/************************************************************************ * s2io.c: A Linux PCI-X Ethernet driver for S2IO 10GbE Server NIC * Copyright(c) 2002-2005 S2IO Technologies * This software may be used and distributed according to the terms of * the GNU General Public License (GPL), incorporated herein by reference. * Drivers based on or derived from this code fall under the GPL and must * retain the authorship, copyright and license notice. This file is not * a complete program and may only be used when the entire operating * system is licensed under the GPL. * See the file COPYING in this distribution for more information. * * Credits: * Jeff Garzik : For pointing out the improper error condition * check in the s2io_xmit routine and also some * issues in the Tx watch dog function. Also for * patiently answering all those innumerable * questions regaring the 2.6 porting issues. * Stephen Hemminger : Providing proper 2.6 porting mechanism for some * macros available only in 2.6 Kernel. * Francois Romieu : For pointing out all code part that were * deprecated and also styling related comments. * Grant Grundler : For helping me get rid of some Architecture * dependent code. * Christopher Hellwig : Some more 2.6 specific issues in the driver. * * The module loadable parameters that are supported by the driver and a brief * explaination of all the variables. * ring_num : This can be used to program the number of receive rings used * in the driver. * frame_len: This is an array of size 8. Using this we can set the maximum * size of the received frame that can be steered into the corrsponding * receive ring. * ring_len: This defines the number of descriptors each ring can have. This * is also an array of size 8. * fifo_num: This defines the number of Tx FIFOs thats used int the driver. * fifo_len: This too is an array of 8. Each element defines the number of * Tx descriptors that can be associated with each corresponding FIFO. * latency_timer: This input is programmed into the Latency timer register * in PCI Configuration space. ************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* local include */ #include "s2io.h" #include "s2io-regs.h" /* S2io Driver name & version. */ static char s2io_driver_name[] = "s2io"; static char s2io_driver_version[] = "Version 1.0"; #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \ ADAPTER_STATUS_RMAC_LOCAL_FAULT))) #define TASKLET_IN_USE test_and_set_bit(0, \ (unsigned long *)(&sp->tasklet_status)) #define PANIC 1 #define LOW 2 static inline int rx_buffer_level(nic_t * sp, int rxb_size, int ring) { int level = 0; if ((sp->pkt_cnt[ring] - rxb_size) > 128) { level = LOW; if (rxb_size < sp->pkt_cnt[ring] / 8) level = PANIC; } return level; } /* Ethtool related variables and Macros. */ static char s2io_gstrings[][ETH_GSTRING_LEN] = { "Register test\t(offline)", "Eeprom test\t(offline)", "Link test\t(online)", "RLDRAM test\t(offline)", "BIST Test\t(offline)" }; static char ethtool_stats_keys[][ETH_GSTRING_LEN] = { "tmac_frms", "tmac_data_octets", "tmac_drop_frms", "tmac_mcst_frms", "tmac_bcst_frms", "tmac_pause_ctrl_frms", "tmac_any_err_frms", "tmac_vld_ip_octets", "tmac_vld_ip", "tmac_drop_ip", "tmac_icmp", "tmac_rst_tcp", "tmac_tcp", "tmac_udp", "rmac_vld_frms", "rmac_data_octets", "rmac_fcs_err_frms", "rmac_drop_frms", "rmac_vld_mcst_frms", "rmac_vld_bcst_frms", "rmac_in_rng_len_err_frms", "rmac_long_frms", "rmac_pause_ctrl_frms", "rmac_discarded_frms", "rmac_usized_frms", "rmac_osized_frms", "rmac_frag_frms", "rmac_jabber_frms", "rmac_ip", "rmac_ip_octets", "rmac_hdr_err_ip", "rmac_drop_ip", "rmac_icmp", "rmac_tcp", "rmac_udp", "rmac_err_drp_udp", "rmac_pause_cnt", "rmac_accepted_ip", "rmac_err_tcp", }; #define S2IO_STAT_LEN sizeof(ethtool_stats_keys)/ ETH_GSTRING_LEN #define S2IO_STAT_STRINGS_LEN S2IO_STAT_LEN * ETH_GSTRING_LEN #define S2IO_TEST_LEN sizeof(s2io_gstrings) / ETH_GSTRING_LEN #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN /* Constants to be programmed into the Xena's registers to configure * the XAUI. */ #define SWITCH_SIGN 0xA5A5A5A5A5A5A5A5ULL #define END_SIGN 0x0 static u64 default_mdio_cfg[] = { /* Reset PMA PLL */ 0xC001010000000000ULL, 0xC0010100000000E0ULL, 0xC0010100008000E4ULL, /* Remove Reset from PMA PLL */ 0xC001010000000000ULL, 0xC0010100000000E0ULL, 0xC0010100000000E4ULL, END_SIGN }; static u64 default_dtx_cfg[] = { 0x8000051500000000ULL, 0x80000515000000E0ULL, 0x80000515D93500E4ULL, 0x8001051500000000ULL, 0x80010515000000E0ULL, 0x80010515001E00E4ULL, 0x8002051500000000ULL, 0x80020515000000E0ULL, 0x80020515F21000E4ULL, /* Set PADLOOPBACKN */ 0x8002051500000000ULL, 0x80020515000000E0ULL, 0x80020515B20000E4ULL, 0x8003051500000000ULL, 0x80030515000000E0ULL, 0x80030515B20000E4ULL, 0x8004051500000000ULL, 0x80040515000000E0ULL, 0x80040515B20000E4ULL, 0x8005051500000000ULL, 0x80050515000000E0ULL, 0x80050515B20000E4ULL, SWITCH_SIGN, /* Remove PADLOOPBACKN */ 0x8002051500000000ULL, 0x80020515000000E0ULL, 0x80020515F20000E4ULL, 0x8003051500000000ULL, 0x80030515000000E0ULL, 0x80030515F20000E4ULL, 0x8004051500000000ULL, 0x80040515000000E0ULL, 0x80040515F20000E4ULL, 0x8005051500000000ULL, 0x80050515000000E0ULL, 0x80050515F20000E4ULL, END_SIGN }; /* Constants for Fixing the MacAddress problem seen mostly on * Alpha machines. */ static u64 fix_mac[] = { 0x0060000000000000ULL, 0x0060600000000000ULL, 0x0040600000000000ULL, 0x0000600000000000ULL, 0x0020600000000000ULL, 0x0060600000000000ULL, 0x0020600000000000ULL, 0x0060600000000000ULL, 0x0020600000000000ULL, 0x0060600000000000ULL, 0x0020600000000000ULL, 0x0060600000000000ULL, 0x0020600000000000ULL, 0x0060600000000000ULL, 0x0020600000000000ULL, 0x0060600000000000ULL, 0x0020600000000000ULL, 0x0060600000000000ULL, 0x0020600000000000ULL, 0x0060600000000000ULL, 0x0020600000000000ULL, 0x0060600000000000ULL, 0x0020600000000000ULL, 0x0060600000000000ULL, 0x0020600000000000ULL, 0x0000600000000000ULL, 0x0040600000000000ULL, 0x0060600000000000ULL, END_SIGN }; /* Module Loadable parameters. */ static u32 ring_num; static u32 frame_len[MAX_RX_RINGS]; static u32 ring_len[MAX_RX_RINGS]; static u32 fifo_num; static u32 fifo_len[MAX_TX_FIFOS]; static u32 rx_prio; static u32 tx_prio; static u8 latency_timer = 0; /* * S2IO device table. * This table lists all the devices that this driver supports. */ static struct pci_device_id s2io_tbl[] __devinitdata = { {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN, PCI_ANY_ID, PCI_ANY_ID}, {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI, PCI_ANY_ID, PCI_ANY_ID}, {0,} }; MODULE_DEVICE_TABLE(pci, s2io_tbl); static struct pci_driver s2io_driver = { .name = "S2IO", .id_table = s2io_tbl, .probe = s2io_init_nic, .remove = __devexit_p(s2io_rem_nic), }; /* * Input Arguments: * Device private variable. * Return Value: * SUCCESS on success and an appropriate -ve value on failure. * Description: * The function allocates the all memory areas shared * between the NIC and the driver. This includes Tx descriptors, * Rx descriptors and the statistics block. */ static int initSharedMem(struct s2io_nic *nic) { u32 size; void *tmp_v_addr, *tmp_v_addr_next; dma_addr_t tmp_p_addr, tmp_p_addr_next; RxD_block_t *pre_rxd_blk = NULL; int i, j, blk_cnt; struct net_device *dev = nic->dev; mac_info_t *mac_control; struct config_param *config; mac_control = &nic->mac_control; config = &nic->config; /* Allocation and initialization of TXDLs in FIOFs */ size = 0; for (i = 0; i < config->TxFIFONum; i++) { size += config->TxCfg[i].FifoLen; } if (size > MAX_AVAILABLE_TXDS) { DBG_PRINT(ERR_DBG, "%s: Total number of Tx FIFOs ", dev->name); DBG_PRINT(ERR_DBG, "exceeds the maximum value "); DBG_PRINT(ERR_DBG, "that can be used\n"); return FAILURE; } size *= (sizeof(TxD_t) * config->MaxTxDs); mac_control->txd_list_mem = pci_alloc_consistent (nic->pdev, size, &mac_control->txd_list_mem_phy); if (!mac_control->txd_list_mem) { return -ENOMEM; } mac_control->txd_list_mem_sz = size; tmp_v_addr = mac_control->txd_list_mem; tmp_p_addr = mac_control->txd_list_mem_phy; memset(tmp_v_addr, 0, size); DBG_PRINT(INIT_DBG, "%s:List Mem PHY: 0x%llx\n", dev->name, (unsigned long long) tmp_p_addr); for (i = 0; i < config->TxFIFONum; i++) { mac_control->txdl_start_phy[i] = tmp_p_addr; mac_control->txdl_start[i] = (TxD_t *) tmp_v_addr; mac_control->tx_curr_put_info[i].offset = 0; mac_control->tx_curr_put_info[i].fifo_len = config->TxCfg[i].FifoLen - 1; mac_control->tx_curr_get_info[i].offset = 0; mac_control->tx_curr_get_info[i].fifo_len = config->TxCfg[i].FifoLen - 1; tmp_p_addr += (config->TxCfg[i].FifoLen * (sizeof(TxD_t)) * config->MaxTxDs); tmp_v_addr += (config->TxCfg[i].FifoLen * (sizeof(TxD_t)) * config->MaxTxDs); } /* Allocation and initialization of RXDs in Rings */ size = 0; for (i = 0; i < config->RxRingNum; i++) { if (config->RxCfg[i].NumRxd % (MAX_RXDS_PER_BLOCK + 1)) { DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name); DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ", i); DBG_PRINT(ERR_DBG, "RxDs per Block"); return FAILURE; } size += config->RxCfg[i].NumRxd; nic->block_count[i] = config->RxCfg[i].NumRxd / (MAX_RXDS_PER_BLOCK + 1); nic->pkt_cnt[i] = config->RxCfg[i].NumRxd - nic->block_count[i]; } size = (size * (sizeof(RxD_t))); mac_control->rxd_ring_mem_sz = size; for (i = 0; i < config->RxRingNum; i++) { mac_control->rx_curr_get_info[i].block_index = 0; mac_control->rx_curr_get_info[i].offset = 0; mac_control->rx_curr_get_info[i].ring_len = config->RxCfg[i].NumRxd - 1; mac_control->rx_curr_put_info[i].block_index = 0; mac_control->rx_curr_put_info[i].offset = 0; mac_control->rx_curr_put_info[i].ring_len = config->RxCfg[i].NumRxd - 1; blk_cnt = config->RxCfg[i].NumRxd / (MAX_RXDS_PER_BLOCK + 1); /* Allocating all the Rx blocks */ for (j = 0; j < blk_cnt; j++) { size = (MAX_RXDS_PER_BLOCK + 1) * (sizeof(RxD_t)); tmp_v_addr = pci_alloc_consistent(nic->pdev, size, &tmp_p_addr); if (tmp_v_addr == NULL) { /* In case of failure, freeSharedMem() * is called, which should free any * memory that was alloced till the * failure happened. */ nic->rx_blocks[i][j].block_virt_addr = tmp_v_addr; return -ENOMEM; } memset(tmp_v_addr, 0, size); nic->rx_blocks[i][j].block_virt_addr = tmp_v_addr; nic->rx_blocks[i][j].block_dma_addr = tmp_p_addr; } /* Interlinking all Rx Blocks */ for (j = 0; j < blk_cnt; j++) { tmp_v_addr = nic->rx_blocks[i][j].block_virt_addr; tmp_v_addr_next = nic->rx_blocks[i][(j + 1) % blk_cnt].block_virt_addr; tmp_p_addr = nic->rx_blocks[i][j].block_dma_addr; tmp_p_addr_next = nic->rx_blocks[i][(j + 1) % blk_cnt].block_dma_addr; pre_rxd_blk = (RxD_block_t *) tmp_v_addr; pre_rxd_blk->reserved_1 = END_OF_BLOCK; /* last RxD * marker. */ pre_rxd_blk->reserved_2_pNext_RxD_block = (unsigned long) tmp_v_addr_next; pre_rxd_blk->pNext_RxD_Blk_physical = (u64) tmp_p_addr_next; } } /* Allocation and initialization of Statistics block */ size = sizeof(StatInfo_t); mac_control->stats_mem = pci_alloc_consistent (nic->pdev, size, &mac_control->stats_mem_phy); if (!mac_control->stats_mem) { /* In case of failure, freeSharedMem() is called, which * should free any memory that was alloced till the * failure happened. */ return -ENOMEM; } mac_control->stats_mem_sz = size; tmp_v_addr = mac_control->stats_mem; mac_control->StatsInfo = (StatInfo_t *) tmp_v_addr; memset(tmp_v_addr, 0, size); DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name, (unsigned long long) tmp_p_addr); return SUCCESS; } /* * Input Arguments: * Device peivate variable. * Return Value: * NONE * Description: * This function is to free all memory locations allocated by * the initSharedMem() function and return it to the kernel. */ static void freeSharedMem(struct s2io_nic *nic) { int i, j, blk_cnt, size; void *tmp_v_addr; dma_addr_t tmp_p_addr; mac_info_t *mac_control; struct config_param *config; if (!nic) return; mac_control = &nic->mac_control; config = &nic->config; if (mac_control->txd_list_mem) { pci_free_consistent(nic->pdev, mac_control->txd_list_mem_sz, mac_control->txd_list_mem, mac_control->txd_list_mem_phy); } size = (MAX_RXDS_PER_BLOCK + 1) * (sizeof(RxD_t)); for (i = 0; i < config->RxRingNum; i++) { blk_cnt = nic->block_count[i]; for (j = 0; j < blk_cnt; j++) { tmp_v_addr = nic->rx_blocks[i][j].block_virt_addr; tmp_p_addr = nic->rx_blocks[i][j].block_dma_addr; if (tmp_v_addr == NULL) break; pci_free_consistent(nic->pdev, size, tmp_v_addr, tmp_p_addr); } } if (mac_control->stats_mem) { pci_free_consistent(nic->pdev, mac_control->stats_mem_sz, mac_control->stats_mem, mac_control->stats_mem_phy); } } /* * Input Arguments: * device peivate variable * Return Value: * SUCCESS on success and '-1' on failure (endian settings incorrect). * Description: * The function sequentially configures every block * of the H/W from their reset values. */ static int initNic(struct s2io_nic *nic) { XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0; struct net_device *dev = nic->dev; register u64 val64 = 0; void *add; u32 time; int i, j; mac_info_t *mac_control; struct config_param *config; int mdio_cnt = 0, dtx_cnt = 0; unsigned long long print_var, mem_share; mac_control = &nic->mac_control; config = &nic->config; /* Set proper endian settings and verify the same by * reading the PIF Feed-back register. */ #ifdef __BIG_ENDIAN /* The device by default set to a big endian format, so * a big endian driver need not set anything. */ writeq(0xffffffffffffffffULL, &bar0->swapper_ctrl); val64 = (SWAPPER_CTRL_PIF_R_FE | SWAPPER_CTRL_PIF_R_SE | SWAPPER_CTRL_PIF_W_FE | SWAPPER_CTRL_PIF_W_SE | SWAPPER_CTRL_TXP_FE | SWAPPER_CTRL_TXP_SE | SWAPPER_CTRL_TXD_R_FE | SWAPPER_CTRL_TXD_W_FE | SWAPPER_CTRL_TXF_R_FE | SWAPPER_CTRL_RXD_R_FE | SWAPPER_CTRL_RXD_W_FE | SWAPPER_CTRL_RXF_W_FE | SWAPPER_CTRL_XMSI_FE | SWAPPER_CTRL_XMSI_SE | SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE); writeq(val64, &bar0->swapper_ctrl); #else /* Initially we enable all bits to make it accessible by * the driver, then we selectively enable only those bits * that we want to set. */ writeq(0xffffffffffffffffULL, &bar0->swapper_ctrl); val64 = (SWAPPER_CTRL_PIF_R_FE | SWAPPER_CTRL_PIF_R_SE | SWAPPER_CTRL_PIF_W_FE | SWAPPER_CTRL_PIF_W_SE | SWAPPER_CTRL_TXP_FE | SWAPPER_CTRL_TXP_SE | SWAPPER_CTRL_TXD_R_FE | SWAPPER_CTRL_TXD_R_SE | SWAPPER_CTRL_TXD_W_FE | SWAPPER_CTRL_TXD_W_SE | SWAPPER_CTRL_TXF_R_FE | SWAPPER_CTRL_RXD_R_FE | SWAPPER_CTRL_RXD_R_SE | SWAPPER_CTRL_RXD_W_FE | SWAPPER_CTRL_RXD_W_SE | SWAPPER_CTRL_RXF_W_FE | SWAPPER_CTRL_XMSI_FE | SWAPPER_CTRL_XMSI_SE | SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE); writeq(val64, &bar0->swapper_ctrl); #endif /* Verifying if endian settings are accurate by reading * a feedback register. */ val64 = readq(&bar0->pif_rd_swapper_fb); if (val64 != 0x0123456789ABCDEFULL) { /* Endian settings are incorrect, calls for another dekko. */ print_var = (unsigned long long) val64; DBG_PRINT(INIT_DBG, "%s: Endian settings are wrong", dev->name); DBG_PRINT(ERR_DBG, ", feedback read %llx\n", print_var); return FAILURE; } /* Remove XGXS from reset state */ val64 = 0; writeq(val64, &bar0->sw_reset); val64 = readq(&bar0->sw_reset); set_current_state(TASK_UNINTERRUPTIBLE); schedule_timeout(HZ / 2); /* Enable Receiving broadcasts */ val64 = readq(&bar0->mac_cfg); val64 |= MAC_RMAC_BCAST_ENABLE; writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); writeq(val64, &bar0->mac_cfg); /* Read registers in all blocks */ val64 = readq(&bar0->mac_int_mask); val64 = readq(&bar0->mc_int_mask); val64 = readq(&bar0->xgxs_int_mask); /* Set MTU */ val64 = dev->mtu; writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len); /* Configuring the XAUI Interface of Xena. ***************************************** * To Configure the Xena's XAUI, one has to write a series * of 64 bit values into two registers in a particular * sequence. Hence a macro 'SWITCH_SIGN' has been defined * which will be defined in the array of configuration values * (default_dtx_cfg & default_mdio_cfg) at appropriate places * to switch writing from one regsiter to another. We continue * writing these values until we encounter the 'END_SIGN' macro. * For example, After making a series of 21 writes into * dtx_control register the 'SWITCH_SIGN' appears and hence we * start writing into mdio_control until we encounter END_SIGN. */ while (1) { dtx_cfg: while (default_dtx_cfg[dtx_cnt] != END_SIGN) { if (default_dtx_cfg[dtx_cnt] == SWITCH_SIGN) { dtx_cnt++; goto mdio_cfg; } writeq(default_dtx_cfg[dtx_cnt], &bar0->dtx_control); val64 = readq(&bar0->dtx_control); dtx_cnt++; } mdio_cfg: while (default_mdio_cfg[mdio_cnt] != END_SIGN) { if (default_mdio_cfg[mdio_cnt] == SWITCH_SIGN) { mdio_cnt++; goto dtx_cfg; } writeq(default_mdio_cfg[mdio_cnt], &bar0->mdio_control); val64 = readq(&bar0->mdio_control); mdio_cnt++; } if ((default_dtx_cfg[dtx_cnt] == END_SIGN) && (default_mdio_cfg[mdio_cnt] == END_SIGN)) { break; } else { goto dtx_cfg; } } /* Tx DMA Initialization */ val64 = 0; writeq(val64, &bar0->tx_fifo_partition_0); writeq(val64, &bar0->tx_fifo_partition_1); writeq(val64, &bar0->tx_fifo_partition_2); writeq(val64, &bar0->tx_fifo_partition_3); for (i = 0, j = 0; i < config->TxFIFONum; i++) { val64 |= vBIT(config->TxCfg[i].FifoLen - 1, ((i * 32) + 19), 13) | vBIT(config->TxCfg[i].FifoPriority, ((i * 32) + 5), 3); if (i == (config->TxFIFONum - 1)) { if (i % 2 == 0) i++; } switch (i) { case 1: writeq(val64, &bar0->tx_fifo_partition_0); val64 = 0; break; case 3: writeq(val64, &bar0->tx_fifo_partition_1); val64 = 0; break; case 5: writeq(val64, &bar0->tx_fifo_partition_2); val64 = 0; break; case 7: writeq(val64, &bar0->tx_fifo_partition_3); break; } } /* Enable Tx FIFO partition 0. */ val64 = readq(&bar0->tx_fifo_partition_0); val64 |= BIT(0); /* To enable the FIFO partition. */ writeq(val64, &bar0->tx_fifo_partition_0); val64 = readq(&bar0->tx_fifo_partition_0); DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n", &bar0->tx_fifo_partition_0, (unsigned long long) val64); /* * Initialization of Tx_PA_CONFIG register to ignore packet * integrity checking. */ val64 = readq(&bar0->tx_pa_cfg); val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI | TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR; writeq(val64, &bar0->tx_pa_cfg); /* Rx DMA intialization. */ val64 = 0; for (i = 0; i < config->RxRingNum; i++) { val64 |= vBIT(config->RxCfg[i].RingPriority, (5 + (i * 8)), 3); } writeq(val64, &bar0->rx_queue_priority); /* Allocating equal share of memory to all the configured * Rings. */ val64 = 0; for (i = 0; i < config->RxRingNum; i++) { switch (i) { case 0: mem_share = (64 / config->RxRingNum + 64 % config->RxRingNum); val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share); continue; case 1: mem_share = (64 / config->RxRingNum); val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share); continue; case 2: mem_share = (64 / config->RxRingNum); val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share); continue; case 3: mem_share = (64 / config->RxRingNum); val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share); continue; case 4: mem_share = (64 / config->RxRingNum); val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share); continue; case 5: mem_share = (64 / config->RxRingNum); val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share); continue; case 6: mem_share = (64 / config->RxRingNum); val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share); continue; case 7: mem_share = (64 / config->RxRingNum); val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share); continue; } } writeq(val64, &bar0->rx_queue_cfg); /* Initializing the Tx round robin registers to 0. * Filling Tx and Rx round robin registers as per the * number of FIFOs and Rings is still TODO. */ writeq(0, &bar0->tx_w_round_robin_0); writeq(0, &bar0->tx_w_round_robin_1); writeq(0, &bar0->tx_w_round_robin_2); writeq(0, &bar0->tx_w_round_robin_3); writeq(0, &bar0->tx_w_round_robin_4); /* Disable Rx steering. Hard coding all packets be steered to * Queue 0 for now. * TODO*/ if (rx_prio) { u64 def = 0x8000000000000000ULL, tmp; for (i = 0; i < MAX_RX_RINGS; i++) { tmp = (u64) (def >> (i % config->RxRingNum)); val64 |= (u64) (tmp >> (i * 8)); } writeq(val64, &bar0->rts_qos_steering); } else { val64 = 0x8080808080808080ULL; writeq(val64, &bar0->rts_qos_steering); } /* UDP Fix */ val64 = 0; for (i = 1; i < 8; i++) writeq(val64, &bar0->rts_frm_len_n[i]); /* Set rts_frm_len register for fifo 0 */ writeq(MAC_RTS_FRM_LEN_SET(dev->mtu + 22), &bar0->rts_frm_len_n[0]); /* Enable statistics */ writeq(mac_control->stats_mem_phy, &bar0->stat_addr); val64 = SET_UPDT_PERIOD(8) | STAT_CFG_STAT_RO | STAT_CFG_STAT_EN; writeq(val64, &bar0->stat_cfg); /* Initializing the sampling rate for the device to calculate the * bandwidth utilization. */ val64 = MAC_TX_LINK_UTIL_VAL(0x5) | MAC_RX_LINK_UTIL_VAL(0x5); writeq(val64, &bar0->mac_link_util); /* Initializing the Transmit and Receive Traffic Interrupt * Scheme. */ /* TTI Initialization */ val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0xFFF) | TTI_DATA1_MEM_TX_URNG_A(0xA) | TTI_DATA1_MEM_TX_URNG_B(0x10) | TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN; writeq(val64, &bar0->tti_data1_mem); val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) | TTI_DATA2_MEM_TX_UFC_B(0x20) | TTI_DATA2_MEM_TX_UFC_C(0x40) | TTI_DATA2_MEM_TX_UFC_D(0x80); writeq(val64, &bar0->tti_data2_mem); val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD; writeq(val64, &bar0->tti_command_mem); /* Once the operation completes, the Strobe bit of the command * register will be reset. We poll for this particular condition * We wait for a maximum of 500ms for the operation to complete, * if it's not complete by then we return error. */ time = 0; while (TRUE) { val64 = readq(&bar0->tti_command_mem); if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) { break; } if (time > 10) { DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n", dev->name); return -1; } set_current_state(TASK_UNINTERRUPTIBLE); schedule_timeout(HZ / 20); time++; } /* RTI Initialization */ val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF) | RTI_DATA1_MEM_RX_URNG_A(0xA) | RTI_DATA1_MEM_RX_URNG_B(0x10) | RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN; writeq(val64, &bar0->rti_data1_mem); val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) | RTI_DATA2_MEM_RX_UFC_B(0x2) | RTI_DATA2_MEM_RX_UFC_C(0x40) | RTI_DATA2_MEM_RX_UFC_D(0x80); writeq(val64, &bar0->rti_data2_mem); val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD; writeq(val64, &bar0->rti_command_mem); /* Once the operation completes, the Strobe bit of the command * register will be reset. We poll for this particular condition * We wait for a maximum of 500ms for the operation to complete, * if it's not complete by then we return error. */ time = 0; while (TRUE) { val64 = readq(&bar0->rti_command_mem); if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) { break; } if (time > 10) { DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n", dev->name); return -1; } time++; set_current_state(TASK_UNINTERRUPTIBLE); schedule_timeout(HZ / 20); } /* Initializing proper values as Pause threshold into all * the 8 Queues on Rx side. */ writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3); writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7); /* Disable RMAC PAD STRIPPING */ add = (void *) &bar0->mac_cfg; val64 = readq(&bar0->mac_cfg); val64 &= ~(MAC_CFG_RMAC_STRIP_PAD); writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); writel((u32) (val64), add); writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); writel((u32) (val64 >> 32), (add + 4)); val64 = readq(&bar0->mac_cfg); return SUCCESS; } /* * Input Arguments: * device private variable, * A mask indicating which Intr block must be modified and, * A flag indicating whether to enable or disable the Intrs. * Return Value: * NONE. * Description: * This function will either disable or enable the interrupts * depending on the flag argument. The mask argument can be used to * enable/disable any Intr block. */ static void en_dis_able_NicIntrs(struct s2io_nic *nic, u16 mask, int flag) { XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0; register u64 val64 = 0, temp64 = 0; /* Top level interrupt classification */ /* PIC Interrupts */ if ((mask & (TX_PIC_INTR | RX_PIC_INTR))) { /* Enable PIC Intrs in the general intr mask register */ val64 = TXPIC_INT_M | PIC_RX_INT_M; if (flag == ENABLE_INTRS) { temp64 = readq(&bar0->general_int_mask); temp64 &= ~((u64) val64); writeq(temp64, &bar0->general_int_mask); /* Disabled all PCIX, Flash, MDIO, IIC and GPIO * interrupts for now. * TODO */ writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask); /* No MSI Support is available presently, so TTI and * RTI interrupts are also disabled. */ } else if (flag == DISABLE_INTRS) { /* Disable PIC Intrs in the general intr mask register */ writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask); temp64 = readq(&bar0->general_int_mask); val64 |= temp64; writeq(val64, &bar0->general_int_mask); } } /* DMA Interrupts */ /* Enabling/Disabling Tx DMA interrupts */ if (mask & TX_DMA_INTR) { /* Enable TxDMA Intrs in the general intr mask register */ val64 = TXDMA_INT_M; if (flag == ENABLE_INTRS) { temp64 = readq(&bar0->general_int_mask); temp64 &= ~((u64) val64); writeq(temp64, &bar0->general_int_mask); /* Disable all interrupts other than PFC interrupt in * DMA level. */ val64 = DISABLE_ALL_INTRS & (~TXDMA_PFC_INT_M); writeq(val64, &bar0->txdma_int_mask); /* Enable only the MISC error 1 interrupt in PFC block */ val64 = DISABLE_ALL_INTRS & (~PFC_MISC_ERR_1); writeq(val64, &bar0->pfc_err_mask); } else if (flag == DISABLE_INTRS) { /* Disable TxDMA Intrs in the general intr mask * register */ writeq(DISABLE_ALL_INTRS, &bar0->txdma_int_mask); writeq(DISABLE_ALL_INTRS, &bar0->pfc_err_mask); temp64 = readq(&bar0->general_int_mask); val64 |= temp64; writeq(val64, &bar0->general_int_mask); } } /* Enabling/Disabling Rx DMA interrupts */ if (mask & RX_DMA_INTR) { /* Enable RxDMA Intrs in the general intr mask register */ val64 = RXDMA_INT_M; if (flag == ENABLE_INTRS) { temp64 = readq(&bar0->general_int_mask); temp64 &= ~((u64) val64); writeq(temp64, &bar0->general_int_mask); /* All RxDMA block interrupts are disabled for now * TODO */ writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask); } else if (flag == DISABLE_INTRS) { /* Disable RxDMA Intrs in the general intr mask * register */ writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask); temp64 = readq(&bar0->general_int_mask); val64 |= temp64; writeq(val64, &bar0->general_int_mask); } } /* MAC Interrupts */ /* Enabling/Disabling MAC interrupts */ if (mask & (TX_MAC_INTR | RX_MAC_INTR)) { val64 = TXMAC_INT_M | RXMAC_INT_M; if (flag == ENABLE_INTRS) { temp64 = readq(&bar0->general_int_mask); temp64 &= ~((u64) val64); writeq(temp64, &bar0->general_int_mask); /* All MAC block error interrupts are disabled for now * except the link status change interrupt. * TODO*/ val64 = MAC_INT_STATUS_RMAC_INT; temp64 = readq(&bar0->mac_int_mask); temp64 &= ~((u64) val64); writeq(temp64, &bar0->mac_int_mask); val64 = readq(&bar0->mac_rmac_err_mask); val64 &= ~((u64) RMAC_LINK_STATE_CHANGE_INT); writeq(val64, &bar0->mac_rmac_err_mask); } else if (flag == DISABLE_INTRS) { /* Disable MAC Intrs in the general intr mask register */ writeq(DISABLE_ALL_INTRS, &bar0->mac_int_mask); writeq(DISABLE_ALL_INTRS, &bar0->mac_rmac_err_mask); temp64 = readq(&bar0->general_int_mask); val64 |= temp64; writeq(val64, &bar0->general_int_mask); } } /* XGXS Interrupts */ if (mask & (TX_XGXS_INTR | RX_XGXS_INTR)) { val64 = TXXGXS_INT_M | RXXGXS_INT_M; if (flag == ENABLE_INTRS) { temp64 = readq(&bar0->general_int_mask); temp64 &= ~((u64) val64); writeq(temp64, &bar0->general_int_mask); /* All XGXS block error interrupts are disabled for now * TODO */ writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask); } else if (flag == DISABLE_INTRS) { /* Disable MC Intrs in the general intr mask register */ writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask); temp64 = readq(&bar0->general_int_mask); val64 |= temp64; writeq(val64, &bar0->general_int_mask); } } /* Memory Controller(MC) interrupts */ if (mask & MC_INTR) { val64 = MC_INT_M; if (flag == ENABLE_INTRS) { temp64 = readq(&bar0->general_int_mask); temp64 &= ~((u64) val64); writeq(temp64, &bar0->general_int_mask); /* All MC block error interrupts are disabled for now * TODO */ writeq(DISABLE_ALL_INTRS, &bar0->mc_int_mask); } else if (flag == DISABLE_INTRS) { /* Disable MC Intrs in the general intr mask register */ writeq(DISABLE_ALL_INTRS, &bar0->mc_int_mask); temp64 = readq(&bar0->general_int_mask); val64 |= temp64; writeq(val64, &bar0->general_int_mask); } } /* Tx traffic interrupts */ if (mask & TX_TRAFFIC_INTR) { val64 = TXTRAFFIC_INT_M; if (flag == ENABLE_INTRS) { temp64 = readq(&bar0->general_int_mask); temp64 &= ~((u64) val64); writeq(temp64, &bar0->general_int_mask); /* Enable all the Tx side interrupts */ writeq(0x0, &bar0->tx_traffic_mask); /* '0' Enables * all 64 TX * interrupt * levels. */ } else if (flag == DISABLE_INTRS) { /* Disable Tx Traffic Intrs in the general intr mask * register. */ writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask); temp64 = readq(&bar0->general_int_mask); val64 |= temp64; writeq(val64, &bar0->general_int_mask); } } /* Rx traffic interrupts */ if (mask & RX_TRAFFIC_INTR) { val64 = RXTRAFFIC_INT_M; if (flag == ENABLE_INTRS) { temp64 = readq(&bar0->general_int_mask); temp64 &= ~((u64) val64); writeq(temp64, &bar0->general_int_mask); writeq(0x0, &bar0->rx_traffic_mask); /* '0' Enables * all 8 RX * interrupt * levels. */ } else if (flag == DISABLE_INTRS) { /* Disable Rx Traffic Intrs in the general intr mask * register. */ writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask); temp64 = readq(&bar0->general_int_mask); val64 |= temp64; writeq(val64, &bar0->general_int_mask); } } } /* * Input Arguments: * val64 - Value read from adapter status register. * flag - indicates if the adapter enable bit was ever written once before. * Return Value: * void. * Description: * Returns whether the H/W is ready to go or not. Depending on whether * adapter enable bit was written or not the comparison differs and the * calling function passes the input argument flag to indicate this. */ static int verify_xena_quiescence(u64 val64, int flag) { int ret = 0; u64 tmp64 = ~((u64) val64); if (! (tmp64 & (ADAPTER_STATUS_TDMA_READY | ADAPTER_STATUS_RDMA_READY | ADAPTER_STATUS_PFC_READY | ADAPTER_STATUS_TMAC_BUF_EMPTY | ADAPTER_STATUS_PIC_QUIESCENT | ADAPTER_STATUS_MC_DRAM_READY | ADAPTER_STATUS_MC_QUEUES_READY | ADAPTER_STATUS_M_PLL_LOCK | ADAPTER_STATUS_P_PLL_LOCK))) { if (flag == FALSE) { if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) && ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) == ADAPTER_STATUS_RC_PRC_QUIESCENT)) { ret = 1; } } else { if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) == ADAPTER_STATUS_RMAC_PCC_IDLE) && (!