd_erase_region_info *regions = mtd->eraseregions; if (instr->addr > mtd->size) return -EINVAL; if ((instr->len + instr->addr) > mtd->size) return -EINVAL; /* Check that both start and end of the requested erase are * aligned with the erasesize at the appropriate addresses. */ i = 0; /* Skip all erase regions which are ended before the start of the requested erase. Actually, to save on the calculations, we skip to the first erase region which starts after the start of the requested erase, and then go back one. */ while (i < mtd->numeraseregions && instr->addr >= regions[i].offset) i++; i--; /* OK, now i is pointing at the erase region in which this erase request starts. Check the start of the requested erase range is aligned with the erase size which is in effect here. */ if (instr->addr & (regions[i].erasesize-1)) return -EINVAL; /* Remember the erase region we start on */ first = i; /* Next, check that the end of the requested erase is aligned * with the erase region at that address. */ while (inumeraseregions && (instr->addr + instr->len) >= regions[i].offset) i++; /* As before, drop back one to point at the region in which the address actually falls */ i--; if ((instr->addr + instr->len) & (regions[i].erasesize-1)) return -EINVAL; chipnum = instr->addr >> cfi->chipshift; adr = instr->addr - (chipnum << cfi->chipshift); len = instr->len; i=first; while(len) { ret = do_erase_oneblock(map, &cfi->chips[chipnum], adr); if (ret) return ret; adr += regions[i].erasesize; len -= regions[i].erasesize; if (adr % (1<< cfi->chipshift) == ((regions[i].offset + (regions[i].erasesize * regions[i].numblocks)) %( 1<< cfi->chipshift))) i++; if (adr >> cfi->chipshift) { adr = 0; chipnum++; if (chipnum >= cfi->numchips) break; } } instr->state = MTD_ERASE_DONE; if (instr->callback) instr->callback(instr); return 0; } static int cfi_amdstd_erase_onesize(struct mtd_info *mtd, struct erase_info *instr) { struct map_info *map = mtd->priv; struct cfi_private *cfi = map->fldrv_priv; unsigned long adr, len; int chipnum, ret = 0; if (instr->addr & (mtd->erasesize - 1)) return -EINVAL; if (instr->len & (mtd->erasesize -1)) return -EINVAL; if ((instr->len + instr->addr) > mtd->size) return -EINVAL; chipnum = instr->addr >> cfi->chipshift; adr = instr->addr - (chipnum << cfi->chipshift); len = instr->len; while(len) { ret = do_erase_oneblock(map, &cfi->chips[chipnum], adr); if (ret) return ret; adr += mtd->erasesize; len -= mtd->erasesize; if (adr >> cfi->chipshift) { adr = 0; chipnum++; if (chipnum >= cfi->numchips) break; } } instr->state = MTD_ERASE_DONE; if (instr->callback) instr->callback(instr); return 0; } static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr) { struct map_info *map = mtd->priv; struct cfi_private *cfi = map->fldrv_priv; int ret = 0; if (instr->addr != 0) return -EINVAL; if (instr->len != mtd->size) return -EINVAL; ret = do_erase_chip(map, &cfi->chips[0]); if (ret) return ret; instr->state = MTD_ERASE_DONE; if (instr->callback) instr->callback(instr); return 0; } static void cfi_amdstd_sync (struct mtd_info *mtd) { struct map_info *map = mtd->priv; struct cfi_private *cfi = map->fldrv_priv; int i; struct flchip *chip; int ret = 0; DECLARE_WAITQUEUE(wait, current); for (i=0; !ret && inumchips; i++) { chip = &cfi->chips[i]; retry: cfi_spin_lock(chip->mutex); switch(chip->state) { case FL_READY: case FL_STATUS: case FL_CFI_QUERY: case FL_JEDEC_QUERY: chip->oldstate = chip->state; chip->state = FL_SYNCING; /* No need to wake_up() on this state change - * as the whole point is that nobody can do anything * with the chip now anyway. */ case FL_SYNCING: cfi_spin_unlock(chip->mutex); break; default: /* Not an idle state */ add_wait_queue(&chip->wq, &wait); cfi_spin_unlock(chip->mutex); schedule(); remove_wait_queue(&chip->wq, &wait); goto retry; } } /* Unlock the chips again */ for (i--; i >=0; i--) { chip = &cfi->chips[i]; cfi_spin_lock(chip->mutex); if (chip->state == FL_SYNCING) { chip->state = chip->oldstate; wake_up(&chip->wq); } cfi_spin_unlock(chip->mutex); } } static int cfi_amdstd_suspend(struct mtd_info *mtd) { struct map_info *map = mtd->priv; struct cfi_private *cfi = map->fldrv_priv; int i; struct flchip *chip; int ret = 0; for (i=0; !ret && inumchips; i++) { chip = &cfi->chips[i]; cfi_spin_lock(chip->mutex); switch(chip->state) { case FL_READY: case FL_STATUS: case FL_CFI_QUERY: case FL_JEDEC_QUERY: chip->oldstate = chip->state; chip->state = FL_PM_SUSPENDED; /* No need to wake_up() on this state change - * as the whole point is that nobody can do anything * with the chip now anyway. */ case FL_PM_SUSPENDED: break; default: ret = -EAGAIN; break; } cfi_spin_unlock(chip->mutex); } /* Unlock the chips again */ if (ret) { for (i--; i >=0; i--) { chip = &cfi->chips[i]; cfi_spin_lock(chip->mutex); if (chip->state == FL_PM_SUSPENDED) { chip->state = chip->oldstate; wake_up(&chip->wq); } cfi_spin_unlock(chip->mutex); } } return ret; } static void cfi_amdstd_resume(struct mtd_info *mtd) { struct map_info *map = mtd->priv; struct cfi_private *cfi = map->fldrv_priv; int i; struct flchip *chip; for (i=0; inumchips; i++) { chip = &cfi->chips[i]; cfi_spin_lock(chip->mutex); if (chip->state == FL_PM_SUSPENDED) { chip->state = FL_READY; cfi_write(map, CMD(0xF0), chip->start); wake_up(&chip->wq); } else printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n"); cfi_spin_unlock(chip->mutex); } } static void cfi_amdstd_destroy(struct mtd_info *mtd) { struct map_info *map = mtd->priv; struct cfi_private *cfi = map->fldrv_priv; kfree(cfi->cmdset_priv); kfree(cfi->cfiq); kfree(cfi); kfree(mtd->eraseregions); } static char im_name[]="cfi_cmdset_0002"; int __init cfi_amdstd_init(void) { inter_module_register(im_name, THIS_MODULE, &cfi_cmdset_0002); return 0; } static void __exit cfi_amdstd_exit(void) { inter_module_unregister(im_name); } module_init(cfi_amdstd_init); module_exit(cfi_amdstd_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Crossnet Co. et al."); MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips");