/* * forcedeth: Ethernet driver for NVIDIA nForce media access controllers. * * Note: This driver is a cleanroom reimplementation based on reverse * engineered documentation written by Carl-Daniel Hailfinger * and Andrew de Quincey. It's neither supported nor endorsed * by NVIDIA Corp. Use at your own risk. * * NVIDIA, nForce and other NVIDIA marks are trademarks or registered * trademarks of NVIDIA Corporation in the United States and other * countries. * * Copyright (C) 2003 Manfred Spraul * Copyright (C) 2004 Andrew de Quincey (wol support) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * Changelog: * 0.01: 05 Oct 2003: First release that compiles without warnings. * 0.02: 05 Oct 2003: Fix bug for nv_drain_tx: do not try to free NULL skbs. * Check all PCI BARs for the register window. * udelay added to mii_rw. * 0.03: 06 Oct 2003: Initialize dev->irq. * 0.04: 07 Oct 2003: Initialize np->lock, reduce handled irqs, add printks. * 0.05: 09 Oct 2003: printk removed again, irq status print tx_timeout. * 0.06: 10 Oct 2003: MAC Address read updated, pff flag generation updated, * irq mask updated * 0.07: 14 Oct 2003: Further irq mask updates. * 0.08: 20 Oct 2003: rx_desc.Length initialization added, nv_alloc_rx refill * added into irq handler, NULL check for drain_ring. * 0.09: 20 Oct 2003: Basic link speed irq implementation. Only handle the * requested interrupt sources. * 0.10: 20 Oct 2003: First cleanup for release. * 0.11: 21 Oct 2003: hexdump for tx added, rx buffer sizes increased. * MAC Address init fix, set_multicast cleanup. * 0.12: 23 Oct 2003: Cleanups for release. * 0.13: 25 Oct 2003: Limit for concurrent tx packets increased to 10. * Set link speed correctly. start rx before starting * tx (nv_start_rx sets the link speed). * 0.14: 25 Oct 2003: Nic dependant irq mask. * 0.15: 08 Nov 2003: fix smp deadlock with set_multicast_list during * open. * 0.16: 15 Nov 2003: include file cleanup for ppc64, rx buffer size * increased to 1628 bytes. * 0.17: 16 Nov 2003: undo rx buffer size increase. Substract 1 from * the tx length. * 0.18: 17 Nov 2003: fix oops due to late initialization of dev_stats * 0.19: 29 Nov 2003: Handle RxNoBuf, detect & handle invalid mac * addresses, really stop rx if already running * in nv_start_rx, clean up a bit. * (C) Carl-Daniel Hailfinger * 0.20: 07 Dec 2003: alloc fixes * 0.21: 12 Jan 2004: additional alloc fix, nic polling fix. * 0.22: 19 Jan 2004: reprogram timer to a sane rate, avoid lockup * on close. * (C) Carl-Daniel Hailfinger, Manfred Spraul * 0.23: 26 Jan 2004: various small cleanups * 0.24: 27 Feb 2004: make driver even less anonymous in backtraces * 0.25: 09 Mar 2004: wol support * * Known bugs: * We suspect that on some hardware no TX done interrupts are generated. * This means recovery from netif_stop_queue only happens if the hw timer * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT) * and the timer is active in the IRQMask, or if a rx packet arrives by chance. * If your hardware reliably generates tx done interrupts, then you can remove * DEV_NEED_TIMERIRQ from the driver_data flags. * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few * superfluous timer interrupts from the nic. */ #define FORCEDETH_VERSION "0.25" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if 0 #define dprintk printk #else #define dprintk(x...) do { } while (0) #endif /* * Hardware access: */ #define DEV_NEED_LASTPACKET1 0x0001 #define DEV_IRQMASK_1 0x0002 #define DEV_IRQMASK_2 0x0004 #define DEV_NEED_TIMERIRQ 0x0008 enum { NvRegIrqStatus = 0x000, #define NVREG_IRQSTAT_MIIEVENT 0x040 #define NVREG_IRQSTAT_MASK 0x1ff NvRegIrqMask = 0x004, #define NVREG_IRQ_RX 0x0002 #define NVREG_IRQ_RX_NOBUF 0x0004 #define NVREG_IRQ_TX_ERR 0x0008 #define NVREG_IRQ_TX2 0x0010 #define NVREG_IRQ_TIMER 0x0020 #define NVREG_IRQ_LINK 0x0040 #define NVREG_IRQ_TX1 0x0100 #define NVREG_IRQMASK_WANTED_1 0x005f #define NVREG_IRQMASK_WANTED_2 0x0147 #define NVREG_IRQ_UNKNOWN (~(NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR|NVREG_IRQ_TX2|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_TX1)) NvRegUnknownSetupReg6 = 0x008, #define NVREG_UNKSETUP6_VAL 3 /* * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms */ NvRegPollingInterval = 0x00c, #define NVREG_POLL_DEFAULT 970 NvRegMisc1 = 0x080, #define NVREG_MISC1_HD 0x02 #define NVREG_MISC1_FORCE 0x3b0f3c NvRegTransmitterControl = 0x084, #define NVREG_XMITCTL_START 0x01 NvRegTransmitterStatus = 0x088, #define NVREG_XMITSTAT_BUSY 0x01 NvRegPacketFilterFlags = 0x8c, #define NVREG_PFF_ALWAYS 0x7F0008 #define NVREG_PFF_PROMISC 0x80 #define NVREG_PFF_MYADDR 0x20 NvRegOffloadConfig = 0x90, #define NVREG_OFFLOAD_HOMEPHY 0x601 #define NVREG_OFFLOAD_NORMAL 0x5ee NvRegReceiverControl = 0x094, #define NVREG_RCVCTL_START 0x01 NvRegReceiverStatus = 0x98, #define NVREG_RCVSTAT_BUSY 0x01 NvRegRandomSeed = 0x9c, #define NVREG_RNDSEED_MASK 0x00ff #define NVREG_RNDSEED_FORCE 0x7f00 NvRegUnknownSetupReg1 = 0xA0, #define NVREG_UNKSETUP1_VAL 0x16070f NvRegUnknownSetupReg2 = 0xA4, #define NVREG_UNKSETUP2_VAL 0x16 NvRegMacAddrA = 0xA8, NvRegMacAddrB = 0xAC, NvRegMulticastAddrA = 0xB0, #define NVREG_MCASTADDRA_FORCE 0x01 NvRegMulticastAddrB = 0xB4, NvRegMulticastMaskA = 0xB8, NvRegMulticastMaskB = 0xBC, NvRegTxRingPhysAddr = 0x100, NvRegRxRingPhysAddr = 