(val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) || ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) == ADAPTER_STATUS_RC_PRC_QUIESCENT))) { ret = 1; } } } return ret; } /* * New procedure to clear mac address reading problems on Alpha platforms * */ void FixMacAddress(nic_t * sp) { XENA_dev_config_t *bar0 = (XENA_dev_config_t *) sp->bar0; u64 val64; int i = 0; while (fix_mac[i] != END_SIGN) { writeq(fix_mac[i++], &bar0->gpio_control); val64 = readq(&bar0->gpio_control); } } /* * Input Arguments: * device private variable. * Return Value: * SUCCESS on success and -1 on failure. * Description: * This function actually turns the device on. Before this * function is called, all Registers are configured from their reset states * and shared memory is allocated but the NIC is still quiescent. On * calling this function, the device interrupts are cleared and the NIC is * literally switched on by writing into the adapter control register. */ static int startNic(struct s2io_nic *nic) { XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0; struct net_device *dev = nic->dev; register u64 val64 = 0; u16 interruptible, i; u16 subid; mac_info_t *mac_control; struct config_param *config; mac_control = &nic->mac_control; config = &nic->config; /* PRC Initialization and configuration */ for (i = 0; i < config->RxRingNum; i++) { writeq((u64) nic->rx_blocks[i][0].block_dma_addr, &bar0->prc_rxd0_n[i]); val64 = readq(&bar0->prc_ctrl_n[i]); val64 |= PRC_CTRL_RC_ENABLED; writeq(val64, &bar0->prc_ctrl_n[i]); } /* Enabling MC-RLDRAM. After enabling the device, we timeout * for around 100ms, which is approximately the time required * for the device to be ready for operation. */ val64 = readq(&bar0->mc_rldram_mrs); val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE; writeq(val64, &bar0->mc_rldram_mrs); val64 = readq(&bar0->mc_rldram_mrs); set_current_state(TASK_UNINTERRUPTIBLE); schedule_timeout(HZ / 10); /* Delay by around 100 ms. */ /* Enabling ECC Protection. */ val64 = readq(&bar0->adapter_control); val64 &= ~ADAPTER_ECC_EN; writeq(val64, &bar0->adapter_control); /* Clearing any possible Link state change interrupts that * could have popped up just before Enabling the card. */ val64 = readq(&bar0->mac_rmac_err_reg); if (val64) writeq(val64, &bar0->mac_rmac_err_reg); /* Verify if the device is ready to be enabled, if so enable * it. */ val64 = readq(&bar0->adapter_status); if (!verify_xena_quiescence(val64, nic->device_enabled_once)) { DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name); DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n", (unsigned long long) val64); return FAILURE; } /* Enable select interrupts */ interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR | TX_MAC_INTR | RX_MAC_INTR; en_dis_able_NicIntrs(nic, interruptible, ENABLE_INTRS); /* With some switches, link might be already up at this point. * Because of this weird behavior, when we enable laser, * we may not get link. We need to handle this. We cannot * figure out which switch is misbehaving. So we are forced to * make a global change. */ /* Enabling Laser. */ val64 = readq(&bar0->adapter_control); val64 |= ADAPTER_EOI_TX_ON; writeq(val64, &bar0->adapter_control); /* SXE-002: Initialize link and activity LED */ subid = nic->pdev->subsystem_device; if ((subid & 0xFF) >= 0x07) { val64 = readq(&bar0->gpio_control); val64 |= 0x0000800000000000ULL; writeq(val64, &bar0->gpio_control); val64 = 0x0411040400000000ULL; writeq(val64, (void *) ((u8 *) bar0 + 0x2700)); } /* * Here we are performing soft reset on XGXS to * force link down. Since link is already up, we will get * link state change interrupt after this reset */ writeq(0x8007051500000000ULL, &bar0->dtx_control); val64 = readq(&bar0->dtx_control); writeq(0x80070515000000E0ULL, &bar0->dtx_control); val64 = readq(&bar0->dtx_control); writeq(0x80070515001F00E4ULL, &bar0->dtx_control); val64 = readq(&bar0->dtx_control); return SUCCESS; } /* * Input Arguments: * nic - device private variable. * Return Value: * void. * Description: * Free all queued Tx buffers. */ void freeTxBuffers(struct s2io_nic *nic) { struct net_device *dev = nic->dev; struct sk_buff *skb; TxD_t *txdp; int i, j; #if DEBUG_ON int cnt = 0; #endif mac_info_t *mac_control; struct config_param *config; mac_control = &nic->mac_control; config = &nic->config; for (i = 0; i < config->TxFIFONum; i++) { for (j = 0; j < config->TxCfg[i].FifoLen - 1; j++) { txdp = mac_control->txdl_start[i] + (config->MaxTxDs * j); if (!(txdp->Control_1 & TXD_LIST_OWN_XENA)) { /* If owned by host, ignore */ continue; } skb = (struct sk_buff *) ((unsigned long) txdp-> Host_Control); if (skb == NULL) { DBG_PRINT(ERR_DBG, "%s: NULL skb ", dev->name); DBG_PRINT(ERR_DBG, "in Tx Int\n"); return; } #if DEBUG_ON cnt++; #endif dev_kfree_skb(skb); memset(txdp, 0, sizeof(TxD_t)); } #if DEBUG_ON DBG_PRINT(INTR_DBG, "%s:forcibly freeing %d skbs on FIFO%d\n", dev->name, cnt, i); #endif } } /* * Input Arguments: * nic - device private variable. * Return Value: * void. * Description: * This function does exactly the opposite of what the startNic() * function does. This function is called to stop * the device. */ static void stopNic(struct s2io_nic *nic) { XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0; register u64 val64 = 0; u16 interruptible, i; mac_info_t *mac_control; struct config_param *config; mac_control = &nic->mac_control; config = &nic->config; /* Disable all interrupts */ interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR | TX_MAC_INTR | RX_MAC_INTR; en_dis_able_NicIntrs(nic, interruptible, DISABLE_INTRS); /* Disable PRCs */ for (i = 0; i < config->RxRingNum; i++) { val64 = readq(&bar0->prc_ctrl_n[i]); val64 &= ~((u64) PRC_CTRL_RC_ENABLED); writeq(val64, &bar0->prc_ctrl_n[i]); } } /* * Input Arguments: * device private variable * Return Value: * SUCCESS on success or an appropriate -ve value on failure. * Description: * The function allocates Rx side skbs and puts the physical * address of these buffers into the RxD buffer pointers, so that the NIC * can DMA the received frame into these locations. * The NIC supports 3 receive modes, viz * 1. single buffer, * 2. three buffer and * 3. Five buffer modes. * Each mode defines how many fragments the received frame will be split * up into by the NIC. The frame is split into L3 header, L4 Header, * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself * is split into 3 fragments. As of now only single buffer mode is supported. */ int fill_rx_buffers(struct s2io_nic *nic, int ring_no) { struct net_device *dev = nic->dev; struct sk_buff *skb; RxD_t *rxdp; int off, off1, size, block_no, block_no1; int offset, offset1; u32 alloc_tab = 0; u32 alloc_cnt = nic->pkt_cnt[ring_no] - atomic_read(&nic->rx_bufs_left[ring_no]); mac_info_t *mac_control; struct config_param *config; mac_control = &nic->mac_control; config = &nic->config; if (frame_len[ring_no]) { if (frame_len[ring_no] > dev->mtu) dev->mtu = frame_len[ring_no]; size = frame_len[ring_no] + HEADER_ETHERNET_II_802_3_SIZE + HEADER_802_2_SIZE + HEADER_SNAP_SIZE; } else { size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE + HEADER_802_2_SIZE + HEADER_SNAP_SIZE; } while (alloc_tab < alloc_cnt) { block_no = mac_control->rx_curr_put_info[ring_no]. block_index; block_no1 = mac_control->rx_curr_get_info[ring_no]. block_index; off = mac_control->rx_curr_put_info[ring_no].offset; off1 = mac_control->rx_curr_get_info[ring_no].offset; offset = block_no * (MAX_RXDS_PER_BLOCK + 1) + off; offset1 = block_no1 * (MAX_RXDS_PER_BLOCK + 1) + off1; rxdp = nic->rx_blocks[ring_no][block_no]. block_virt_addr + off; if ((offset == offset1) && (rxdp->Host_Control)) { DBG_PRINT(INTR_DBG, "%s: Get and Put", dev->name); DBG_PRINT(INTR_DBG, " info equated\n"); goto end; } if (rxdp->Control_1 == END_OF_BLOCK) { mac_control->rx_curr_put_info[ring_no]. block_index++; mac_control->rx_curr_put_info[ring_no]. block_index %= nic->block_count[ring_no]; block_no = mac_control->rx_curr_put_info [ring_no].block_index; off++; off %= (MAX_RXDS_PER_BLOCK + 1); mac_control->rx_curr_put_info[ring_no].offset = off; /*rxdp = nic->rx_blocks[ring_no][block_no]. block_virt_addr + off; */ rxdp = (RxD_t *) ((unsigned long) rxdp->Control_2); DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n", dev->name, rxdp); } if (rxdp->Control_1 & RXD_OWN_XENA) { mac_control->rx_curr_put_info[ring_no]. offset = off; goto end; } skb = dev_alloc_skb(size + NET_IP_ALIGN); if (!skb) { DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name); DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n"); return -ENOMEM; } skb_reserve(skb, NET_IP_ALIGN); memset(rxdp, 0, sizeof(RxD_t)); rxdp->Buffer0_ptr = pci_map_single (nic->pdev, skb->data, size, PCI_DMA_FROMDEVICE); rxdp->Control_2 &= (~MASK_BUFFER0_SIZE); rxdp->Control_2 |= SET_BUFFER0_SIZE(size); rxdp->Host_Control = (unsigned long) (skb); rxdp->Control_1 |= RXD_OWN_XENA; off++; off %= (MAX_RXDS_PER_BLOCK + 1); mac_control->rx_curr_put_info[ring_no].offset = off; atomic_inc(&nic->rx_bufs_left[ring_no]); alloc_tab++; } end: return SUCCESS; } /* * Input Arguments: * device private variable. * Return Value: * NONE. * Description: * This function will free all Rx buffers allocated by host. */ static void freeRxBuffers(struct s2io_nic *sp) { struct net_device *dev = sp->dev; int i, j, blk = 0, off, buf_cnt = 0; RxD_t *rxdp; struct sk_buff *skb; mac_info_t *mac_control; struct config_param *config; mac_control = &sp->mac_control; config = &sp->config; for (i = 0; i < config->RxRingNum; i++) { for (j = 0, blk = 0; j < config->RxCfg[i].NumRxd; j++) { off = j % (MAX_RXDS_PER_BLOCK + 1); rxdp = sp->rx_blocks[i][blk].block_virt_addr + off; if (rxdp->Control_1 == END_OF_BLOCK) { rxdp = (RxD_t *) ((unsigned long) rxdp-> Control_2); j++; blk++; } skb = (struct sk_buff *) ((unsigned long) rxdp-> Host_Control); if (skb) { pci_unmap_single(sp->pdev, (dma_addr_t) rxdp->Buffer0_ptr, dev->mtu + HEADER_ETHERNET_II_802_3_SIZE + HEADER_802_2_SIZE + HEADER_SNAP_SIZE, PCI_DMA_FROMDEVICE); dev_kfree_skb(skb); atomic_dec(&sp->rx_bufs_left[i]); buf_cnt++; } memset(rxdp, 0, sizeof(RxD_t)); } mac_control->rx_curr_put_info[i].block_index = 0; mac_control->rx_curr_get_info[i].block_index = 0; mac_control->rx_curr_put_info[i].offset = 0; mac_control->rx_curr_get_info[i].offset = 0; atomic_set(&sp->rx_bufs_left[i], 0); DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n", dev->name, buf_cnt, i); } } /* * Input Argument: * dev - pointer to the device structure. * budget - The number of packets that were budgeted to be processed during * one pass through the 'Poll" function. * Return value: * 0 on success and 1 if there are No Rx packets to be processed. * Description: * Comes into picture only if NAPI support has been incorporated. It does * the same thing that rxIntrHandler does, but not in a interrupt context * also It will process only a given number of packets. */ #ifdef CONFIG_S2IO_NAPI static int s2io_poll(struct net_device *dev, int *budget) { nic_t *nic = dev->priv; XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0; int pkts_to_process = *budget, pkt_cnt = 0; register u64 val64 = 0; rx_curr_get_info_t offset_info; int i, block_no; u16 val16, cksum; struct sk_buff *skb; RxD_t *rxdp; mac_info_t *mac_control; struct config_param *config; mac_control = &nic->mac_control; config = &nic->config; if (pkts_to_process > dev->quota) pkts_to_process = dev->quota; val64 = readq(&bar0->rx_traffic_int); writeq(val64, &bar0->rx_traffic_int); for (i = 0; i < config->RxRingNum; i++) { if (--pkts_to_process < 0) { goto no_rx; } offset_info = mac_control->rx_curr_get_info[i]; block_no = offset_info.block_index; rxdp = nic->rx_blocks[i][block_no].block_virt_addr + offset_info.offset; while (!