/* * This file is part of the Chelsio T2 Ethernet driver. * * Copyright (C) 2005 Chelsio Communications. All rights reserved. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the LICENSE file included in this * release for licensing terms and conditions. */ #include "common.h" #include "cphy.h" #include "elmer0.h" #ifndef ADVERTISE_PAUSE_CAP # define ADVERTISE_PAUSE_CAP 0x400 #endif #ifndef ADVERTISE_PAUSE_ASYM # define ADVERTISE_PAUSE_ASYM 0x800 #endif /* Gigabit MII registers */ #ifndef MII_CTRL1000 # define MII_CTRL1000 9 #endif #ifndef ADVERTISE_1000FULL # define ADVERTISE_1000FULL 0x200 # define ADVERTISE_1000HALF 0x100 #endif /* VSC8244 PHY specific registers. */ enum { VSC8244_INTR_ENABLE = 25, VSC8244_INTR_STATUS = 26, VSC8244_AUX_CTRL_STAT = 28, }; enum { VSC_INTR_RX_ERR = 1 << 0, VSC_INTR_MS_ERR = 1 << 1, /* master/slave resolution error */ VSC_INTR_CABLE = 1 << 2, /* cable impairment */ VSC_INTR_FALSE_CARR = 1 << 3, /* false carrier */ VSC_INTR_MEDIA_CHG = 1 << 4, /* AMS media change */ VSC_INTR_RX_FIFO = 1 << 5, /* Rx FIFO over/underflow */ VSC_INTR_TX_FIFO = 1 << 6, /* Tx FIFO over/underflow */ VSC_INTR_DESCRAMBL = 1 << 7, /* descrambler lock-lost */ VSC_INTR_SYMBOL_ERR = 1 << 8, /* symbol error */ VSC_INTR_NEG_DONE = 1 << 10, /* autoneg done */ VSC_INTR_NEG_ERR = 1 << 11, /* autoneg error */ VSC_INTR_LINK_CHG = 1 << 13, /* link change */ VSC_INTR_ENABLE = 1 << 15, /* interrupt enable */ }; #define CFG_CHG_INTR_MASK (VSC_INTR_LINK_CHG | VSC_INTR_NEG_ERR | \ VSC_INTR_NEG_DONE) #define INTR_MASK (CFG_CHG_INTR_MASK | VSC_INTR_TX_FIFO | VSC_INTR_RX_FIFO | \ VSC_INTR_ENABLE) /* PHY specific auxiliary control & status register fields */ #define S_ACSR_ACTIPHY_TMR 0 #define M_ACSR_ACTIPHY_TMR 0x3 #define V_ACSR_ACTIPHY_TMR(x) ((x) << S_ACSR_ACTIPHY_TMR) #define S_ACSR_SPEED 3 #define M_ACSR_SPEED 0x3 #define G_ACSR_SPEED(x) (((x) >> S_ACSR_SPEED) & M_ACSR_SPEED) #define S_ACSR_DUPLEX 5 #define F_ACSR_DUPLEX (1 << S_ACSR_DUPLEX) #define S_ACSR_ACTIPHY 6 #define F_ACSR_ACTIPHY (1 << S_ACSR_ACTIPHY) /* * Reset the PHY. This PHY completes reset immediately so we never wait. */ static int vsc8244_reset(struct cphy *cphy, int wait) { int err; unsigned int ctl; err = simple_mdio_read(cphy, MII_BMCR, &ctl); if (err) return err; ctl &= ~BMCR_PDOWN; ctl |= BMCR_RESET; return simple_mdio_write(cphy, MII_BMCR, ctl); } static int vsc8244_intr_enable(struct cphy *cphy) { simple_mdio_write(cphy, VSC8244_INTR_ENABLE, INTR_MASK); /* Enable interrupts through Elmer */ if (t1_is_asic(cphy->adapter)) { u32 elmer; t1_tpi_read(cphy->adapter, A_ELMER0_INT_ENABLE, &elmer); elmer |= ELMER0_GP_BIT1; if (is_T2(cphy->adapter)) { elmer |= ELMER0_GP_BIT2|ELMER0_GP_BIT3|ELMER0_GP_BIT4; } t1_tpi_write(cphy->adapter, A_ELMER0_INT_ENABLE, elmer); } return 0; } static int vsc8244_intr_disable(struct cphy *cphy) { simple_mdio_write(cphy, VSC8244_INTR_ENABLE, 0); if (t1_is_asic(cphy->adapter)) { u32 elmer; t1_tpi_read(cphy->adapter, A_ELMER0_INT_ENABLE, &elmer); elmer &= ~ELMER0_GP_BIT1; if (is_T2(cphy->adapter)) { elmer &= ~(ELMER0_GP_BIT2|ELMER0_GP_BIT3|ELMER0_GP_BIT4); } t1_tpi_write(cphy->adapter, A_ELMER0_INT_ENABLE, elmer); } return 0; } static int vsc8244_intr_clear(struct cphy *cphy) { u32 val; u32 elmer; /* Clear PHY interrupts by reading the register. */ simple_mdio_read(cphy, VSC8244_INTR_ENABLE, &val); if (t1_is_asic(cphy->adapter)) { t1_tpi_read(cphy->adapter, A_ELMER0_INT_CAUSE, &elmer); elmer |= ELMER0_GP_BIT1; if (is_T2(cphy->adapter)) { elmer |= ELMER0_GP_BIT2|ELMER0_GP_BIT3|ELMER0_GP_BIT4; } t1_tpi_write(cphy->adapter, A_ELMER0_INT_CAUSE, elmer); } return 0; } /* * Force the PHY speed and duplex. This also disables auto-negotiation, except * for 1Gb/s, where auto-negotiation is mandatory. */ static int vsc8244_set_speed_duplex(struct cphy *phy, int speed, int duplex) { int err; unsigned int ctl; err = simple_mdio_read(phy, MII_BMCR, &ctl); if (err) return err; if (speed >= 0) { ctl &= ~(BMCR_SPEED100 | BMCR_SPEED1000 | BMCR_ANENABLE); if (speed == SPEED_100) ctl |= BMCR_SPEED100; else if (speed == SPEED_1000) ctl |= BMCR_SPEED1000; } if (duplex >= 0) { ctl &= ~(BMCR_FULLDPLX | BMCR_ANENABLE); if (duplex == DUPLEX_FULL) ctl |= BMCR_FULLDPLX; } if (ctl & BMCR_SPEED1000) /* auto-negotiation required for 1Gb/s */ ctl |= BMCR_ANENABLE; return simple_mdio_write(phy, MII_BMCR, ctl); } int t1_mdio_set_bits(struct cphy *phy, int mmd, int reg, unsigned int bits) { int ret; unsigned int val; ret = mdio_read(phy, mmd, reg, &val); if (!ret) ret = mdio_write(phy, mmd, reg, val | bits); return ret; } static int vsc8244_autoneg_enable(struct cphy *cphy) { return t1_mdio_set_bits(cphy, 0, MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART); } static int vsc8244_autoneg_restart(struct cphy *cphy) { return t1_mdio_set_bits(cphy, 0, MII_BMCR, BMCR_ANRESTART); } static int vsc8244_advertise(struct cphy *phy, unsigned int advertise_map) { int err; unsigned int val = 0; err = simple_mdio_read(phy, MII_CTRL1000, &val); if (err) return err; val &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL); if (advertise_map & ADVERTISED_1000baseT_Half) val |= ADVERTISE_1000HALF; if (advertise_map & ADVERTISED_1000baseT_Full) val |= ADVERTISE_1000FULL; err = simple_mdio_write(phy, MII_CTRL1000, val); if (err) return err; val = 1; if (advertise_map & ADVERTISED_10baseT_Half) val |= ADVERTISE_10HALF; if (advertise_map & ADVERTISED_10baseT_Full) val |= ADVERTISE_10FULL; if (advertise_map & ADVERTISED_100baseT_Half) val |= ADVERTISE_100HALF; if (advertise_map & ADVERTISED_100baseT_Full) val |= ADVERTISE_100FULL; if (advertise_map & ADVERTISED_PAUSE) val |= ADVERTISE_PAUSE_CAP; if (advertise_map & ADVERTISED_ASYM_PAUSE) val |= ADVERTISE_PAUSE_ASYM; return simple_mdio_write(phy, MII_ADVERTISE, val); } static int vsc8244_get_link_status(struct cphy *cphy, int *link_ok, int *speed, int *duplex, int *fc) { unsigned int bmcr, status, lpa, adv; int err, sp = -1, dplx = -1, pause = 0; err = simple_mdio_read(cphy, MII_BMCR, &bmcr); if (!err) err = simple_mdio_read(cphy, MII_BMSR, &status); if (err) return err; if (link_ok) { /* * BMSR_LSTATUS is latch-low, so if it is 0 we need to read it * once more to get the current link state. */ if (!