0x104, NvRegRingSizes = 0x108, #define NVREG_RINGSZ_TXSHIFT 0 #define NVREG_RINGSZ_RXSHIFT 16 NvRegUnknownTransmitterReg = 0x10c, NvRegLinkSpeed = 0x110, #define NVREG_LINKSPEED_FORCE 0x10000 #define NVREG_LINKSPEED_10 10 #define NVREG_LINKSPEED_100 100 #define NVREG_LINKSPEED_1000 1000 NvRegUnknownSetupReg5 = 0x130, #define NVREG_UNKSETUP5_BIT31 (1<<31) NvRegUnknownSetupReg3 = 0x134, #define NVREG_UNKSETUP3_VAL1 0x200010 NvRegTxRxControl = 0x144, #define NVREG_TXRXCTL_KICK 0x0001 #define NVREG_TXRXCTL_BIT1 0x0002 #define NVREG_TXRXCTL_BIT2 0x0004 #define NVREG_TXRXCTL_IDLE 0x0008 #define NVREG_TXRXCTL_RESET 0x0010 NvRegMIIStatus = 0x180, #define NVREG_MIISTAT_ERROR 0x0001 #define NVREG_MIISTAT_LINKCHANGE 0x0008 #define NVREG_MIISTAT_MASK 0x000f #define NVREG_MIISTAT_MASK2 0x000f NvRegUnknownSetupReg4 = 0x184, #define NVREG_UNKSETUP4_VAL 8 NvRegAdapterControl = 0x188, #define NVREG_ADAPTCTL_START 0x02 #define NVREG_ADAPTCTL_LINKUP 0x04 #define NVREG_ADAPTCTL_PHYVALID 0x4000 #define NVREG_ADAPTCTL_RUNNING 0x100000 #define NVREG_ADAPTCTL_PHYSHIFT 24 NvRegMIISpeed = 0x18c, #define NVREG_MIISPEED_BIT8 (1<<8) #define NVREG_MIIDELAY 5 NvRegMIIControl = 0x190, #define NVREG_MIICTL_INUSE 0x10000 #define NVREG_MIICTL_WRITE 0x08000 #define NVREG_MIICTL_ADDRSHIFT 5 NvRegMIIData = 0x194, NvRegWakeUpFlags = 0x200, #define NVREG_WAKEUPFLAGS_VAL 0x7770 #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24 #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16 #define NVREG_WAKEUPFLAGS_D3SHIFT 12 #define NVREG_WAKEUPFLAGS_D2SHIFT 8 #define NVREG_WAKEUPFLAGS_D1SHIFT 4 #define NVREG_WAKEUPFLAGS_D0SHIFT 0 #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01 #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02 #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04 #define NVREG_WAKEUPFLAGS_ENABLE 0x1111 NvRegPatternCRC = 0x204, NvRegPatternMask = 0x208, NvRegPowerCap = 0x268, #define NVREG_POWERCAP_D3SUPP (1<<30) #define NVREG_POWERCAP_D2SUPP (1<<26) #define NVREG_POWERCAP_D1SUPP (1<<25) NvRegPowerState = 0x26c, #define NVREG_POWERSTATE_POWEREDUP 0x8000 #define NVREG_POWERSTATE_VALID 0x0100 #define NVREG_POWERSTATE_MASK 0x0003 #define NVREG_POWERSTATE_D0 0x0000 #define NVREG_POWERSTATE_D1 0x0001 #define NVREG_POWERSTATE_D2 0x0002 #define NVREG_POWERSTATE_D3 0x0003 }; struct ring_desc { u32 PacketBuffer; u16 Length; u16 Flags; }; #define NV_TX_LASTPACKET (1<<0) #define NV_TX_RETRYERROR (1<<3) #define NV_TX_LASTPACKET1 (1<<8) #define NV_TX_DEFERRED (1<<10) #define NV_TX_CARRIERLOST (1<<11) #define NV_TX_LATECOLLISION (1<<12) #define NV_TX_UNDERFLOW (1<<13) #define NV_TX_ERROR (1<<14) #define NV_TX_VALID (1<<15) #define NV_RX_DESCRIPTORVALID (1<<0) #define NV_RX_MISSEDFRAME (1<<1) #define NV_RX_SUBSTRACT1 (1<<3) #define NV_RX_ERROR1 (1<<7) #define NV_RX_ERROR2 (1<<8) #define NV_RX_ERROR3 (1<<9) #define NV_RX_ERROR4 (1<<10) #define NV_RX_CRCERR (1<<11) #define NV_RX_OVERFLOW (1<<12) #define NV_RX_FRAMINGERR (1<<13) #define NV_RX_ERROR (1<<14) #define NV_RX_AVAIL (1<<15) /* Miscelaneous hardware related defines: */ #define NV_PCI_REGSZ 0x270 /* various timeout delays: all in usec */ #define NV_TXRX_RESET_DELAY 4 #define NV_TXSTOP_DELAY1 10 #define NV_TXSTOP_DELAY1MAX 500000 #define NV_TXSTOP_DELAY2 100 #define NV_RXSTOP_DELAY1 10 #define NV_RXSTOP_DELAY1MAX 500000 #define NV_RXSTOP_DELAY2 100 #define NV_SETUP5_DELAY 5 #define NV_SETUP5_DELAYMAX 50000 #define NV_POWERUP_DELAY 5 #define NV_POWERUP_DELAYMAX 5000 #define NV_MIIBUSY_DELAY 50 #define NV_MIIPHY_DELAY 10 #define NV_MIIPHY_DELAYMAX 10000 #define NV_WAKEUPPATTERNS 5 #define NV_WAKEUPMASKENTRIES 4 /* General driver defaults */ #define NV_WATCHDOG_TIMEO (5*HZ) #define DEFAULT_MTU 1500 /* also maximum supported, at least for now */ #define RX_RING 128 #define TX_RING 16 /* limited to 1 packet until we understand NV_TX_LASTPACKET */ #define TX_LIMIT_STOP 10 #define TX_LIMIT_START 5 /* rx/tx mac addr + type + vlan + align + slack*/ #define RX_NIC_BUFSIZE (DEFAULT_MTU + 64) /* even more slack */ #define RX_ALLOC_BUFSIZE (DEFAULT_MTU + 128) #define OOM_REFILL (1+HZ/20) #define POLL_WAIT (1+HZ/100) /* * SMP locking: * All hardware access under dev->priv->lock, except the performance * critical parts: * - rx is (pseudo-) lockless: it relies on the single-threading provided * by the arch code for interrupts. * - tx setup is lockless: it relies on dev->xmit_lock. Actual submission * needs dev->priv->lock :-( * - set_multicast_list: preparation lockless, relies on dev->xmit_lock. */ /* in dev: base, irq */ struct fe_priv { spinlock_t lock; /* General data: * Locking: spin_lock(&np->lock); */ struct net_device_stats stats; int in_shutdown; u32 linkspeed; int duplex; int phyaddr; int wolenabled; /* General data: RO fields */ dma_addr_t ring_addr; struct pci_dev *pci_dev; u32 orig_mac[2]; u32 irqmask; /* rx specific fields. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock); */ struct ring_desc *rx_ring; unsigned int cur_rx, refill_rx; struct sk_buff *rx_skbuff[RX_RING]; dma_addr_t rx_dma[RX_RING]; unsigned int rx_buf_sz; struct timer_list oom_kick; struct timer_list nic_poll; /* * tx specific fields. */ struct ring_desc *tx_ring; unsigned int next_tx, nic_tx; struct sk_buff *tx_skbuff[TX_RING]; dma_addr_t tx_dma[TX_RING]; u16 tx_flags; }; /* * Maximum number of loops until we assume that a bit in the irq mask * is stuck. Overridable with module param. */ static int max_interrupt_work = 5; static inline struct fe_priv *get_nvpriv(struct net_device *dev) { return (struct fe_priv *) dev->priv; } static inline u8 *get_hwbase(struct net_device *dev) { return (u8 *) dev->base_addr; } static inline void pci_push(u8 * base) { /* force out pending posted writes */ readl(base); } static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target, int delay, int delaymax, const char *msg) { u8 *base = get_hwbase(dev); pci_push(base); do { udelay(delay); delaymax -= delay; if (delaymax < 0) { if (msg) printk(msg); return 1; } } while ((readl(base + offset) & mask) != target); return 0; } #define MII_READ (-1) /* mii_rw: read/write a register on the PHY. * * Caller must guarantee serialization */ static int mii_rw(struct net_device *dev, int addr, int miireg, int value) { u8 *base = get_hwbase(dev); int was_running; u32 reg; int retval; writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus); was_running = 0; reg = readl(base + NvRegAdapterControl); if (reg & NVREG_ADAPTCTL_RUNNING) { was_running = 1; writel(reg & ~NVREG_ADAPTCTL_RUNNING, base + NvRegAdapterControl); } reg = readl(base + NvRegMIIControl); if (reg & NVREG_MIICTL_INUSE) { writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl); udelay(NV_MIIBUSY_DELAY); } reg = NVREG_MIICTL_INUSE | (addr << NVREG_MIICTL_ADDRSHIFT) | miireg; if (value != MII_READ) { writel(value, base + NvRegMIIData); reg |= NVREG_MIICTL_WRITE; } writel(reg, base + NvRegMIIControl); if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0, NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) { dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n", dev->name, miireg, addr); retval = -1; } else if (value != MII_READ) { /* it was a write operation - fewer failures are detectable */ dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n", dev->name, value, miireg, addr); retval = 0; } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) { dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n", dev->name, miireg, addr); retval = -1; } else { /* FIXME: why is that required? */ udelay(50); retval = readl(base + NvRegMIIData); dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n", dev->name, miireg, addr, retval); } if (was_running) { reg = readl(base + NvRegAdapterControl); writel(reg | NVREG_ADAPTCTL_RUNNING, base + NvRegAdapterControl); } return retval; } static void nv_start_rx(struct net_device *dev) { struct fe_priv *np = get_nvpriv(dev); u8 *base = get_hwbase(dev); dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name); /* Already running? Stop it. */ if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) { writel(0, base + NvRegReceiverControl); pci_push(base); } writel(np->linkspeed, base + NvRegLinkSpeed); pci_push(base); writel(NVREG_RCVCTL_START, base + NvRegReceiverControl); pci_push(base); } static void nv_stop_rx(struct net_device *dev) { u8 *base = get_hwbase(dev); dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name); writel(0, base + NvRegReceiverControl); reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0, NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX, KERN_INFO "nv_stop_rx: ReceiverStatus remained busy"); udelay(NV_RXSTOP_DELAY2); writel(0, base + NvRegLinkSpeed); } static void nv_start_tx(struct net_device *dev) { u8 *base = get_hwbase(dev); dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name); writel(NVREG_XMITCTL_START, base + NvRegTransmitterControl); pci_push(base); } static void nv_stop_tx(struct net_device *dev) { u8 *base = get_hwbase(dev); dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name); writel(0, base + NvRegTransmitterControl); reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0, NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX, KERN_INFO "nv_stop_tx: TransmitterStatus remained busy"); udelay(NV_TXSTOP_DELAY2); writel(0, base + NvRegUnknownTransmitterReg); } static void nv_txrx_reset(struct net_device *dev) { u8 *base = get_hwbase(dev); dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name); writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET, base + NvRegTxRxControl); pci_push(base); udelay(NV_TXRX_RESET_DELAY); writel(NVREG_TXRXCTL_BIT2, base + NvRegTxRxControl); pci_push(base); } /* * nv_get_stats: dev->get_stats function * Get latest stats value from the nic. * Called with read_lock(&dev_base_lock) held for read - * only synchronized against unregister_netdevice. */ static struct net_device_stats *nv_get_stats(struct net_device *dev) { struct fe_priv *np = get_nvpriv(dev); /* It seems that the nic always generates interrupts and doesn't * accumulate errors internally. Thus the current values in np->stats * are already up to date. */ return &np->stats; } static int nv_ethtool_ioctl(struct net_device *dev, void *useraddr) { struct fe_priv *np = get_nvpriv(dev); u8 *base = get_hwbase(dev); u32 ethcmd; if (copy_from_user(ðcmd, useraddr, sizeof (ethcmd))) return -EFAULT; switch (ethcmd) { case ETHTOOL_GDRVINFO: { struct ethtool_drvinfo info = { ETHTOOL_GDRVINFO }; strcpy(info.driver, "forcedeth"); strcpy(info.version, FORCEDETH_VERSION); strcpy(info.bus_info, pci_name(np->pci_dev)); if (copy_to_user(useraddr, &info, sizeof (info))) return -EFAULT; return 0; } case ETHTOOL_GLINK: { struct ethtool_value edata = { ETHTOOL_GLINK }; edata.data = !!netif_carrier_ok(dev); if (copy_to_user(useraddr, &edata, sizeof(edata))) return -EFAULT; return 0; } case ETHTOOL_GWOL: { struct ethtool_wolinfo wolinfo; memset(&wolinfo, 0, sizeof(wolinfo)); wolinfo.supported = WAKE_MAGIC; spin_lock_irq(&np->lock); if (np->wolenabled) wolinfo.wolopts = WAKE_MAGIC; spin_unlock_irq(&np->lock); if (copy_to_user(useraddr, &wolinfo, sizeof(wolinfo))) return -EFAULT; return 0; } case ETHTOOL_SWOL: { struct ethtool_wolinfo wolinfo; if (copy_from_user(&wolinfo, useraddr, sizeof(wolinfo))) return -EFAULT; spin_lock_irq(&np->lock); if (wolinfo.wolopts == 0) { writel(0, base + NvRegWakeUpFlags); np->wolenabled = 0; } if (wolinfo.wolopts & WAKE_MAGIC) { writel(NVREG_WAKEUPFLAGS_ENABLE, base + NvRegWakeUpFlags); np->wolenabled = 1; } spin_unlock_irq(&np->lock); return 0; } default: break; } return -EOPNOTSUPP; } /* * nv_ioctl: dev->do_ioctl function * Called with rtnl_lock held. */ static int nv_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) { switch(cmd) { case SIOCETHTOOL: return nv_ethtool_ioctl(dev, (void *) rq->ifr_data); default: return -EOPNOTSUPP; } } /* * nv_alloc_rx: fill rx ring entries. * Return 1 if the allocations for the skbs failed and the * rx engine is without Available descriptors */ static int nv_alloc_rx(struct net_device *dev) { struct fe_priv *np = get_nvpriv(dev); unsigned int refill_rx = np->refill_rx; while (np->cur_rx != refill_rx) { int nr = refill_rx % RX_RING; struct sk_buff *skb; if (np->rx_skbuff[nr] == NULL) { skb = dev_alloc_skb(RX_ALLOC_BUFSIZE); if (!skb) break; skb->dev = dev; np->rx_skbuff[nr] = skb; } else { skb = np->rx_skbuff[nr]; } np->rx_dma[nr] = pci_map_single(np->pci_dev, skb->data, skb->len, PCI_DMA_FROMDEVICE); np->rx_ring[nr].PacketBuffer = cpu_to_le32(np->rx_dma[nr]); np->rx_ring[nr].Length = cpu_to_le16(RX_NIC_BUFSIZE); wmb(); np->rx_ring[nr].Flags = cpu_to_le16(NV_RX_AVAIL); dprintk(KERN_DEBUG "%s: nv_alloc_rx: Packet %d marked as Available\n", dev->name, refill_rx); refill_rx++; } np->refill_rx = refill_rx; if (np->cur_rx - refill_rx == RX_RING) return 1; return 0; } static void nv_do_rx_refill(unsigned long data) { struct net_device *dev = (struct net_device *) data; struct fe_priv *np = get_nvpriv(dev); disable_irq(dev->irq); if (nv_alloc_rx(dev)) { spin_lock(&np->lock); if (!np->in_shutdown) mod_timer(&np->oom_kick, jiffies + OOM_REFILL); spin_unlock(&np->lock); } enable_irq(dev->irq); } static int nv_init_ring(struct net_device *dev) { struct fe_priv *np = get_nvpriv(dev); int i; np->next_tx = np->nic_tx = 0; for (i = 0; i < TX_RING; i++) { np->tx_ring[i].Flags = 0; } np->cur_rx = RX_RING; np->refill_rx = 0; for (i = 0; i < RX_RING; i++) { np->rx_ring[i].Flags = 0; } return nv_alloc_rx(dev); } static void nv_drain_tx(struct net_device *dev) { struct fe_priv *np = get_nvpriv(dev); int i; for (i = 0; i < TX_RING; i++) { np->tx_ring[i].Flags = 0; if (np->tx_skbuff[i]) { pci_unmap_single(np->pci_dev, np->tx_dma[i], np->tx_skbuff[i]->len, PCI_DMA_TODEVICE); dev_kfree_skb(np->tx_skbuff[i]); np->tx_skbuff[i] = NULL; np->stats.tx_dropped++; } } } static void nv_drain_rx(struct net_device *dev) { struct fe_priv *np = get_nvpriv(dev); int i; for (i = 0; i < RX_RING; i++) { np->rx_ring[i].Flags = 0; wmb(); if (np->rx_skbuff[i]) { pci_unmap_single(np->pci_dev, np->rx_dma[i], np->rx_skbuff[i]->len, PCI_DMA_FROMDEVICE); dev_kfree_skb(np->rx_skbuff[i]); np->rx_skbuff[i] = NULL; } } } static void drain_ring(struct net_device *dev) { nv_drain_tx(dev); nv_drain_rx(dev); } /* * nv_start_xmit: dev->hard_start_xmit function * Called with dev->xmit_lock held. */ static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct fe_priv *np = get_nvpriv(dev); int nr = np->next_tx % TX_RING; np->tx_skbuff[nr] = skb; np->tx_dma[nr] = pci_map_single(np->pci_dev, skb->data,skb->len, PCI_DMA_TODEVICE); np->tx_ring[nr].PacketBuffer = cpu_to_le32(np->tx_dma[nr]); np->tx_ring[nr].Length = cpu_to_le16(skb->len-1); spin_lock_irq(&np->lock); wmb(); np->tx_ring[nr].Flags = np->tx_flags; dprintk(KERN_DEBUG "%s: nv_start_xmit: packet packet %d queued for transmission.\n", dev->name, np->next_tx); { int j; for (j=0; j<64; j++) { if ((j%16) == 0) dprintk("\n%03x:", j); dprintk(" %02x", ((unsigned char*)skb->data)[j]); } dprintk("\n"); } np->next_tx++; dev->trans_start = jiffies; if (np->next_tx - np->nic_tx >= TX_LIMIT_STOP) netif_stop_queue(dev); spin_unlock_irq(&np->lock); writel(NVREG_TXRXCTL_KICK, get_hwbase(dev) + NvRegTxRxControl); pci_push(get_hwbase(dev)); return 0; } /* * nv_tx_done: check for completed packets, release the skbs. * * Caller must own np->lock. */ static void nv_tx_done(struct net_device *dev) { struct fe_priv *np = get_nvpriv(dev); while (np->nic_tx < np->next_tx) { struct ring_desc *prd; int i = np->nic_tx % TX_RING; prd = &np->tx_ring[i]; dprintk(KERN_DEBUG "%s: nv_tx_done: looking at packet %d, Flags 0x%x.