(rxdp->Control_1 & RXD_OWN_XENA)) { if (rxdp->Control_1 == END_OF_BLOCK) { rxdp = (RxD_t *) ((unsigned long) rxdp-> Control_2); offset_info.offset++; offset_info.offset %= (MAX_RXDS_PER_BLOCK + 1); block_no++; block_no %= nic->block_count[i]; mac_control->rx_curr_get_info[i]. offset = offset_info.offset; mac_control->rx_curr_get_info[i]. block_index = block_no; continue; } skb = (struct sk_buff *) ((unsigned long) rxdp-> Host_Control); if (skb == NULL) { DBG_PRINT(ERR_DBG, "%s: The skb is ", dev->name); DBG_PRINT(ERR_DBG, "Null in Rx Intr\n"); return 0; } val64 = RXD_GET_BUFFER0_SIZE(rxdp->Control_2); val16 = (u16) (val64 >> 48); cksum = RXD_GET_L4_CKSUM(rxdp->Control_1); pci_unmap_single(nic->pdev, (dma_addr_t) rxdp->Buffer0_ptr, dev->mtu + HEADER_ETHERNET_II_802_3_SIZE + HEADER_802_2_SIZE + HEADER_SNAP_SIZE, PCI_DMA_FROMDEVICE); rxOsmHandler(nic, val16, rxdp, i); pkt_cnt++; offset_info.offset++; offset_info.offset %= (MAX_RXDS_PER_BLOCK + 1); rxdp = nic->rx_blocks[i][block_no].block_virt_addr + offset_info.offset; mac_control->rx_curr_get_info[i].offset = offset_info.offset; } } if (!pkt_cnt) pkt_cnt = 1; for (i = 0; i < config->RxRingNum; i++) fill_rx_buffers(nic, i); dev->quota -= pkt_cnt; *budget -= pkt_cnt; netif_rx_complete(dev); /* Re enable the Rx interrupts. */ en_dis_able_NicIntrs(nic, RX_TRAFFIC_INTR, ENABLE_INTRS); return 0; no_rx: for (i = 0; i < config->RxRingNum; i++) fill_rx_buffers(nic, i); dev->quota -= pkt_cnt; *budget -= pkt_cnt; return 1; } #else /* * Input Arguments: * device private variable. * Return Value: * NONE. * Description: * If the interrupt is because of a received frame or if the * receive ring contains fresh as yet un-processed frames, this function is * called. It picks out the RxD at which place the last Rx processing had * stopped and sends the skb to the OSM's Rx handler and then increments * the offset. */ static void rxIntrHandler(struct s2io_nic *nic) { struct net_device *dev = (struct net_device *) nic->dev; XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0; rx_curr_get_info_t offset_info; RxD_t *rxdp; struct sk_buff *skb; u16 val16, cksum; register u64 val64 = 0; int i, block_no; mac_info_t *mac_control; struct config_param *config; mac_control = &nic->mac_control; config = &nic->config; #if DEBUG_ON nic->rxint_cnt++; #endif /* rx_traffic_int reg is an R1 register, hence we read and write back * the samevalue in the register to clear it. */ val64 = readq(&bar0->rx_traffic_int); writeq(val64, &bar0->rx_traffic_int); for (i = 0; i < config->RxRingNum; i++) { offset_info = mac_control->rx_curr_get_info[i]; block_no = offset_info.block_index; rxdp = nic->rx_blocks[i][block_no].block_virt_addr + offset_info.offset; while (!(rxdp->Control_1 & RXD_OWN_XENA)) { if (rxdp->Control_1 == END_OF_BLOCK) { rxdp = (RxD_t *) ((unsigned long) rxdp->Control_2); offset_info.offset++; offset_info.offset %= (MAX_RXDS_PER_BLOCK + 1); block_no++; block_no %= nic->block_count[i]; mac_control->rx_curr_get_info[i]. offset = offset_info.offset; mac_control->rx_curr_get_info[i]. block_index = block_no; continue; } skb = (struct sk_buff *) ((unsigned long) rxdp->Host_Control); if (skb == NULL) { DBG_PRINT(ERR_DBG, "%s: The skb is ", dev->name); DBG_PRINT(ERR_DBG, "Null in Rx Intr\n"); return; } val64 = RXD_GET_BUFFER0_SIZE(rxdp->Control_2); val16 = (u16) (val64 >> 48); cksum = RXD_GET_L4_CKSUM(rxdp->Control_1); pci_unmap_single(nic->pdev, (dma_addr_t) rxdp->Buffer0_ptr, dev->mtu + HEADER_ETHERNET_II_802_3_SIZE + HEADER_802_2_SIZE + HEADER_SNAP_SIZE, PCI_DMA_FROMDEVICE); rxOsmHandler(nic, val16, rxdp, i); offset_info.offset++; offset_info.offset %= (MAX_RXDS_PER_BLOCK + 1); rxdp = nic->rx_blocks[i][block_no].block_virt_addr + offset_info.offset; mac_control->rx_curr_get_info[i].offset = offset_info.offset; } } } #endif /* * Input Arguments: * device private variable * Return Value: * NONE * Description: * If an interrupt was raised to indicate DMA complete of the * Tx packet, this function is called. It identifies the last TxD whose buffer * was freed and frees all skbs whose data have already DMA'ed into the NICs * internal memory. */ static void txIntrHandler(struct s2io_nic *nic) { XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0; struct net_device *dev = (struct net_device *) nic->dev; tx_curr_get_info_t offset_info, offset_info1; struct sk_buff *skb; TxD_t *txdlp; register u64 val64 = 0; int i; u16 j, frg_cnt; mac_info_t *mac_control; struct config_param *config; #if DEBUG_ON int cnt = 0; nic->txint_cnt++; #endif mac_control = &nic->mac_control; config = &nic->config; /* tx_traffic_int reg is an R1 register, hence we read and write * back the samevalue in the register to clear it. */ val64 = readq(&bar0->tx_traffic_int); writeq(val64, &bar0->tx_traffic_int); for (i = 0; i < config->TxFIFONum; i++) { offset_info = mac_control->tx_curr_get_info[i]; offset_info1 = mac_control->tx_curr_put_info[i]; txdlp = mac_control->txdl_start[i] + (config->MaxTxDs * offset_info.offset); while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) && (offset_info.offset != offset_info1.offset) && (txdlp->Host_Control)) { /* Check for TxD errors */ if (txdlp->Control_1 & TXD_T_CODE) { unsigned long long err; err = txdlp->Control_1 & TXD_T_CODE; DBG_PRINT(ERR_DBG, "***TxD error %llx\n", err); } skb = (struct sk_buff *) ((unsigned long) txdlp->Host_Control); if (skb == NULL) { DBG_PRINT(ERR_DBG, "%s: Null skb ", dev->name); DBG_PRINT(ERR_DBG, "in Tx Free Intr\n"); return; } nic->tx_pkt_count++; frg_cnt = skb_shinfo(skb)->nr_frags; /* For unfragmented skb */ pci_unmap_single(nic->pdev, (dma_addr_t) txdlp->Buffer_Pointer, skb->len - skb->data_len, PCI_DMA_TODEVICE); if (frg_cnt) { TxD_t *temp = txdlp; txdlp++; for (j = 0; j < frg_cnt; j++, txdlp++) { skb_frag_t *frag = &skb_shinfo(skb)->frags[j]; pci_unmap_page(nic->pdev, (dma_addr_t) txdlp-> Buffer_Pointer, frag->size, PCI_DMA_TODEVICE); } txdlp = temp; } memset(txdlp, 0, (sizeof(TxD_t) * config->MaxTxDs)); /* Updating the statistics block */ nic->stats.tx_packets++; nic->stats.tx_bytes += skb->len; #if DEBUG_ON nic->txpkt_bytes += skb->len; cnt++; #endif dev_kfree_skb_irq(skb); offset_info.offset++; offset_info.offset %= offset_info.fifo_len + 1; txdlp = mac_control->txdl_start[i] + (config->MaxTxDs * offset_info.offset); mac_control->tx_curr_get_info[i].offset = offset_info.offset; } #if DEBUG_ON DBG_PRINT(INTR_DBG, "%s: freed %d Tx Pkts\n", dev->name, cnt); #endif } spin_lock(&nic->tx_lock); if (netif_queue_stopped(dev)) netif_wake_queue(dev); spin_unlock(&nic->tx_lock); } /* * Input Arguments: * device private variable * Return Value: * NONE * Description: * If the interrupt was neither because of Rx packet or Tx * complete, this function is called. If the interrupt was to indicate a loss * of link, the OSM link status handler is invoked for any other alarm * interrupt the block that raised the interrupt is displayed and a H/W reset * is issued. */ static void alarmIntrHandler(struct s2io_nic *nic) { struct net_device *dev = (struct net_device *) nic->dev; XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0; register u64 val64 = 0, err_reg = 0; /* Handling link status change error Intr */ err_reg = readq(&bar0->mac_rmac_err_reg); if (err_reg & RMAC_LINK_STATE_CHANGE_INT) { schedule_work(&nic->set_link_task); } /* Handling SERR errors by stopping device Xmit queue and forcing * a H/W reset. */ val64 = readq(&bar0->serr_source); if (val64 & SERR_SOURCE_ANY) { DBG_PRINT(ERR_DBG, "%s: Device indicates ", dev->name); DBG_PRINT(ERR_DBG, "serious error!!\n"); netif_stop_queue(dev); } /* Other type of interrupts are not being handled now, TODO*/ } /* * Input Argument: * sp - private member of the device structure, which is a pointer to the * s2io_nic structure. * Return value: * SUCCESS on success and FAILURE on failure. * Description: * Function that waits for a command to Write into RMAC ADDR DATA registers * to be completed and returns either success or error depending on whether * the command was complete or not. */ int waitForCmdComplete(nic_t * sp) { XENA_dev_config_t *bar0 = (XENA_dev_config_t *) sp->bar0; int ret = FAILURE, cnt = 0; u64 val64; while (TRUE) { val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | RMAC_ADDR_CMD_MEM_OFFSET(0); writeq(val64, &bar0->rmac_addr_cmd_mem); val64 = readq(&bar0->rmac_addr_cmd_mem); if (!val64) { ret = SUCCESS; break; } set_current_state(TASK_UNINTERRUPTIBLE); schedule_timeout(HZ / 20); if (cnt++ > 10) break; } return ret; } /* * Input Argument: * sp - private member of the device structure, which is a pointer to the * s2io_nic structure. * Return value: * void. * Description: * Function to Reset the card. This function then also restores the previously * saved PCI configuration space registers as the card reset also resets the * Configration space. */ void s2io_reset(nic_t * sp) { XENA_dev_config_t *bar0 = (XENA_dev_config_t *) sp->bar0; u64 val64; u16 subid; val64 = SW_RESET_ALL; writeq(val64, &bar0->sw_reset); /* At this stage, if the PCI write is indeed completed, the * card is reset and so is the PCI Config space of the device. * So a read cannot be issued at this stage on any of the * registers to ensure the write into "sw_reset" register * has gone through. * Question: Is there any system call that will explicitly force * all the write commands still pending on the bus to be pushed * through? * As of now I'am just giving a 250ms delay and hoping that the * PCI write to sw_reset register is done by this time. */ set_current_state(TASK_UNINTERRUPTIBLE); schedule_timeout(HZ / 4); /* Restore the PCI state saved during initializarion. */ pci_restore_state(sp->pdev, sp->config_space); s2io_init_pci(sp); set_current_state(TASK_UNINTERRUPTIBLE); schedule_timeout(HZ / 4); /* SXE-002: Configure link and activity LED to turn it off */ subid = sp->pdev->subsystem_device; if ((subid & 0xFF) >= 0x07) { val64 = readq(&bar0->gpio_control); val64 |= 0x0000800000000000ULL; writeq(val64, &bar0->gpio_control); val64 = 0x0411040400000000ULL; writeq(val64, (void *) ((u8 *) bar0 + 0x2700)); } sp->device_enabled_once = FALSE; } /* * Input Argument: * sp - private member of the device structure, which is a pointer to the * s2io_nic structure. * Return value: * SUCCESS on success and FAILURE on failure. * Description: * Function to set the swapper control on the card correctly depending on the * 'endianness' of the system. */ int s2io_set_swapper(nic_t * sp) { struct net_device *dev = sp->dev; XENA_dev_config_t *bar0 = (XENA_dev_config_t *) sp->bar0; u64 val64; /* Set proper endian settings and verify the same by reading the PIF * Feed-back register. */ #ifdef __BIG_ENDIAN /* The device by default set to a big endian format, so a big endian * driver need not set anything. */ writeq(0xffffffffffffffffULL, &bar0->swapper_ctrl); val64 = (SWAPPER_CTRL_PIF_R_FE | SWAPPER_CTRL_PIF_R_SE | SWAPPER_CTRL_PIF_W_FE | SWAPPER_CTRL_PIF_W_SE | SWAPPER_CTRL_TXP_FE | SWAPPER_CTRL_TXP_SE | SWAPPER_CTRL_TXD_R_FE | SWAPPER_CTRL_TXD_W_FE | SWAPPER_CTRL_TXF_R_FE | SWAPPER_CTRL_RXD_R_FE | SWAPPER_CTRL_RXD_W_FE | SWAPPER_CTRL_RXF_W_FE | SWAPPER_CTRL_XMSI_FE | SWAPPER_CTRL_XMSI_SE | SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE); writeq(val64, &bar0->swapper_ctrl); #else /* Initially we enable all bits to make it accessible by the driver, * then we selectively enable only those bits that we want to set. */ writeq(0xffffffffffffffffULL, &bar0->swapper_ctrl); val64 = (SWAPPER_CTRL_PIF_R_FE | SWAPPER_CTRL_PIF_R_SE | SWAPPER_CTRL_PIF_W_FE | SWAPPER_CTRL_PIF_W_SE | SWAPPER_CTRL_TXP_FE | SWAPPER_CTRL_TXP_SE | SWAPPER_CTRL_TXD_R_FE | SWAPPER_CTRL_TXD_R_SE | SWAPPER_CTRL_TXD_W_FE | SWAPPER_CTRL_TXD_W_SE | SWAPPER_CTRL_TXF_R_FE | SWAPPER_CTRL_RXD_R_FE | SWAPPER_CTRL_RXD_R_SE | SWAPPER_CTRL_RXD_W_FE | SWAPPER_CTRL_RXD_W_SE | SWAPPER_CTRL_RXF_W_FE | SWAPPER_CTRL_XMSI_FE | SWAPPER_CTRL_XMSI_SE | SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE); writeq(val64, &bar0->swapper_ctrl); #endif /* Verifying if endian settings are accurate by reading a feedback * register. */ val64 = readq(&bar0->pif_rd_swapper_fb); if (val64 != 0x0123456789ABCDEFULL) { /* Endian settings are incorrect, calls for another dekko. */ DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ", dev->name); DBG_PRINT(ERR_DBG, "feedback read %llx\n", (unsigned long long) val64); return FAILURE; } return SUCCESS; } /* ********************************************************* * * Functions defined below concern the OS part of the driver * * ********************************************************* */ /* * Input Argument: * dev - pointer to the device structure. * Return value: * '0' on success and an appropriate (-)ve integer as defined in errno.h * file on failure. * Description: * This function is the open entry point of the driver. It mainly calls a * function to allocate Rx buffers and inserts them into the buffer * descriptors and then enables the Rx part of the NIC. */ int s2io_open(struct net_device *dev) { nic_t *sp = dev->priv; int i, ret = 0, err = 0; mac_info_t *mac_control; struct config_param *config; /* Make sure you have link off by default every time Nic is initialized*/ netif_carrier_off(dev); sp->last_link_state = LINK_DOWN; /* Initialize the H/W I/O registers */ if (initNic(sp) != 0) { DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n", dev->name); return -ENODEV; } /* After proper initialization of H/W, register ISR */ err = request_irq((int) sp->irq, s2io_isr, SA_SHIRQ, sp->name, dev); if (err) { s2io_reset(sp); DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n", dev->name); return err; } if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) { DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n"); s2io_reset(sp); return -ENODEV; } /* Setting its receive mode */ s2io_set_multicast(dev); /* Initializing the Rx buffers. For now we are considering only 1 Rx ring * and initializing buffers into 1016 RxDs or 8 Rx blocks */ mac_control = &sp->mac_control; config = &sp->config; for (i = 0; i < config->RxRingNum; i++) { if ((ret = fill_rx_buffers(sp, i))) { DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n", dev->name); s2io_reset(sp); free_irq(dev->irq, dev); freeRxBuffers(sp); return -ENOMEM; } DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i, atomic_read(&sp->rx_bufs_left[i])); } /* Enable tasklet for the device */ tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev); /* Enable Rx Traffic and interrupts on the NIC */ if (startNic(sp)) { DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name); tasklet_kill(&sp->task); s2io_reset(sp); free_irq(dev->irq, dev); freeRxBuffers(sp); return -ENODEV; } sp->device_close_flag = FALSE; /* Device is up and running. */ netif_start_queue(dev); return 0; } /* * Input Argument/s: * dev - device pointer. * Return value: * '0' on success and an appropriate (-)ve integer as defined in errno.h * file on failure. * Description: * This is the stop entry point of the driver. It needs to undo exactly * whatever was done by the open entry point, thus it's usually referred to * as the close function. Among other things this function mainly