(status & BMSR_LSTATUS)) err = simple_mdio_read(cphy, MII_BMSR, &status); if (err) return err; *link_ok = (status & BMSR_LSTATUS) != 0; } if (!(bmcr & BMCR_ANENABLE)) { dplx = (bmcr & BMCR_FULLDPLX) ? DUPLEX_FULL : DUPLEX_HALF; if (bmcr & BMCR_SPEED1000) sp = SPEED_1000; else if (bmcr & BMCR_SPEED100) sp = SPEED_100; else sp = SPEED_10; } else if (status & BMSR_ANEGCOMPLETE) { err = simple_mdio_read(cphy, VSC8244_AUX_CTRL_STAT, &status); if (err) return err; dplx = (status & F_ACSR_DUPLEX) ? DUPLEX_FULL : DUPLEX_HALF; sp = G_ACSR_SPEED(status); if (sp == 0) sp = SPEED_10; else if (sp == 1) sp = SPEED_100; else sp = SPEED_1000; if (fc && dplx == DUPLEX_FULL) { err = simple_mdio_read(cphy, MII_LPA, &lpa); if (!err) err = simple_mdio_read(cphy, MII_ADVERTISE, &adv); if (err) return err; if (lpa & adv & ADVERTISE_PAUSE_CAP) pause = PAUSE_RX | PAUSE_TX; else if ((lpa & ADVERTISE_PAUSE_CAP) && (lpa & ADVERTISE_PAUSE_ASYM) && (adv & ADVERTISE_PAUSE_ASYM)) pause = PAUSE_TX; else if ((lpa & ADVERTISE_PAUSE_ASYM) && (adv & ADVERTISE_PAUSE_CAP)) pause = PAUSE_RX; } } if (speed) *speed = sp; if (duplex) *duplex = dplx; if (fc) *fc = pause; return 0; } static int vsc8244_intr_handler(struct cphy *cphy) { unsigned int cause; int err, cphy_cause = 0; err = simple_mdio_read(cphy, VSC8244_INTR_STATUS, &cause); if (err) return err; cause &= INTR_MASK; if (cause & CFG_CHG_INTR_MASK) cphy_cause |= cphy_cause_link_change; if (cause & (VSC_INTR_RX_FIFO | VSC_INTR_TX_FIFO)) cphy_cause |= cphy_cause_fifo_error; return cphy_cause; } static void vsc8244_destroy(struct cphy *cphy) { kfree(cphy); } static struct cphy_ops vsc8244_ops = { .destroy = vsc8244_destroy, .reset = vsc8244_reset, .interrupt_enable = vsc8244_intr_enable, .interrupt_disable = vsc8244_intr_disable, .interrupt_clear = vsc8244_intr_clear, .interrupt_handler = vsc8244_intr_handler, .autoneg_enable = vsc8244_autoneg_enable, .autoneg_restart = vsc8244_autoneg_restart, .advertise = vsc8244_advertise, .set_speed_duplex = vsc8244_set_speed_duplex, .get_link_status = vsc8244_get_link_status }; static struct cphy* vsc8244_phy_create(adapter_t *adapter, int phy_addr, struct mdio_ops *mdio_ops) { struct cphy *cphy = kzalloc(sizeof(*cphy), GFP_KERNEL); if (!cphy) return NULL; cphy_init(cphy, adapter, phy_addr, &vsc8244_ops, mdio_ops); return cphy; } static int vsc8244_phy_reset(adapter_t* adapter) { return 0; } struct gphy t1_vsc8244_ops = { vsc8244_phy_create, vsc8244_phy_reset };