\n", dev->name, np->nic_tx, prd->Flags); if (prd->Flags & cpu_to_le16(NV_TX_VALID)) break; if (prd->Flags & cpu_to_le16(NV_TX_RETRYERROR|NV_TX_CARRIERLOST|NV_TX_LATECOLLISION| NV_TX_UNDERFLOW|NV_TX_ERROR)) { if (prd->Flags & cpu_to_le16(NV_TX_UNDERFLOW)) np->stats.tx_fifo_errors++; if (prd->Flags & cpu_to_le16(NV_TX_CARRIERLOST)) np->stats.tx_carrier_errors++; np->stats.tx_errors++; } else { np->stats.tx_packets++; np->stats.tx_bytes += np->tx_skbuff[i]->len; } pci_unmap_single(np->pci_dev, np->tx_dma[i], np->tx_skbuff[i]->len, PCI_DMA_TODEVICE); dev_kfree_skb_irq(np->tx_skbuff[i]); np->tx_skbuff[i] = NULL; np->nic_tx++; } if (np->next_tx - np->nic_tx < TX_LIMIT_START) netif_wake_queue(dev); } /* * nv_tx_timeout: dev->tx_timeout function * Called with dev->xmit_lock held. */ static void nv_tx_timeout(struct net_device *dev) { struct fe_priv *np = get_nvpriv(dev); u8 *base = get_hwbase(dev); dprintk(KERN_DEBUG "%s: Got tx_timeout. irq: %08x\n", dev->name, readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK); spin_lock_irq(&np->lock); /* 1) stop tx engine */ nv_stop_tx(dev); /* 2) check that the packets were not sent already: */ nv_tx_done(dev); /* 3) if there are dead entries: clear everything */ if (np->next_tx != np->nic_tx) { printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name); nv_drain_tx(dev); np->next_tx = np->nic_tx = 0; writel((u32) (np->ring_addr + RX_RING*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr); netif_wake_queue(dev); } /* 4) restart tx engine */ nv_start_tx(dev); spin_unlock_irq(&np->lock); } static void nv_rx_process(struct net_device *dev) { struct fe_priv *np = get_nvpriv(dev); for (;;) { struct ring_desc *prd; struct sk_buff *skb; int len; int i; if (np->cur_rx - np->refill_rx >= RX_RING) break; /* we scanned the whole ring - do not continue */ i = np->cur_rx % RX_RING; prd = &np->rx_ring[i]; dprintk(KERN_DEBUG "%s: nv_rx_process: looking at packet %d, Flags 0x%x.\n", dev->name, np->cur_rx, prd->Flags); if (prd->Flags & cpu_to_le16(NV_RX_AVAIL)) break; /* still owned by hardware, */ /* * the packet is for us - immediately tear down the pci mapping. * TODO: check if a prefetch of the first cacheline improves * the performance. */ pci_unmap_single(np->pci_dev, np->rx_dma[i], np->rx_skbuff[i]->len, PCI_DMA_FROMDEVICE); { int j; dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",prd->Flags); for (j=0; j<64; j++) { if ((j%16) == 0) dprintk("\n%03x:", j); dprintk(" %02x", ((unsigned char*)np->rx_skbuff[i]->data)[j]); } dprintk("\n"); } /* look at what we actually got: */ if (!(prd->Flags & cpu_to_le16(NV_RX_DESCRIPTORVALID))) goto next_pkt; len = le16_to_cpu(prd->Length); if (prd->Flags & cpu_to_le16(NV_RX_MISSEDFRAME)) { np->stats.rx_missed_errors++; np->stats.rx_errors++; goto next_pkt; } if (prd->Flags & cpu_to_le16(NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3|NV_RX_ERROR4)) { np->stats.rx_errors++; goto next_pkt; } if (prd->Flags & cpu_to_le16(NV_RX_CRCERR)) { np->stats.rx_crc_errors++; np->stats.rx_errors++; goto next_pkt; } if (prd->Flags & cpu_to_le16(NV_RX_OVERFLOW)) { np->stats.rx_over_errors++; np->stats.rx_errors++; goto next_pkt; } if (prd->Flags & cpu_to_le16(NV_RX_ERROR)) { /* framing errors are soft errors, the rest is fatal. */ if (prd->Flags & cpu_to_le16(NV_RX_FRAMINGERR)) { if (prd->Flags & cpu_to_le16(NV_RX_SUBSTRACT1)) { len--; } } else { np->stats.rx_errors++; goto next_pkt; } } /* got a valid packet - forward it to the network core */ skb = np->rx_skbuff[i]; np->rx_skbuff[i] = NULL; skb_put(skb, len); skb->protocol = eth_type_trans(skb, dev); dprintk(KERN_DEBUG "%s: nv_rx_process: packet %d with %d bytes, proto %d accepted.\n", dev->name, np->cur_rx, len, skb->protocol); netif_rx(skb); dev->last_rx = jiffies; np->stats.rx_packets++; np->stats.rx_bytes += len; next_pkt: np->cur_rx++; } } /* * nv_change_mtu: dev->change_mtu function * Called with dev_base_lock held for read. */ static int nv_change_mtu(struct net_device *dev, int new_mtu) { if (new_mtu > DEFAULT_MTU) return -EINVAL; dev->mtu = new_mtu; return 0; } /* * nv_set_multicast: dev->set_multicast function * Called with dev->xmit_lock held. */ static void nv_set_multicast(struct net_device *dev) { struct fe_priv *np = get_nvpriv(dev); u8 *base = get_hwbase(dev); u32 addr[2]; u32 mask[2]; u32 pff; memset(addr, 0, sizeof(addr)); memset(mask, 0, sizeof(mask)); if (dev->flags & IFF_PROMISC) { printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name); pff = NVREG_PFF_PROMISC; } else { pff = NVREG_PFF_MYADDR; if (dev->flags & IFF_ALLMULTI || dev->mc_list) { u32 alwaysOff[2]; u32 alwaysOn[2]; alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff; if (dev->flags & IFF_ALLMULTI) { alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0; } else { struct dev_mc_list *walk; walk = dev->mc_list; while (walk != NULL) { u32 a, b; a = le32_to_cpu(*(u32 *) walk->dmi_addr); b = le16_to_cpu(*(u16 *) (&walk->dmi_addr[4])); alwaysOn[0] &= a; alwaysOff[0] &= ~a; alwaysOn[1] &= b; alwaysOff[1] &= ~b; walk = walk->next; } } addr[0] = alwaysOn[0]; addr[1] = alwaysOn[1]; mask[0] = alwaysOn[0] | alwaysOff[0]; mask[1] = alwaysOn[1] | alwaysOff[1]; } } addr[0] |= NVREG_MCASTADDRA_FORCE; pff |= NVREG_PFF_ALWAYS; spin_lock_irq(&np->lock); nv_stop_rx(dev); writel(addr[0], base + NvRegMulticastAddrA); writel(addr[1], base + NvRegMulticastAddrB); writel(mask[0], base + NvRegMulticastMaskA); writel(mask[1], base + NvRegMulticastMaskB); writel(pff, base + NvRegPacketFilterFlags); nv_start_rx(dev); spin_unlock_irq(&np->lock); } static int nv_update_linkspeed(struct net_device *dev) { struct fe_priv *np = get_nvpriv(dev); int adv, lpa, newls, newdup; adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ); lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ); dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n", dev->name, adv, lpa); /* FIXME: handle parallel detection properly, handle gigabit ethernet */ lpa = lpa & adv; if (lpa & LPA_100FULL) { newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100; newdup = 1; } else if (lpa & LPA_100HALF) { newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100; newdup = 0; } else if (lpa & LPA_10FULL) { newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; newdup = 1; } else if (lpa & LPA_10HALF) { newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; newdup = 0; } else { dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, lpa); newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; newdup = 0; } if (np->duplex != newdup || np->linkspeed != newls) { np->duplex = newdup; np->linkspeed = newls; return 1; } return 0; } static void nv_link_irq(struct net_device *dev) { struct fe_priv *np = get_nvpriv(dev); u8 *base = get_hwbase(dev); u32 miistat; int miival; miistat = readl(base + NvRegMIIStatus); writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus); printk(KERN_DEBUG "%s: link change notification, status 0x%x.\n", dev->name, miistat); miival = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ); if (miival & BMSR_ANEGCOMPLETE) { nv_update_linkspeed(dev); if (netif_carrier_ok(dev)) { nv_stop_rx(dev); } else { netif_carrier_on(dev); printk(KERN_INFO "%s: link up.\n", dev->name); } writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD), base + NvRegMisc1); nv_start_rx(dev); } else { if (netif_carrier_ok(dev)) { netif_carrier_off(dev); printk(KERN_INFO "%s: link down.\n", dev->name); nv_stop_rx(dev); } writel(np->linkspeed, base + NvRegLinkSpeed); pci_push(base); } } static irqreturn_t nv_nic_irq(int foo, void *data, struct pt_regs *regs) { struct net_device *dev = (struct net_device *) data; struct fe_priv *np = get_nvpriv(dev); u8 *base = get_hwbase(dev); u32 events; int i; dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name); for (i=0; ; i++) { events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK; writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus); pci_push(base); dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events); if (!(events & np->irqmask)) break; if (events & (NVREG_IRQ_TX1|NVREG_IRQ_TX2|NVREG_IRQ_TX_ERR)) { spin_lock(&np->lock); nv_tx_done(dev); spin_unlock(&np->lock); } if (events & (NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF)) { nv_rx_process(dev); if (nv_alloc_rx(dev)) { spin_lock(&np->lock); if (!np->in_shutdown) mod_timer(&np->oom_kick, jiffies + OOM_REFILL); spin_unlock(&np->lock); } } if (events & NVREG_IRQ_LINK) { spin_lock(&np->lock); nv_link_irq(dev); spin_unlock(&np->lock); } if (events & (NVREG_IRQ_TX_ERR)) { dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n", dev->name, events); } if (events & (NVREG_IRQ_UNKNOWN)) { printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n", dev->name, events); } if (i > max_interrupt_work) { spin_lock(&np->lock); /* disable interrupts on the nic */ writel(0, base + NvRegIrqMask); pci_push(base); if (!np->in_shutdown) mod_timer(&np->nic_poll, jiffies + POLL_WAIT); printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i); spin_unlock(&np->lock); break; } } dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name); return IRQ_RETVAL(i); } static void nv_do_nic_poll(unsigned long data) { struct net_device *dev = (struct net_device *) data; struct fe_priv *np = get_nvpriv(dev); u8 *base = get_hwbase(dev); disable_irq(dev->irq); /* FIXME: Do we need synchronize_irq(dev->irq) here? */ /* * reenable interrupts on the nic, we have to do this before calling * nv_nic_irq because that may decide to do otherwise */ writel(np->irqmask, base + NvRegIrqMask); pci_push(base); nv_nic_irq((int) 0, (void *) data, (struct pt_regs *) NULL); enable_irq(dev->irq); } static int nv_open(struct net_device *dev) { struct fe_priv *np = get_nvpriv(dev); u8 *base = get_hwbase(dev); int ret, oom, i; dprintk(KERN_DEBUG "nv_open: begin\n"); /* 1) erase previous misconfiguration */ /* 4.1-1: stop adapter: ignored, 4.3 seems to be overkill */ writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA); writel(0, base + NvRegMulticastAddrB); writel(0, base + NvRegMulticastMaskA); writel(0, base + NvRegMulticastMaskB); writel(0, base + NvRegPacketFilterFlags); writel(0, base + NvRegAdapterControl); writel(0, base + NvRegLinkSpeed); writel(0, base + NvRegUnknownTransmitterReg); nv_txrx_reset(dev); writel(0, base + NvRegUnknownSetupReg6); /* 2) initialize descriptor rings */ np->in_shutdown = 0; oom = nv_init_ring(dev); /* 3) set mac address */ { u32 mac[2]; mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) + (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24); mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8); writel(mac[0], base + NvRegMacAddrA); writel(mac[1], base + NvRegMacAddrB); } /* 4) continue setup */ np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; np->duplex = 0; writel(NVREG_UNKSETUP3_VAL1, base + NvRegUnknownSetupReg3); writel(0, base + NvRegTxRxControl); pci_push(base); writel(NVREG_TXRXCTL_BIT1, base + NvRegTxRxControl); reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31, NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX, KERN_INFO "open: SetupReg5, Bit 31 remained off\n"); writel(0, base + NvRegUnknownSetupReg4); /* 5) Find a suitable PHY */ writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed); for (i = 1; i < 32; i++) { int id1, id2; spin_lock_irq(&np->lock); id1 = mii_rw(dev, i, MII_PHYSID1, MII_READ); spin_unlock_irq(&np->lock); if (id1 < 0 || id1 == 0xffff) continue; spin_lock_irq(&np->lock); id2 = mii_rw(dev, i, MII_PHYSID2, MII_READ); spin_unlock_irq(&np->lock); if (id2 < 0 || id2 == 0xffff) continue; dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n", dev->name, id1, id2, i); np->phyaddr = i; spin_lock_irq(&np->lock); nv_update_linkspeed(dev); spin_unlock_irq(&np->lock); break; } if (i == 32) { printk(KERN_INFO "%s: open: failing due to lack of suitable PHY.\n", dev->name); ret = -EINVAL; goto out_drain; } /* 6) continue setup */ writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD), base + NvRegMisc1); writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus); writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags); writel(NVREG_OFFLOAD_NORMAL, base + NvRegOffloadConfig); writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus); get_random_bytes(&i, sizeof(i)); writel(NVREG_RNDSEED_FORCE | (i&NVREG_RNDSEED_MASK), base + NvRegRandomSeed); writel(NVREG_UNKSETUP1_VAL, base + NvRegUnknownSetupReg1); writel(NVREG_UNKSETUP2_VAL, base + NvRegUnknownSetupReg2); writel(NVREG_POLL_DEFAULT, base + NvRegPollingInterval); writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6); writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID, base + NvRegAdapterControl); writel(NVREG_UNKSETUP4_VAL, base + NvRegUnknownSetupReg4); writel(NVREG_WAKEUPFLAGS_VAL, base + NvRegWakeUpFlags); /* 7) start packet processing */ writel((u32) np->ring_addr, base + NvRegRxRingPhysAddr); writel((u32) (np->ring_addr + RX_RING*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr); writel( ((RX_RING-1) << NVREG_RINGSZ_RXSHIFT) + ((TX_RING-1) << NVREG_RINGSZ_TXSHIFT), base + NvRegRingSizes); i = readl(base + NvRegPowerState); if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0) writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState); pci_push(base); udelay(10); writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState); writel(NVREG_ADAPTCTL_RUNNING, base + NvRegAdapterControl); writel(0, base + NvRegIrqMask); pci_push(base); writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus); pci_push(base); writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus); writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus); pci_push(base); ret = request_irq(dev->irq, &nv_nic_irq, SA_SHIRQ, dev->name, dev); if (ret) goto out_drain; writel(np->irqmask, base + NvRegIrqMask); spin_lock_irq(&np->lock); writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA); writel(0, base + NvRegMulticastAddrB); writel(0, base + NvRegMulticastMaskA); writel(0, base + NvRegMulticastMaskB); writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags); nv_start_rx(dev); nv_start_tx(dev); netif_start_queue(dev); if (oom) mod_timer(&np->oom_kick, jiffies + OOM_REFILL); if (mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ) & BMSR_ANEGCOMPLETE) { netif_carrier_on(dev); } else { printk("%s: no link during initialization.\n", dev->name); netif_carrier_off(dev); } spin_unlock_irq(&np->lock); return 0; out_drain: drain_ring(dev); return ret; } static int nv_close(struct net_device *dev) { struct fe_priv *np = get_nvpriv(dev); u8 *base; spin_lock_irq(&np->lock); np->in_shutdown = 1; spin_unlock_irq(&np->lock); synchronize_irq(dev->irq); del_timer_sync(&np->oom_kick); del_timer_sync(&np->nic_poll); netif_stop_queue(dev); spin_lock_irq(&np->lock); nv_stop_tx(dev); nv_stop_rx(dev); base = get_hwbase(dev); /* disable interrupts on the nic or we will lock up */ writel(0, base + NvRegIrqMask); pci_push(base); dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name); spin_unlock_irq(&np->lock); free_irq(dev->irq, dev); drain_ring(dev); if (np->wolenabled) nv_start_rx(dev); /* FIXME: power down nic */ return 0; } static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id) { struct net_device *dev; struct fe_priv *np; unsigned long addr; u8 *base; int err, i; dev = alloc_etherdev(sizeof(struct fe_priv)); err = -ENOMEM; if (!dev) goto out; np = get_nvpriv(dev); np->pci_dev = pci_dev; spin_lock_init(&np->lock); SET_MODULE_OWNER(dev); SET_NETDEV_DEV(dev, &pci_dev->dev); init_timer(&np->oom_kick); np->oom_kick.data = (unsigned long) dev; np->oom_kick.function = &nv_do_rx_refill; /* timer handler */ init_timer(&np->nic_poll); np->nic_poll.data = (unsigned long) dev; np->nic_poll.function = &nv_do_nic_poll; /* timer handler */ err = pci_enable_device(pci_dev); if (err) { printk(KERN_INFO "forcedeth: pci_enable_dev failed (%d) for device %s\n", err, pci_name(pci_dev)); goto out_free; } pci_set_master(pci_dev); err = pci_request_regions(pci_dev, dev->name); if (err < 0) goto out_disable; err = -EINVAL; addr = 0; for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n", pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i), pci_resource_len(pci_dev, i), pci_resource_flags(pci_dev, i)); if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM && pci_resource_len(pci_dev, i) >= NV_PCI_REGSZ) { addr = pci_resource_start(pci_dev, i); break; } } if (i == DEVICE_COUNT_RESOURCE) { printk(KERN_INFO "forcedeth: Couldn't find register window for device %s.