stops the * Rx side of the NIC and frees all the Rx buffers in the Rx rings. */ int s2io_close(struct net_device *dev) { nic_t *sp = dev->priv; XENA_dev_config_t *bar0 = (XENA_dev_config_t *) sp->bar0; register u64 val64 = 0; u16 cnt = 0; spin_lock(&sp->isr_lock); netif_stop_queue(dev); /* disable Tx and Rx traffic on the NIC */ stopNic(sp); spin_unlock(&sp->isr_lock); /* If the device tasklet is running, wait till its done before killing it */ while (atomic_read(&(sp->tasklet_status))) { set_current_state(TASK_UNINTERRUPTIBLE); schedule_timeout(HZ / 10); } tasklet_kill(&sp->task); /* Check if the device is Quiescent and then Reset the NIC */ do { val64 = readq(&bar0->adapter_status); if (verify_xena_quiescence(val64, sp->device_enabled_once)) { break; } set_current_state(TASK_UNINTERRUPTIBLE); schedule_timeout(HZ / 20); cnt++; if (cnt == 10) { DBG_PRINT(ERR_DBG, "s2io_close:Device not Quiescent "); DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n", (unsigned long long) val64); break; } } while (1); s2io_reset(sp); /* Free the Registered IRQ */ free_irq(dev->irq, dev); /* Free all Tx Buffers waiting for transmission */ freeTxBuffers(sp); /* Free all Rx buffers allocated by host */ freeRxBuffers(sp); sp->device_close_flag = TRUE; /* Device is shut down. */ return 0; } /* * Input Argument/s: * skb - the socket buffer containing the Tx data. * dev - device pointer. * Return value: * '0' on success & 1 on failure. * NOTE: when device cant queue the pkt, just the trans_start variable will * not be upadted. * Description: * This function is the Tx entry point of the driver. S2IO NIC supports * certain protocol assist features on Tx side, namely CSO, S/G, LSO. */ int s2io_xmit(struct sk_buff *skb, struct net_device *dev) { nic_t *sp = dev->priv; u16 off, txd_len, frg_cnt, frg_len, i, queue, off1, queue_len; register u64 val64; TxD_t *txdp; TxFIFO_element_t *tx_fifo; unsigned long flags; #ifdef NETIF_F_TSO int mss; #endif mac_info_t *mac_control; struct config_param *config; mac_control = &sp->mac_control; config = &sp->config; DBG_PRINT(TX_DBG, "%s: In S2IO Tx routine\n", dev->name); spin_lock_irqsave(&sp->tx_lock, flags); queue = 0; /* Multi FIFO Tx is disabled for now. */ if (!queue && tx_prio) { u8 x = (skb->data)[5]; queue = x % config->TxFIFONum; } off = (u16) mac_control->tx_curr_put_info[queue].offset; off1 = (u16) mac_control->tx_curr_get_info[queue].offset; txd_len = mac_control->txdl_len; txdp = mac_control->txdl_start[queue] + (config->MaxTxDs * off); queue_len = mac_control->tx_curr_put_info[queue].fifo_len + 1; /* Avoid "put" pointer going beyond "get" pointer */ if (txdp->Host_Control || (((off + 1) % queue_len) == off1)) { DBG_PRINT(ERR_DBG, "Error in xmit, No free TXDs.\n"); netif_stop_queue(dev); dev_kfree_skb(skb); spin_unlock_irqrestore(&sp->tx_lock, flags); return 0; } #ifdef NETIF_F_TSO mss = skb_shinfo(skb)->tso_size; if (mss) { txdp->Control_1 |= TXD_TCP_LSO_EN; txdp->Control_1 |= TXD_TCP_LSO_MSS(mss); } #endif frg_cnt = skb_shinfo(skb)->nr_frags; frg_len = skb->len - skb->data_len; txdp->Host_Control = (unsigned long) skb; txdp->Buffer_Pointer = pci_map_single (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE); if (skb->ip_summed == CHECKSUM_HW) { txdp->Control_2 |= (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN | TXD_TX_CKO_UDP_EN); } txdp->Control_2 |= config->TxIntrType; txdp->Control_1 |= (TXD_BUFFER0_SIZE(frg_len) | TXD_GATHER_CODE_FIRST); txdp->Control_1 |= TXD_LIST_OWN_XENA; /* For fragmented SKB. */ for (i = 0; i < frg_cnt; i++) { skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; txdp++; txdp->Buffer_Pointer = (u64) pci_map_page (sp->pdev, frag->page, frag->page_offset, frag->size, PCI_DMA_TODEVICE); txdp->Control_1 |= TXD_BUFFER0_SIZE(frag->size); } txdp->Control_1 |= TXD_GATHER_CODE_LAST; tx_fifo = mac_control->tx_FIFO_start[queue]; val64 = (mac_control->txdl_start_phy[queue] + (sizeof(TxD_t) * txd_len * off)); writeq(val64, &tx_fifo->TxDL_Pointer); val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST | TX_FIFO_LAST_LIST); #ifdef NETIF_F_TSO if (mss) val64 |= TX_FIFO_SPECIAL_FUNC; #endif writeq(val64, &tx_fifo->List_Control); off++; off %= mac_control->tx_curr_put_info[queue].fifo_len + 1; mac_control->tx_curr_put_info[queue].offset = off; /* Avoid "put" pointer going beyond "get" pointer */ if (((off + 1) % queue_len) == off1) { DBG_PRINT(TX_DBG, "No free TxDs for xmit, Put: 0x%x Get:0x%x\n", off, off1); netif_stop_queue(dev); } dev->trans_start = jiffies; spin_unlock_irqrestore(&sp->tx_lock, flags); return 0; } /* * Input Argument/s: * irq: the irq of the device. * dev_id: a void pointer to the dev structure of the NIC. * ptregs: pointer to the registers pushed on the stack. * Return value: * void. * Description: * This function is the ISR handler of the device. It identifies the reason * for the interrupt and calls the relevant service routines. * As a contongency measure, this ISR allocates the recv buffers, if their * numbers are below the panic value which is presently set to 25% of the * original number of rcv buffers allocated. */ static irqreturn_t s2io_isr(int irq, void *dev_id, struct pt_regs *regs) { struct net_device *dev = (struct net_device *) dev_id; nic_t *sp = dev->priv; XENA_dev_config_t *bar0 = (XENA_dev_config_t *) sp->bar0; u64 reason = 0, general_mask = 0; mac_info_t *mac_control; struct config_param *config; mac_control = &sp->mac_control; config = &sp->config; spin_lock(&sp->isr_lock); /* Identify the cause for interrupt and call the appropriate * interrupt handler. Causes for the interrupt could be; * 1. Rx of packet. * 2. Tx complete. * 3. Link down. * 4. Error in any functional blocks of the NIC. */ reason = readq(&bar0->general_int_status); if (!reason) { /* The interrupt was not raised by Xena. */ spin_unlock(&sp->isr_lock); return IRQ_NONE; } /* Mask the interrupts on the NIC */ general_mask = readq(&bar0->general_int_mask); writeq(0xFFFFFFFFFFFFFFFFULL, &bar0->general_int_mask); #if DEBUG_ON sp->int_cnt++; #endif /* If Intr is because of Tx Traffic */ if (reason & GEN_INTR_TXTRAFFIC) { txIntrHandler(sp); } /* If Intr is because of an error */ if (reason & (GEN_ERROR_INTR)) alarmIntrHandler(sp); #ifdef CONFIG_S2IO_NAPI if (reason & GEN_INTR_RXTRAFFIC) { if (netif_rx_schedule_prep(dev)) { en_dis_able_NicIntrs(sp, RX_TRAFFIC_INTR, DISABLE_INTRS); /* We retake the snap shot of the general interrupt * register. */ general_mask = readq(&bar0->general_int_mask); __netif_rx_schedule(dev); } } #else /* If Intr is because of Rx Traffic */ if (reason & GEN_INTR_RXTRAFFIC) { rxIntrHandler(sp); } #endif /* If the Rx buffer count is below the panic threshold then reallocate the * buffers from the interrupt handler itself, else schedule a tasklet to * reallocate the buffers. */ #if 1 { int i; for (i = 0; i < config->RxRingNum; i++) { int rxb_size = atomic_read(&sp->rx_bufs_left[i]); int level = rx_buffer_level(sp, rxb_size, i); if ((level == PANIC) && (!TASKLET_IN_USE)) { int ret; DBG_PRINT(ERR_DBG, "%s: Rx BD hit ", dev->name); DBG_PRINT(ERR_DBG, "PANIC levels\n"); if ((ret = fill_rx_buffers(sp, i)) == -ENOMEM) { DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name); DBG_PRINT(ERR_DBG, " in ISR!!\n"); writeq(general_mask, &bar0->general_int_mask); spin_unlock(&sp->isr_lock); return IRQ_HANDLED; } clear_bit(0, (unsigned long *) (&sp->tasklet_status)); } else if ((level == LOW) && (!atomic_read(&sp->tasklet_status))) { tasklet_schedule(&sp->task); } } } #else tasklet_schedule(&sp->task); #endif /* Unmask all the previously enabled interrupts on the NIC */ writeq(general_mask, &bar0->general_int_mask); spin_unlock(&sp->isr_lock); return IRQ_HANDLED; } /* * Input Argument/s: * dev - pointer to the device structure. * Return value: * pointer to the updated net_device_stats structure. * Description: * This function updates the device statistics structure in the s2io_nic * structure and returns a pointer to the same. */ struct net_device_stats *s2io_get_stats(struct net_device *dev) { nic_t *sp = dev->priv; mac_info_t *mac_control; struct config_param *config; mac_control = &sp->mac_control; config = &sp->config; sp->stats.tx_errors = mac_control->StatsInfo->tmac_any_err_frms; sp->stats.rx_errors = mac_control->StatsInfo->rmac_drop_frms; sp->stats.multicast = mac_control->StatsInfo->rmac_vld_mcst_frms; sp->stats.rx_length_errors = mac_control->StatsInfo->rmac_long_frms; return (&sp->stats); } /* * Input Argument/s: * dev - pointer to the device structure * Return value: * void. * Description: * This function is a driver entry point which gets called by the kernel * whenever multicast addresses must be enabled/disabled. This also gets * called to set/reset promiscuous mode. Depending on the deivce flag, we * determine, if multicast address must be enabled or if promiscuous mode * is to be disabled etc. */ static void s2io_set_multicast(struct net_device *dev) { int i, j, prev_cnt; struct dev_mc_list *mclist; nic_t *sp = dev->priv; XENA_dev_config_t *bar0 = (XENA_dev_config_t *) sp->bar0; u64 val64 = 0, multi_mac = 0x010203040506ULL, mask = 0xfeffffffffffULL; u64 dis_addr = 0xffffffffffffULL, mac_addr = 0; void *add; if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) { /* Enable all Multicast addresses */ writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac), &bar0->rmac_addr_data0_mem); writeq(RMAC_ADDR_DATA1_MEM_MASK(mask), &bar0->rmac_addr_data1_mem); val64 = RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET); writeq(val64, &bar0->rmac_addr_cmd_mem); /* Wait till command completes */ waitForCmdComplete(sp); sp->m_cast_flg = 1; sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET; } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) { /* Disable all Multicast addresses */ writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr), &bar0->rmac_addr_data0_mem); val64 = RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos); writeq(val64, &bar0->rmac_addr_cmd_mem); /* Wait till command completes */ waitForCmdComplete(sp); sp->m_cast_flg = 0; sp->all_multi_pos = 0; } if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) { /* Put the NIC into promiscuous mode */ add = (void *) &bar0->mac_cfg; val64 = readq(&bar0->mac_cfg); val64 |= MAC_CFG_RMAC_PROM_ENABLE; writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); writel((u32) val64, add); writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); writel((u32) (val64 >> 32), (add + 4)); val64 = readq(&bar0->mac_cfg); sp->promisc_flg = 1; DBG_PRINT(ERR_DBG, "%s: entered promiscuous mode\n", dev->name); } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) { /* Remove the NIC from promiscuous mode */ add = (void *) &bar0->mac_cfg; val64 = readq(&bar0->mac_cfg); val64 &= ~MAC_CFG_RMAC_PROM_ENABLE; writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); writel((u32) val64, add); writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); writel((u32) (val64 >> 32), (add + 4)); val64 = readq(&bar0->mac_cfg); sp->promisc_flg = 0; DBG_PRINT(ERR_DBG, "%s: left promiscuous mode\n", dev->name); } /* Update individual M_CAST address list */ if ((!sp->m_cast_flg) && dev->mc_count) { if (dev->mc_count > (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) { DBG_PRINT(ERR_DBG, "%s: No more Rx filters ", dev->name); DBG_PRINT(ERR_DBG, "can be added, please enable "); DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n"); return; } prev_cnt = sp->mc_addr_count; sp->mc_addr_count = dev->mc_count; /* Clear out the previous list of Mc in the H/W. */ for (i = 0; i < prev_cnt; i++) { writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr), &bar0->rmac_addr_data0_mem); val64 = RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | RMAC_ADDR_CMD_MEM_OFFSET (MAC_MC_ADDR_START_OFFSET + i); writeq(val64, &bar0->rmac_addr_cmd_mem); /* Wait for command completes */ if (waitForCmdComplete(sp)) { DBG_PRINT(ERR_DBG, "%s: Adding ", dev->name); DBG_PRINT(ERR_DBG, "Multicasts failed\n"); return; } } /* Create the new Rx filter list and update the same in H/W. */ for (i = 0, mclist = dev->mc_list; i < dev->mc_count; i++, mclist = mclist->next) { memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr, ETH_ALEN); for (j = 0; j < ETH_ALEN; j++) { mac_addr |= mclist->dmi_addr[j]; mac_addr <<= 8; } writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr), &bar0->rmac_addr_data0_mem); val64 = RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | RMAC_ADDR_CMD_MEM_OFFSET (i + MAC_MC_ADDR_START_OFFSET); writeq(val64, &bar0->rmac_addr_cmd_mem); /* Wait for command completes */ if (waitForCmdComplete(sp)) { DBG_PRINT(ERR_DBG, "%s: Adding ", dev->name); DBG_PRINT(ERR_DBG, "Multicasts failed\n"); return; } } } } /* * Input Argument/s: * dev - pointer to the device structure. * new_mac - a uchar pointer to the new mac address which is to be set. * Return value: * SUCCESS on success and an appropriate (-)ve integer as defined in errno.h * file on failure. * Description: * This procedure will program the Xframe to receive frames with new * Mac Address */ int s2io_set_mac_addr(struct net_device *dev, u8 * addr) { nic_t *sp = dev->priv; XENA_dev_config_t *bar0 = (XENA_dev_config_t *) sp->bar0; register u64 val64, mac_addr = 0; int i; /* * Set the new MAC address as the new unicast filter and reflect this * change on the device address registered with the OS. It will be * at offset 0. */ for (i = 0; i < ETH_ALEN; i++) { mac_addr <<= 8; mac_addr |= addr[i]; } writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr), &bar0->rmac_addr_data0_mem); val64 = RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | RMAC_ADDR_CMD_MEM_OFFSET(0); writeq(val64, &bar0->rmac_addr_cmd_mem); /* Wait till command completes */ if (waitForCmdComplete(sp)) { DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name); return FAILURE; } return SUCCESS; } /* * Input Argument/s: * sp - private member of the device structure, which is a pointer to the * s2io_nic structure. * info - pointer to the structure with parameters given by ethtool to set * link information. * Return value: * 0 on success. * Description: * The function sets different link parameters provided by the user onto * the NIC. */ static int s2io_ethtool_sset(struct net_device *dev, struct ethtool_cmd *info) { nic_t *sp = dev->priv; if ((info->autoneg == AUTONEG_ENABLE) || (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL)) return -EINVAL; else { s2io_close(sp->dev); s2io_open(sp->dev); } return 0; } /* * Input Argument/s: * sp - private member of the device structure, which is a pointer to the * s2io_nic structure. * info - pointer to the structure with parameters given by ethtool to return * link information. * Return value: * void * Description: * Returns link specefic information like speed, duplex etc.. to ethtool. */ int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info) { nic_t *sp = dev->priv; info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE); info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE); info->port = PORT_FIBRE; /* info->transceiver?? TODO */ if (netif_carrier_ok(sp->dev)) { info->speed = 10000; info->duplex = DUPLEX_FULL; } else { info->speed = -1; info->duplex = -1; } info->autoneg = AUTONEG_DISABLE; return 0; } /* * Input Argument/s: * sp - private member of the device structure, which is a pointer to the * s2io_nic structure. * info - pointer to the structure with parameters given by ethtool to return * driver information. * Return value: * void * Description: * Returns driver specefic information like name, version etc.. to ethtool. */ static void s2io_ethtool_gdrvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { nic_t *sp = dev->priv; strncpy(info->driver, s2io_driver_name, sizeof(s2io_driver_name)); strncpy(info->version, s2io_driver_version, sizeof(s2io_driver_version)); strncpy(info->fw_version, "", 32); strncpy(info->bus_info, sp->pdev->slot_name, 32); info->regdump_len = XENA_REG_SPACE; info->eedump_len = XENA_EEPROM_SPACE; info->testinfo_len = S2IO_TEST_LEN; info->n_stats = S2IO_STAT_LEN; } /* * Input Argument/s: * sp - private member of the device structure, which is a pointer to the * s2io_nic structure. * regs - pointer to the structure with parameters given by ethtool for * dumping the registers. * reg_space - The input argumnet into which all the registers are dumped. * Return value: * void * Description: * Dumps the entire register space of xFrame NIC into the user given buffer * area. */ static void s2io_ethtool_gregs(struct net_device *dev, struct ethtool_regs *regs, void *space) { int i; u64 reg; u8 *reg_space = (u8 *) space; nic_t *sp = dev->priv; regs->len = XENA_REG_SPACE; regs->version = sp->pdev->subsystem_device; for (i = 0; i < regs->len; i += 8) { reg = readq((void *) (sp->bar0 + i)); memcpy((reg_space + i), ®, 8); } } /* * Input Argument/s: * data - address of the private member of the device structure, which * is a pointer to the s2io_nic structure, provided as an u32. * Return value: * void * Description: * This is actually the timer function that alternates the adapter LED bit * of the adapter control bit to set/reset every time on invocation. * The timer is set for 1/2 a second, hence tha NIC blinks once every second. */ static void s2io_phy_id(unsigned long data) { nic_t *sp = (nic_t *) data; XENA_dev_config_t *bar0 = (XENA_dev_config_t *) sp->bar0; u64 val64 = 0; u16 subid; subid = sp->pdev->subsystem_device; if ((subid & 0xFF) >= 0x07) { val64 = readq(&bar0->gpio_control); val64 ^= GPIO_CTRL_GPIO_0; writeq(val64, &bar0->gpio_control); } else { val64 = readq(&bar0->adapter_control); val64 ^= ADAPTER_LED_ON; writeq(val64, &bar0->adapter_control); } mod_timer(&sp->id_timer, jiffies + HZ / 2); } /* * Input Argument/s: * sp - private member of the device structure, which is a pointer to the * s2io_nic structure. * id - pointer to the structure with identification parameters given by * ethtool. * Return value: * int , returns '0' on success * Description: * Used to physically identify the NIC on the system. The Link LED will blink * for a time specified by the user for identification. * NOTE: The Link has to be Up to be able to blink the LED. Hence * identification is possible only if it's link is up. */ static int s2io_ethtool_idnic(struct net_device *dev, u32 data) { u64 val64 = 0; nic_t *sp = dev->priv; XENA_dev_config_t *bar0 = (XENA_dev_config_t *) sp->bar0; u16 subid; subid = sp->pdev->subsystem_device; if ((subid & 0xFF) < 0x07) { val64 = readq(&bar0->adapter_control); if (!(val64 & ADAPTER_CNTL_EN)) { printk(KERN_ERR "Adapter Link down, cannot blink LED\n"); return -EFAULT; } } if (sp->id_timer.function == NULL) { init_timer(&sp->id_timer); sp->id_timer.function = s2io_phy_id; sp->id_timer.data = (unsigned long) sp; } mod_timer(&sp->id_timer, jiffies); set_current_state(TASK_INTERRUPTIBLE); if (data) schedule_timeout(data * HZ); else schedule_timeout(MAX_SCHEDULE_TIMEOUT); del_timer_sync(&sp->id_timer); return 0; } /* * Input Argument/s: * sp - private member of the device structure, which is a pointer to the * s2io_nic structure. * ep - pointer to the structure with pause parameters given by ethtool. * Return value: * void * Description: * Returns the Pause frame generation and reception capability of the NIC. */ static void s2io_ethtool_getpause_data(struct net_device *dev, struct ethtool_pauseparam *ep) { u64 val64; nic_t *sp = dev->priv; XENA_dev_config_t *bar0 = (XENA_dev_config_t *) sp->bar0; val64 = readq(&bar0->rmac_pause_cfg); if (val64 & RMAC_PAUSE_GEN_ENABLE) ep->tx_pause = TRUE; if (val64 & RMAC_PAUSE_RX_ENABLE) ep->rx_pause = TRUE; ep->autoneg = FALSE; } /* * Input Argument/s: * sp - private member of the device structure, which is a pointer to the * s2io_nic structure. * ep - pointer to the structure with pause parameters given by ethtool. * Return value: * int, returns '0' on Success * Description: * It can be used to set or reset Pause frame generation or reception support * of the NIC. */ int s2io_ethtool_setpause_data(struct net_device *dev, struct ethtool_pauseparam *ep) { u64 val64; nic_t *sp = dev->priv; XENA_dev_config_t *bar0 = (XENA_dev_config_t *) sp->bar0; val64 = readq(&bar0->rmac_pause_cfg); if (ep->tx_pause) val64 |= RMAC_PAUSE_GEN_ENABLE; else val64 &= ~RMAC_PAUSE_GEN_ENABLE; if (ep->rx_pause) val64 |= RMAC_PAUSE_RX_ENABLE; else val64 &= ~RMAC_PAUSE_RX_ENABLE; writeq(val64, &bar0->rmac_pause_cfg); return 0; } /* * Input Argument/s: * sp - private member of the device structure, which is a pointer to the * s2io_nic structure. * off - offset at which the data must be written * Return value: * -1 on failure and the value read from the Eeprom if successful. * Description: * Will read 4 bytes of data from the user given offset and return the * read data. * NOTE: Will allow to read only part of the EEPROM visible through the * I2C bus. */ #define S2IO_DEV_ID 5 static u32 readEeprom(nic_t * sp, int off) { u32 data = -1, exit_cnt = 0; u64 val64; XENA_dev_config_t *bar0 = (XENA_dev_config_t *) sp->bar0; val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) | I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ | I2C_CONTROL_CNTL_START; writeq(val64, &bar0->i2c_control); while (exit_cnt < 5) { val64 = readq(&bar0->i2c_control); if (I2C_CONTROL_CNTL_END(val64)) { data = I2C_CONTROL_GET_DATA(val64); break; } set_current_state(TASK_UNINTERRUPTIBLE); schedule_timeout(HZ / 20); exit_cnt++; } return data; } /* * Input Argument/s: * sp - private member of the device structure, which is a pointer to the * s2io_nic structure. * off - offset at which the data must be written * data - The data that is to be written * cnt - Number of bytes of the data that are actually to be written into * the Eeprom. (max of 3) * Return value: * '0' on success, -1 on failure. * Description: * Actually writes the relevant part of the data value into the Eeprom * through the I2C bus. */ static int writeEeprom(nic_t * sp, int off, u32 data, int cnt) { int exit_cnt = 0, ret = -1; u64 val64; XENA_dev_config_t *bar0 = (XENA_dev_config_t *) sp->bar0; val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) | I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA(data) | I2C_CONTROL_CNTL_START; writeq(val64, &bar0->i2c_control); while (exit_cnt < 5) { val64 = readq(&bar0->i2c_control); if (I2C_CONTROL_CNTL_END(val64)) { if (!(val64 & I2C_CONTROL_NACK)) ret = 0; break; } set_current_state(TASK_UNINTERRUPTIBLE); schedule_timeout(HZ / 20); exit_cnt++; } return ret; } /* * A helper function used to invert the 4 byte u32 data field * byte by byte. This will be used by the Read Eeprom function * for display purposes. */ u32 inv(u32 data) { static u32 ret = 0; if (data) { u8 c = data; ret = ((ret << 8) + c); data >>= 8; inv(data); } return ret; } /* * Input Argument/s: * sp - private member of the device structure, which is a pointer to the * s2io_nic structure. * eeprom - pointer to the user level structure provided by ethtool, * containing all relevant information. * data_buf - user defined value to be written into Eeprom. * Return value: * int '0' on success * Description: * Reads the values stored in the Eeprom at given offset for a given length. * Stores these values int the input argument data buffer 'data_buf' and * returns these to the caller (ethtool.) */ int s2io_ethtool_geeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 * data_buf) { u32 data, i, valid; nic_t *sp = dev->priv; eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16); if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE)) eeprom->len = XENA_EEPROM_SPACE - eeprom->offset; for (i = 0; i < eeprom->len; i += 4) { data = readEeprom(sp, eeprom->offset + i); if (data < 0) { DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n"); return -EFAULT; } valid = inv(data); memcpy((data_buf + i), &valid, 4); } return 0; } /* * Input Argument/s: * sp - private member of the device structure, which is a pointer to the * s2io_nic structure. * eeprom - pointer to the user level structure provided by ethtool, * containing all relevant information. * data_buf - user defined value to be written into Eeprom. * Return value: * '0' on success, -EFAULT on failure. * Description: * Tries to write the user provided value in the Eeprom, at the offset * given by the user. */ static int s2io_ethtool_seeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 * data_buf) { int len = eeprom->len, cnt = 0; u32 valid = 0, data; nic_t *sp = dev->priv; if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) { DBG_PRINT(ERR_DBG, "ETHTOOL_WRITE_EEPROM Err: Magic value "); DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n", eeprom->magic); return -EFAULT; } while (len) { data = (u32) data_buf[cnt] & 0x000000FF; if (data) { valid = (u32) (data << 24); } else valid = data; if (writeEeprom(sp, (eeprom->offset + cnt), valid, 0)) { DBG_PRINT(ERR_DBG, "ETHTOOL_WRITE_EEPROM Err: Cannot "); DBG_PRINT(ERR_DBG, "write into the specified offset\n"); return -EFAULT; } cnt++; len--; } return 0; } /* * Input Argument/s: * sp - private member of the device structure, which is a pointer to the * s2io_nic structure. * data - variable that returns the result of each of the test conducted by * the driver. * Return value: * '0' on success. * Description: * Read and write into all clock domains. The NIC has 3 clock domains, * see that registers in all the three regions are accessible. */ static int s2io_registerTest(nic_t * sp, uint64_t * data) { XENA_dev_config_t *bar0 = (XENA_dev_config_t *) sp->bar0; u64 val64 = 0; int fail = 0; val64 = readq(&bar0->pcc_enable); if (val64 != 0xff00000000000000ULL) { fail = 1; DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n"); } val64 = readq(&bar0->rmac_pause_cfg); if (val64 != 0xc000ffff00000000ULL) { fail = 1; DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n"); } val64 = readq(&bar0->rx_queue_cfg); if (val64 != 0x0808080808080808ULL) { fail = 1; DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n"); } val64 = readq(&bar0->xgxs_efifo_cfg); if (val64 != 0x000000001923141EULL) { fail = 1; DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n"); } val64 = 0x5A5A5A5A5A5A5A5AULL; writeq(val64, &bar0->xmsi_data); val64 = readq(&bar0->xmsi_data); if (val64 != 0x5A5A5A5A5A5A5A5AULL) { fail = 1; DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n"); } val64 = 0xA5A5A5A5A5A5A5A5ULL; writeq(val64, &bar0->xmsi_data); val64 = readq(&bar0->xmsi_data); if (val64 != 0xA5A5A5A5A5A5A5A5ULL) { fail = 1; DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n"); } *data = fail; return 0; } /* * Input Argument/s: * sp - private member of the device structure, which is a pointer to the * s2io_nic structure. * data - variable that returns the result of each of the test conducted by * the driver. * Return value: * '0' on success. * Description: * Verify that EEPROM in the xena can be programmed using I2C_CONTROL * register. */ static int s2io_eepromTest(nic_t * sp, uint64_t * data) { int fail = 0, ret_data; /* Test Write Error at offset 0 */ if (!writeEeprom(sp, 0, 0, 3)) fail = 1; /* Test Write at offset 4f0 */ if (writeEeprom(sp, 0x4F0, 0x01234567, 3)) fail = 1; if ((ret_data = readEeprom(sp, 0x4f0)) < 0) fail = 1; if (ret_data != 0x01234567) fail = 1; /* Reset the EEPROM data go FFFF */ writeEeprom(sp, 0x4F0, 0xFFFFFFFF, 3); /* Test Write Request Error at offset 0x7c */ if (!writeEeprom(sp, 0x07C, 0, 3)) fail = 1; /* Test Write Request at offset 0x7fc */ if (writeEeprom(sp, 0x7FC, 0x01234567, 3)) fail = 1; if ((ret_data = readEeprom(sp, 0x7FC)) < 0) fail = 1; if (ret_data != 0x01234567) fail = 1; /* Reset the EEPROM data go FFFF */ writeEeprom(sp, 0x7FC, 0xFFFFFFFF, 3); /* Test Write Error at offset 0x80 */ if (!writeEeprom(sp, 0x080, 0, 3)) fail = 1; /* Test Write Error at offset 0xfc */ if (!writeEeprom(sp, 0x0FC, 0, 3)) fail = 1; /* Test Write Error at offset 0x100 */ if (!writeEeprom(sp, 0x100, 0, 3)) fail = 1; /* Test Write Error at offset 4ec */ if (!writeEeprom(sp, 0x4EC, 0, 3)) fail = 1; *data = fail; return 0; } /* * Input Argument/s: * sp - private member of the device structure, which is a pointer to the * s2io_nic structure. * data - variable that returns the result of each of the test conducted by * the driver. * Return value: * '0' on success and -1 on failure. * Description: * This invokes the MemBist test of the card. We give around * 2 secs time for the Test to complete. If it's still not complete * within this peiod, we consider that the test failed. */ static int s2io_bistTest(nic_t * sp, uint64_t * data) { u8 bist = 0; int cnt = 0, ret = -1; pci_read_config_byte(sp->pdev, PCI_BIST, &bist); bist |= PCI_BIST_START; pci_write_config_word(sp->pdev, PCI_BIST, bist); while (cnt < 20) { pci_read_config_byte(sp->pdev, PCI_BIST, &bist); if (!