\n", pci_name(pci_dev)); goto out_relreg; } err = -ENOMEM; dev->base_addr = (unsigned long) ioremap(addr, NV_PCI_REGSZ); if (!dev->base_addr) goto out_relreg; dev->irq = pci_dev->irq; np->rx_ring = pci_alloc_consistent(pci_dev, sizeof(struct ring_desc) * (RX_RING + TX_RING), &np->ring_addr); if (!np->rx_ring) goto out_unmap; np->tx_ring = &np->rx_ring[RX_RING]; dev->open = nv_open; dev->stop = nv_close; dev->hard_start_xmit = nv_start_xmit; dev->get_stats = nv_get_stats; dev->change_mtu = nv_change_mtu; dev->set_multicast_list = nv_set_multicast; dev->do_ioctl = nv_ioctl; dev->tx_timeout = nv_tx_timeout; dev->watchdog_timeo = NV_WATCHDOG_TIMEO; pci_set_drvdata(pci_dev, dev); /* read the mac address */ base = get_hwbase(dev); np->orig_mac[0] = readl(base + NvRegMacAddrA); np->orig_mac[1] = readl(base + NvRegMacAddrB); dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff; dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff; dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff; dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff; dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff; dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff; if (!is_valid_ether_addr(dev->dev_addr)) { /* * Bad mac address. At least one bios sets the mac address * to 01:23:45:67:89:ab */ printk(KERN_ERR "%s: Invalid Mac address detected: %02x:%02x:%02x:%02x:%02x:%02x\n", pci_name(pci_dev), dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2], dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]); printk(KERN_ERR "Please complain to your hardware vendor. Switching to a random MAC.\n"); dev->dev_addr[0] = 0x00; dev->dev_addr[1] = 0x00; dev->dev_addr[2] = 0x6c; get_random_bytes(&dev->dev_addr[3], 3); } dprintk(KERN_DEBUG "%s: MAC Address %02x:%02x:%02x:%02x:%02x:%02x\n", pci_name(pci_dev), dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2], dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]); /* disable WOL */ writel(0, base + NvRegWakeUpFlags); np->wolenabled = 0; np->tx_flags = cpu_to_le16(NV_TX_LASTPACKET|NV_TX_LASTPACKET1|NV_TX_VALID); if (id->driver_data & DEV_NEED_LASTPACKET1) np->tx_flags |= cpu_to_le16(NV_TX_LASTPACKET1); if (id->driver_data & DEV_IRQMASK_1) np->irqmask = NVREG_IRQMASK_WANTED_1; if (id->driver_data & DEV_IRQMASK_2) np->irqmask = NVREG_IRQMASK_WANTED_2; if (id->driver_data & DEV_NEED_TIMERIRQ) np->irqmask |= NVREG_IRQ_TIMER; err = register_netdev(dev); if (err) { printk(KERN_INFO "forcedeth: unable to register netdev: %d\n", err); goto out_freering; } printk(KERN_INFO "%s: forcedeth.c: subsystem: %05x:%04x bound to %s\n", dev->name, pci_dev->subsystem_vendor, pci_dev->subsystem_device, pci_name(pci_dev)); return 0; out_freering: pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (RX_RING + TX_RING), np->rx_ring, np->ring_addr); pci_set_drvdata(pci_dev, NULL); out_unmap: iounmap(get_hwbase(dev)); out_relreg: pci_release_regions(pci_dev); out_disable: pci_disable_device(pci_dev); out_free: free_netdev(dev); out: return err; } static void __devexit nv_remove(struct pci_dev *pci_dev) { struct net_device *dev = pci_get_drvdata(pci_dev); struct fe_priv *np = get_nvpriv(dev); u8 *base = get_hwbase(dev); unregister_netdev(dev); /* special op: write back the misordered MAC address - otherwise * the next nv_probe would see a wrong address. */ writel(np->orig_mac[0], base + NvRegMacAddrA); writel(np->orig_mac[1], base + NvRegMacAddrB); /* free all structures */ pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (RX_RING + TX_RING), np->rx_ring, np->ring_addr); iounmap(get_hwbase(dev)); pci_release_regions(pci_dev); pci_disable_device(pci_dev); free_netdev(dev); pci_set_drvdata(pci_dev, NULL); } static struct pci_device_id pci_tbl[] = { { /* nForce Ethernet Controller */ .vendor = PCI_VENDOR_ID_NVIDIA, .device = 0x1C3, .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID, .driver_data = DEV_IRQMASK_1|DEV_NEED_TIMERIRQ, }, { /* nForce2 Ethernet Controller */ .vendor = PCI_VENDOR_ID_NVIDIA, .device = 0x0066, .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID, .driver_data = DEV_NEED_LASTPACKET1|DEV_IRQMASK_2|DEV_NEED_TIMERIRQ, }, { /* nForce3 Ethernet Controller */ .vendor = PCI_VENDOR_ID_NVIDIA, .device = 0x00D6, .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID, .driver_data = DEV_NEED_LASTPACKET1|DEV_IRQMASK_2|DEV_NEED_TIMERIRQ, }, {0,}, }; static struct pci_driver driver = { .name = "forcedeth", .id_table = pci_tbl, .probe = nv_probe, .remove = __devexit_p(nv_remove), }; static int __init init_nic(void) { printk(KERN_INFO "forcedeth.c: Reverse Engineered nForce ethernet driver. Version %s.\n", FORCEDETH_VERSION); return pci_module_init(&driver); } static void __exit exit_nic(void) { pci_unregister_driver(&driver); } MODULE_PARM(max_interrupt_work, "i"); MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt"); MODULE_AUTHOR("Manfred Spraul "); MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver"); MODULE_LICENSE("GPL"); MODULE_DEVICE_TABLE(pci, pci_tbl); module_init(init_nic); module_exit(exit_nic);