(bist & PCI_BIST_START)) { *data = (bist & PCI_BIST_CODE_MASK); ret = 0; break; } set_current_state(TASK_UNINTERRUPTIBLE); schedule_timeout(HZ / 10); cnt++; } return ret; } /* * Input Argument/s: * sp - private member of the device structure, which is a pointer to the * s2io_nic structure. * data - variable that returns the result of each of the test conducted by * the driver. * Return value: * '0' on success. * Description: * The function verifies the link state of the NIC and updates the input * argument 'data' appropriately. */ static int s2io_linkTest(nic_t * sp, uint64_t * data) { XENA_dev_config_t *bar0 = (XENA_dev_config_t *) sp->bar0; u64 val64; val64 = readq(&bar0->adapter_status); if (val64 & ADAPTER_STATUS_RMAC_LOCAL_FAULT) *data = 1; return 0; } /* * Input Argument/s: * sp - private member of the device structure, which is a pointer to the * s2io_nic structure. * data - variable that returns the result of each of the test conducted by * the driver. * Return value: * '0' on success. * Description: * This is one of the offline test that tests the read and write * access to the RldRam chip on the NIC. */ static int s2io_rldramTest(nic_t * sp, uint64_t * data) { XENA_dev_config_t *bar0 = (XENA_dev_config_t *) sp->bar0; u64 val64; int cnt, iteration = 0, test_pass = 0; val64 = readq(&bar0->adapter_control); val64 &= ~ADAPTER_ECC_EN; writeq(val64, &bar0->adapter_control); val64 = readq(&bar0->mc_rldram_test_ctrl); val64 |= MC_RLDRAM_TEST_MODE; writeq(val64, &bar0->mc_rldram_test_ctrl); val64 = readq(&bar0->mc_rldram_mrs); val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE; writeq(val64, &bar0->mc_rldram_mrs); val64 |= MC_RLDRAM_MRS_ENABLE; writeq(val64, &bar0->mc_rldram_mrs); while (iteration < 2) { val64 = 0x55555555aaaa0000ULL; if (iteration == 1) { val64 ^= 0xFFFFFFFFFFFF0000ULL; } writeq(val64, &bar0->mc_rldram_test_d0); val64 = 0xaaaa5a5555550000ULL; if (iteration == 1) { val64 ^= 0xFFFFFFFFFFFF0000ULL; } writeq(val64, &bar0->mc_rldram_test_d1); val64 = 0x55aaaaaaaa5a0000ULL; if (iteration == 1) { val64 ^= 0xFFFFFFFFFFFF0000ULL; } writeq(val64, &bar0->mc_rldram_test_d2); val64 = (u64) (0x0000003fffff0000ULL); writeq(val64, &bar0->mc_rldram_test_add); val64 = MC_RLDRAM_TEST_MODE; writeq(val64, &bar0->mc_rldram_test_ctrl); val64 |= MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE | MC_RLDRAM_TEST_GO; writeq(val64, &bar0->mc_rldram_test_ctrl); for (cnt = 0; cnt < 5; cnt++) { val64 = readq(&bar0->mc_rldram_test_ctrl); if (val64 & MC_RLDRAM_TEST_DONE) break; set_current_state(TASK_UNINTERRUPTIBLE); schedule_timeout(HZ / 5); } if (cnt == 5) break; val64 = MC_RLDRAM_TEST_MODE; writeq(val64, &bar0->mc_rldram_test_ctrl); val64 |= MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO; writeq(val64, &bar0->mc_rldram_test_ctrl); for (cnt = 0; cnt < 5; cnt++) { val64 = readq(&bar0->mc_rldram_test_ctrl); if (val64 & MC_RLDRAM_TEST_DONE) break; set_current_state(TASK_UNINTERRUPTIBLE); schedule_timeout(HZ / 2); } if (cnt == 5) break; val64 = readq(&bar0->mc_rldram_test_ctrl); if (val64 & MC_RLDRAM_TEST_PASS) test_pass = 1; iteration++; } if (!test_pass) *data = 1; else *data = 0; return 0; } /* * Input Argument/s: * sp - private member of the device structure, which is a pointer to the * s2io_nic structure. * ethtest - pointer to a ethtool command specific structure that will be * returned to the user. * data - variable that returns the result of each of the test conducted by * the driver. * Return value: * SUCCESS on success and an appropriate -1 on failure. * Description: * This function conducts 6 tests ( 4 offline and 2 online) to determine * the health of the card. */ static void s2io_ethtool_test(struct net_device *dev, struct ethtool_test *ethtest, uint64_t * data) { nic_t *sp = dev->priv; int orig_state = netif_running(sp->dev); if (ethtest->flags == ETH_TEST_FL_OFFLINE) { /* Offline Tests. */ if (orig_state) { s2io_close(sp->dev); s2io_set_swapper(sp); } else s2io_set_swapper(sp); if (s2io_registerTest(sp, &data[0])) ethtest->flags |= ETH_TEST_FL_FAILED; s2io_reset(sp); s2io_set_swapper(sp); if (s2io_rldramTest(sp, &data[3])) ethtest->flags |= ETH_TEST_FL_FAILED; s2io_reset(sp); s2io_set_swapper(sp); if (s2io_eepromTest(sp, &data[1])) ethtest->flags |= ETH_TEST_FL_FAILED; if (s2io_bistTest(sp, &data[4])) ethtest->flags |= ETH_TEST_FL_FAILED; if (orig_state) s2io_open(sp->dev); data[2] = 0; } else { /* Online Tests. */ if (!orig_state) { DBG_PRINT(ERR_DBG, "%s: is not up, cannot run test\n", dev->name); data[0] = -1; data[1] = -1; data[2] = -1; data[3] = -1; data[4] = -1; } if (s2io_linkTest(sp, &data[2])) ethtest->flags |= ETH_TEST_FL_FAILED; data[0] = 0; data[1] = 0; data[3] = 0; data[4] = 0; } } static void s2io_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 * tmp_stats) { int i = 0; nic_t *sp = dev->priv; StatInfo_t *stat_info = sp->mac_control.StatsInfo; tmp_stats[i++] = stat_info->tmac_frms; tmp_stats[i++] = stat_info->tmac_data_octets; tmp_stats[i++] = stat_info->tmac_drop_frms; tmp_stats[i++] = stat_info->tmac_mcst_frms; tmp_stats[i++] = stat_info->tmac_bcst_frms; tmp_stats[i++] = stat_info->tmac_pause_ctrl_frms; tmp_stats[i++] = stat_info->tmac_any_err_frms; tmp_stats[i++] = stat_info->tmac_vld_ip_octets; tmp_stats[i++] = stat_info->tmac_vld_ip; tmp_stats[i++] = stat_info->tmac_drop_ip; tmp_stats[i++] = stat_info->tmac_icmp; tmp_stats[i++] = stat_info->tmac_rst_tcp; tmp_stats[i++] = stat_info->tmac_tcp; tmp_stats[i++] = stat_info->tmac_udp; tmp_stats[i++] = stat_info->rmac_vld_frms; tmp_stats[i++] = stat_info->rmac_data_octets; tmp_stats[i++] = stat_info->rmac_fcs_err_frms; tmp_stats[i++] = stat_info->rmac_drop_frms; tmp_stats[i++] = stat_info->rmac_vld_mcst_frms; tmp_stats[i++] = stat_info->rmac_vld_bcst_frms; tmp_stats[i++] = stat_info->rmac_in_rng_len_err_frms; tmp_stats[i++] = stat_info->rmac_long_frms; tmp_stats[i++] = stat_info->rmac_pause_ctrl_frms; tmp_stats[i++] = stat_info->rmac_discarded_frms; tmp_stats[i++] = stat_info->rmac_usized_frms; tmp_stats[i++] = stat_info->rmac_osized_frms; tmp_stats[i++] = stat_info->rmac_frag_frms; tmp_stats[i++] = stat_info->rmac_jabber_frms; tmp_stats[i++] = stat_info->rmac_ip; tmp_stats[i++] = stat_info->rmac_ip_octets; tmp_stats[i++] = stat_info->rmac_hdr_err_ip; tmp_stats[i++] = stat_info->rmac_drop_ip; tmp_stats[i++] = stat_info->rmac_icmp; tmp_stats[i++] = stat_info->rmac_tcp; tmp_stats[i++] = stat_info->rmac_udp; tmp_stats[i++] = stat_info->rmac_err_drp_udp; tmp_stats[i++] = stat_info->rmac_pause_cnt; tmp_stats[i++] = stat_info->rmac_accepted_ip; tmp_stats[i++] = stat_info->rmac_err_tcp; } int s2io_ethtool_get_regs_len(struct net_device *dev) { return (XENA_REG_SPACE); } u32 s2io_ethtool_get_rx_csum(struct net_device * dev) { nic_t *sp = dev->priv; return (sp->rx_csum); } int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data) { nic_t *sp = dev->priv; if (data) sp->rx_csum = 1; else sp->rx_csum = 0; return 0; } int s2io_get_eeprom_len(struct net_device *dev) { return (XENA_EEPROM_SPACE); } int s2io_ethtool_self_test_count(struct net_device *dev) { return (S2IO_TEST_LEN); } void s2io_ethtool_get_strings(struct net_device *dev, u32 stringset, u8 * data) { switch (stringset) { case ETH_SS_TEST: memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN); break; case ETH_SS_STATS: memcpy(data, ðtool_stats_keys, sizeof(ethtool_stats_keys)); } } static int s2io_ethtool_get_stats_count(struct net_device *dev) { return (S2IO_STAT_LEN); } static struct ethtool_ops netdev_ethtool_ops = { .get_settings = s2io_ethtool_gset, .set_settings = s2io_ethtool_sset, .get_drvinfo = s2io_ethtool_gdrvinfo, .get_regs_len = s2io_ethtool_get_regs_len, .get_regs = s2io_ethtool_gregs, .get_link = ethtool_op_get_link, .get_eeprom_len = s2io_get_eeprom_len, .get_eeprom = s2io_ethtool_geeprom, .set_eeprom = s2io_ethtool_seeprom, .get_pauseparam = s2io_ethtool_getpause_data, .set_pauseparam = s2io_ethtool_setpause_data, .get_rx_csum = s2io_ethtool_get_rx_csum, .set_rx_csum = s2io_ethtool_set_rx_csum, .get_tx_csum = ethtool_op_get_tx_csum, .set_tx_csum = ethtool_op_set_tx_csum, .get_sg = ethtool_op_get_sg, .set_sg = ethtool_op_set_sg, #ifdef NETIF_F_TSO .get_tso = ethtool_op_get_tso, .set_tso = ethtool_op_set_tso, #endif .self_test_count = s2io_ethtool_self_test_count, .self_test = s2io_ethtool_test, .get_strings = s2io_ethtool_get_strings, .phys_id = s2io_ethtool_idnic, .get_stats_count = s2io_ethtool_get_stats_count, .get_ethtool_stats = s2io_get_ethtool_stats }; /* * Input Argument/s: * dev - Device pointer. * ifr - An IOCTL specefic structure, that can contain a pointer to * a proprietary structure used to pass information to the driver. * cmd - This is used to distinguish between the different commands that * can be passed to the IOCTL functions. * Return value: * '0' on success and an appropriate (-)ve integer as defined in errno.h * file on failure. * Description: * This function has support for ethtool, adding multiple MAC addresses on * the NIC and some DBG commands for the util tool. */ int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) { return -EOPNOTSUPP; } /* * Input Argument/s: * dev - device pointer. * new_mtu - the new MTU size for the device. * Return value: * '0' on success and an appropriate (-)ve integer as defined in errno.h * file on failure. * Description: * A driver entry point to change MTU size for the device. Before changing * the MTU the device must be stopped. */ int s2io_change_mtu(struct net_device *dev, int new_mtu) { nic_t *sp = dev->priv; XENA_dev_config_t *bar0 = (XENA_dev_config_t *) sp->bar0; register u64 val64; if (netif_running(dev)) { DBG_PRINT(ERR_DBG, "%s: Must be stopped to ", dev->name); DBG_PRINT(ERR_DBG, "change its MTU \n"); return -EBUSY; } if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) { DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n", dev->name); return -EPERM; } /* Set the new MTU into the PYLD register of the NIC */ val64 = new_mtu; writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len); dev->mtu = new_mtu; return 0; } /* * Input Argument/s: * dev_adr - address of the device structure in dma_addr_t format. * Return value: * void. * Description: * This is the tasklet or the bottom half of the ISR. This is * an extension of the ISR which is scheduled by the scheduler to be run * when the load on the CPU is low. All low priority tasks of the ISR can * be pushed into the tasklet. For now the tasklet is used only to * replenish the Rx buffers in the Rx buffer descriptors. */ static void s2io_tasklet(unsigned long dev_addr) { struct net_device *dev = (struct net_device *) dev_addr; nic_t *sp = dev->priv; int i, ret; mac_info_t *mac_control; struct config_param *config; mac_control = &sp->mac_control; config = &sp->config; if (!TASKLET_IN_USE) { for (i = 0; i < config->RxRingNum; i++) { ret = fill_rx_buffers(sp, i); if (ret == -ENOMEM) { DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name); DBG_PRINT(ERR_DBG, "memory in tasklet\n"); return; } else if (ret == -EFILL) { DBG_PRINT(ERR_DBG, "%s: Rx Ring %d is full\n", dev->name, i); return; } } clear_bit(0, (unsigned long *) (&sp->tasklet_status)); } } /* * Description: * */ static void s2io_set_link(unsigned long data) { nic_t *nic = (nic_t *) data; struct net_device *dev = nic->dev; XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0; register u64 val64, err_reg; /* Allow a small delay for the NICs self initiated * cleanup to complete. */ set_current_state(TASK_UNINTERRUPTIBLE); schedule_timeout(HZ / 10); val64 = readq(&bar0->adapter_status); if (verify_xena_quiescence(val64, nic->device_enabled_once)) { /* Acknowledge interrupt and clear the R1 register */ err_reg = readq(&bar0->mac_rmac_err_reg); writeq(err_reg, &bar0->mac_rmac_err_reg); if (LINK_IS_UP(val64)) { val64 = readq(&bar0->adapter_control); val64 |= ADAPTER_CNTL_EN; writeq(val64, &bar0->adapter_control); val64 |= ADAPTER_LED_ON; writeq(val64, &bar0->adapter_control); val64 = readq(&bar0->adapter_status); if (!LINK_IS_UP(val64)) { DBG_PRINT(ERR_DBG, "%s:", dev->name); DBG_PRINT(ERR_DBG, " Link down"); DBG_PRINT(ERR_DBG, "after "); DBG_PRINT(ERR_DBG, "enabling "); DBG_PRINT(ERR_DBG, "device \n"); } if (nic->device_enabled_once == FALSE) { nic->device_enabled_once = TRUE; } s2io_link(nic, LINK_UP); } else { s2io_link(nic, LINK_DOWN); } } else { /* NIC is not Quiescent. */ DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name); DBG_PRINT(ERR_DBG, "device is not Quiescent\n"); netif_stop_queue(dev); } } /* * Description: * This function is scheduled to be run by the s2io_tx_watchdog * function after 0.5 secs to reset the NIC. The idea is to reduce * the run time of the watch dog routine which is run holding a * spin lock. */ static void s2io_restart_nic(unsigned long data) { struct net_device *dev = (struct net_device *) data; nic_t *sp = dev->priv; s2io_close(dev); sp->device_close_flag = TRUE; s2io_open(dev); DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer.\n", dev->name); } /* * Input Argument/s: * dev - device pointer. * Return value: * void * Description: * This function is triggered if the Tx Queue is stopped * for a pre-defined amount of time when the Interface is still up. * If the Interface is jammed in such a situation, the hardware is * reset (by s2io_close) and restarted again (by s2io_open) to * overcome any problem that might have been caused in the hardware. */ static void s2io_tx_watchdog(struct net_device *dev) { nic_t *sp = dev->priv; if (netif_carrier_ok(dev)) { schedule_work(&sp->rst_timer_task); } } /* * Input Argument/s: * sp - private member of the device structure, which is a pointer to the * s2io_nic structure. * skb - the socket buffer pointer. * len - length of the packet * cksum - FCS checksum of the frame. * ring_no - the ring from which this RxD was extracted. * Return value: * SUCCESS on success and -1 on failure. * Description: * This function is called by the Tx interrupt serivce routine to perform * some OS related operations on the SKB before passing it to the upper * layers. It mainly checks if the checksum is OK, if so adds it to the * SKBs cksum variable, increments the Rx packet count and passes the SKB * to the upper layer. If the checksum is wrong, it increments the Rx * packet error count, frees the SKB and returns error. */ static int rxOsmHandler(nic_t * sp, u16 len, RxD_t * rxdp, int ring_no) { struct net_device *dev = (struct net_device *) sp->dev; struct sk_buff *skb = (struct sk_buff *) ((unsigned long) rxdp->Host_Control); u16 l3_csum, l4_csum; l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1); if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && (sp->rx_csum)) { l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1); if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) { /* NIC verifies if the Checksum of the received * frame is Ok or not and accordingly returns * a flag in the RxD. */ skb->ip_summed = CHECKSUM_UNNECESSARY; } else { /* * Packet with erroneous checksum, let the * upper layers deal with it. */ skb->ip_summed = CHECKSUM_NONE; } } else { skb->ip_summed = CHECKSUM_NONE; } skb->dev = dev; skb_put(skb, len); skb->protocol = eth_type_trans(skb, dev); #ifdef CONFIG_S2IO_NAPI netif_receive_skb(skb); #else netif_rx(skb); #endif dev->last_rx = jiffies; #if DEBUG_ON sp->rxpkt_cnt++; #endif sp->rx_pkt_count++; sp->stats.rx_packets++; sp->stats.rx_bytes += len; sp->rxpkt_bytes += len; atomic_dec(&sp->rx_bufs_left[ring_no]); rxdp->Host_Control = 0; return SUCCESS; } int check_for_txSpace(nic_t * sp) { u32 put_off, get_off, queue_len; int ret = TRUE, i; for (i = 0; i < sp->config.TxFIFONum; i++) { queue_len = sp->mac_control.tx_curr_put_info[i].fifo_len + 1; put_off = sp->mac_control.tx_curr_put_info[i].offset; get_off = sp->mac_control.tx_curr_get_info[i].offset; if (((put_off + 1) % queue_len) == get_off) { ret = FALSE; break; } } return ret; } /* * Input Argument/s: * sp - private member of the device structure, which is a pointer to the * s2io_nic structure. * link - inidicates whether link is UP/DOWN. * Return value: * void. * Description: * This function stops/starts the Tx queue depending on whether the link * status of the NIC is is down or up. This is called by the Alarm interrupt * handler whenever a link change interrupt comes up. */ void s2io_link(nic_t * sp, int link) { struct net_device *dev = (struct net_device *) sp->dev; if (link != sp->last_link_state) { if (link == LINK_DOWN) { DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name); netif_carrier_off(dev); netif_stop_queue(dev); } else { DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name); netif_carrier_on(dev); if (check_for_txSpace(sp) == TRUE) { /* Don't wake the queue, if we know there * are no free TxDs available. */ netif_wake_queue(dev); } } } sp->last_link_state = link; } /* * Input Argument/s: * pdev - structure containing the PCI related information of the device. * Return value: * returns the revision ID of the device. * Description: * Function to identify the Revision ID of xena. */ int get_xena_rev_id(struct pci_dev *pdev) { u8 id = 0; int ret; ret = pci_read_config_byte(pdev, PCI_REVISION_ID, (u8 *) & id); return id; } /* * Input Argument/s: * sp - private member of the device structure, which is a pointer to the * s2io_nic structure. * Return value: * void * Description: * This function initializes a few of the PCI and PCI-X configuration registers * with recommended values. */ static void s2io_init_pci(nic_t * sp) { u16 pci_cmd = 0; /* Enable Data Parity Error Recovery in PCI-X command register. */ pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(sp->pcix_cmd)); pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, (sp->pcix_cmd | 1)); pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(sp->pcix_cmd)); /* Set the PErr Response bit in PCI command register. */ pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd); pci_write_config_word(sp->pdev, PCI_COMMAND, (pci_cmd | PCI_COMMAND_PARITY)); pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd); /* Set user specified value in Latency Timer */ if (latency_timer) { pci_write_config_byte(sp->pdev, PCI_LATENCY_TIMER, latency_timer); pci_read_config_byte(sp->pdev, PCI_LATENCY_TIMER, &latency_timer); } /* Set MMRB count to 4096 in PCI-X Command register. */ pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, (sp->pcix_cmd | 0x0C)); pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(sp->pcix_cmd)); /* Setting Maximum outstanding splits to two for now. */ sp->pcix_cmd &= 0xFF1F; sp->pcix_cmd |= XENA_MAX_OUTSTANDING_SPLITS(XENA_TWO_SPLIT_TRANSACTION); pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, sp->pcix_cmd); pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(sp->pcix_cmd)); } MODULE_AUTHOR("Raghavendra Koushik "); MODULE_LICENSE("GPL"); MODULE_PARM(ring_num, "1-" __MODULE_STRING(1) "i"); MODULE_PARM(frame_len, "1-" __MODULE_STRING(8) "i"); MODULE_PARM(ring_len, "1-" __MODULE_STRING(8) "i"); MODULE_PARM(fifo_num, "1-" __MODULE_STRING(1) "i"); MODULE_PARM(fifo_len, "1-" __MODULE_STRING(8) "i"); MODULE_PARM(rx_prio, "1-" __MODULE_STRING(1) "i"); MODULE_PARM(tx_prio, "1-" __MODULE_STRING(1) "i"); MODULE_PARM(latency_timer, "1-" __MODULE_STRING(1) "i"); /* * Input Argument/s: * pdev - structure containing the PCI related information of the device. * pre - the List of PCI devices supported by the driver listed in s2io_tbl. * Return value: * returns '0' on success and negative on failure. * Description: * The function initializes an adapter identified by the pci_dec structure. * All OS related initialization including memory and device structure and * initlaization of the device private variable is done. Also the swapper * control register is initialized to enable read and write into the I/O * registers of the device. * */ static int __devinit s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre) { nic_t *sp; struct net_device *dev; char *dev_name = "S2IO 10GE NIC"; int i, j, ret; int dma_flag = FALSE; u32 mac_up, mac_down; u64 val64 = 0, tmp64 = 0; XENA_dev_config_t *bar0 = NULL; u16 subid; mac_info_t *mac_control; struct config_param *config; if ((ret = pci_enable_device(pdev))) { DBG_PRINT(ERR_DBG, "s2io_init_nic: pci_enable_device failed\n"); return ret; } if (!pci_set_dma_mask(pdev, 0xffffffffffffffffULL)) { DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n"); dma_flag = TRUE; if (pci_set_consistent_dma_mask (pdev, 0xffffffffffffffffULL)) { DBG_PRINT(ERR_DBG, "Unable to obtain 64bit DMA for \ consistent allocations\n"); pci_disable_device(pdev); return -ENOMEM; } } else if (!pci_set_dma_mask(pdev, 0xffffffffUL)) { DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n"); } else { pci_disable_device(pdev); return -ENOMEM; } if (pci_request_regions(pdev, s2io_driver_name)) { DBG_PRINT(ERR_DBG, "Request Regions failed\n"), pci_disable_device(pdev); return -ENODEV; } dev = alloc_etherdev(sizeof(nic_t)); if (dev == NULL) { DBG_PRINT(ERR_DBG, "Device allocation failed\n"); pci_disable_device(pdev); pci_release_regions(pdev); return -ENODEV; } pci_set_master(pdev); pci_set_drvdata(pdev, dev); SET_MODULE_OWNER(dev); SET_NETDEV_DEV(dev, &pdev->dev); /* Private member variable initialized to s2io NIC structure */ sp = dev->priv; memset(sp, 0, sizeof(nic_t)); sp->dev = dev; sp->pdev = pdev; sp->vendor_id = pdev->vendor; sp->device_id = pdev->device; sp->high_dma_flag = dma_flag; sp->irq = pdev->irq; sp->device_enabled_once = FALSE; strcpy(sp->name, dev_name); /* Initialize some PCI/PCI-X fields of the NIC. */ s2io_init_pci(sp); /* Setting the device configuration parameters. * Most of these parameters can be specified by the user during * module insertion as they are module loadable parameters. If * these parameters are not not specified during load time, they * are initialized with default values. */ mac_control = &sp->mac_control; config = &sp->config; /* Tx side parameters. */ config->TxFIFONum = fifo_num ? fifo_num : 1; if (!fifo_len[0] && (fifo_num > 1)) { printk(KERN_ERR "Fifo Lens not specified for all FIFOs\n"); goto init_failed; } if (fifo_len[0]) { int cnt; for (cnt = 0; fifo_len[cnt]; cnt++); if (fifo_num) { if (cnt < fifo_num) { printk(KERN_ERR "Fifo Lens not specified for "); printk(KERN_ERR "all FIFOs\n"); goto init_failed; } } for (cnt = 0; cnt < config->TxFIFONum; cnt++) { config->TxCfg[cnt].FifoLen = fifo_len[cnt]; config->TxCfg[cnt].FifoPriority = cnt; } } else { config->TxCfg[0].FifoLen = DEFAULT_FIFO_LEN; config->TxCfg[0].FifoPriority = 0; } config->TxIntrType = TXD_INT_TYPE_UTILZ; for (i = 0; i < config->TxFIFONum; i++) { if (config->TxCfg[i].FifoLen < 65) { config->TxIntrType = TXD_INT_TYPE_PER_LIST; break; } } config->TxCfg[0].fNoSnoop = (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER); config->MaxTxDs = MAX_SKB_FRAGS; config->TxFlow = TRUE; /* Rx side parameters. */ config->RxRingNum = ring_num ? ring_num : 1; if (ring_len[0]) { int cnt; for (cnt = 0; cnt < config->RxRingNum; cnt++) { config->RxCfg[cnt].NumRxd = ring_len[cnt]; config->RxCfg[cnt].RingPriority = cnt; } } else { int id; if ((id = get_xena_rev_id(pdev)) == 1) { config->RxCfg[0].NumRxd = LARGE_RXD_CNT; } else { config->RxCfg[0].NumRxd = SMALL_RXD_CNT; } config->RxCfg[0].RingPriority = 0; } config->RxCfg[0].RingOrg = RING_ORG_BUFF1; config->RxCfg[0].RxdThresh = DEFAULT_RXD_THRESHOLD; config->RxCfg[0].fNoSnoop = (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER); config->RxCfg[0].RxD_BackOff_Interval = TBD; config->RxFlow = TRUE; /* Miscellaneous parameters. */ config->RxVLANEnable = TRUE; config->MTU = MAX_MTU_VLAN; config->JumboEnable = FALSE; /* Setting Mac Control parameters */ mac_control->txdl_len = MAX_SKB_FRAGS; mac_control->rmac_pause_time = 0; /* Initialize Ring buffer parameters. */ for (i = 0; i < config->RxRingNum; i++) atomic_set(&sp->rx_bufs_left[i], 0); /* initialize the shared memory used by the NIC and the host */ if (initSharedMem(sp)) { DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", dev->name); goto mem_alloc_failed; } sp->bar0 = (caddr_t) ioremap(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0)); if (!sp->bar0) { DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem1\n", dev->name); goto bar0_remap_failed; } sp->bar1 = (caddr_t) ioremap(pci_resource_start(pdev, 2), pci_resource_len(pdev, 2)); if (!sp->bar1) { DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem2\n", dev->name); goto bar1_remap_failed; } dev->irq = pdev->irq; dev->base_addr = (unsigned long) sp->bar0; /* Initializing the BAR1 address as the start of the FIFO pointer. */ for (j = 0; j < MAX_TX_FIFOS; j++) { mac_control->tx_FIFO_start[j] = (TxFIFO_element_t *) (sp->bar1 + (j * 0x00020000)); } /* Driver entry points */ dev->open = &s2io_open; dev->stop = &s2io_close; dev->hard_start_xmit = &s2io_xmit; dev->get_stats = &s2io_get_stats; dev->set_multicast_list = &s2io_set_multicast; dev->do_ioctl = &s2io_ioctl; dev->change_mtu = &s2io_change_mtu; SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops); /* * will use eth_mac_addr() for dev->set_mac_address * mac address will be set every time dev->open() is called */ #ifdef CONFIG_S2IO_NAPI dev->poll = s2io_poll; dev->weight = 128; /* For now. */ #endif dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM; if (sp->high_dma_flag == TRUE) dev->features |= NETIF_F_HIGHDMA; #ifdef NETIF_F_TSO dev->features |= NETIF_F_TSO; #endif dev->tx_timeout = &s2io_tx_watchdog; dev->watchdog_timeo = WATCH_DOG_TIMEOUT; INIT_WORK(&sp->rst_timer_task, (void (*)(void *)) s2io_restart_nic, dev); INIT_WORK(&sp->set_link_task, (void (*)(void *)) s2io_set_link, sp); if (register_netdev(dev)) { DBG_PRINT(ERR_DBG, "Device registration failed\n"); goto register_failed; } pci_save_state(sp->pdev, sp->config_space); /* Setting swapper control on the NIC, for proper reset operation */ if (s2io_set_swapper(sp)) { DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n", dev->name); goto set_swap_failed; } /* Fix for all "FFs" MAC address problems observed on Alpha platforms */ FixMacAddress(sp); s2io_reset(sp); /* Setting swapper control on the NIC, so the MAC address can be read. */ if (s2io_set_swapper(sp)) { DBG_PRINT(ERR_DBG, "%s: S2IO: swapper settings are wrong\n", dev->name); goto set_swap_failed; } /* MAC address initialization. * For now only one mac address will be read and used. */ bar0 = (XENA_dev_config_t *) sp->bar0; val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET); writeq(val64, &bar0->rmac_addr_cmd_mem); waitForCmdComplete(sp); tmp64 = readq(&bar0->rmac_addr_data0_mem); mac_down = (u32) tmp64; mac_up = (u32) (tmp64 >> 32); memset(sp->defMacAddr[0].mac_addr, 0, sizeof(ETH_ALEN)); sp->defMacAddr[0].mac_addr[3] = (u8) (mac_up); sp->defMacAddr[0].mac_addr[2] = (u8) (mac_up >> 8); sp->defMacAddr[0].mac_addr[1] = (u8) (mac_up >> 16); sp->defMacAddr[0].mac_addr[0] = (u8) (mac_up >> 24); sp->defMacAddr[0].mac_addr[5] = (u8) (mac_down >> 16); sp->defMacAddr[0].mac_addr[4] = (u8) (mac_down >> 24); DBG_PRINT(INIT_DBG, "DEFAULT MAC ADDR:0x%02x-%02x-%02x-%02x-%02x-%02x\n", sp->defMacAddr[0].mac_addr[0], sp->defMacAddr[0].mac_addr[1], sp->defMacAddr[0].mac_addr[2], sp->defMacAddr[0].mac_addr[3], sp->defMacAddr[0].mac_addr[4], sp->defMacAddr[0].mac_addr[5]); /* Set the factory defined MAC address initially */ dev->addr_len = ETH_ALEN; memcpy(dev->dev_addr, sp->defMacAddr, ETH_ALEN); /* Initialize the tasklet status flag */ atomic_set(&(sp->tasklet_status), 0); /* Initialize spinlocks */ spin_lock_init(&sp->isr_lock); spin_lock_init(&sp->tx_lock); /* SXE-002: Configure link and activity LED to init state * on driver load. */ subid = sp->pdev->subsystem_device; if ((subid & 0xFF) >= 0x07) { val64 = readq(&bar0->gpio_control); val64 |= 0x0000800000000000ULL; writeq(val64, &bar0->gpio_control); val64 = 0x0411040400000000ULL; writeq(val64, (u64 *) ((u8 *) bar0 + 0x2700)); val64 = readq(&bar0->gpio_control); } /* Make Link state as off at this point, when the Link change * interrupt comes the state will be automatically changed to * the right state. */ netif_carrier_off(dev); sp->last_link_state = LINK_DOWN; sp->rx_csum = 1; /* Rx chksum verify enabled by default */ return 0; set_swap_failed: unregister_netdev(dev); register_failed: iounmap(sp->bar1); bar1_remap_failed: iounmap(sp->bar0); bar0_remap_failed: mem_alloc_failed: freeSharedMem(sp); init_failed: pci_disable_device(pdev); pci_release_regions(pdev); pci_set_drvdata(pdev, NULL); free_netdev(dev); return -ENODEV; } /* * Input Argument/s: * pdev - structure containing the PCI related information of the device. * Return value: * void * Description: * This function is called by the Pci subsystem to release a PCI device * and free up all resource held up by the device. This could be in response * to a Hot plug event or when the driver is to be removed from memory. */ static void __devexit s2io_rem_nic(struct pci_dev *pdev) { struct net_device *dev = (struct net_device *) pci_get_drvdata(pdev); nic_t *sp; if (dev == NULL) { DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n"); return; } sp = dev->priv; freeSharedMem(sp); iounmap(sp->bar0); iounmap(sp->bar1); pci_disable_device(pdev); pci_release_regions(pdev); pci_set_drvdata(pdev, NULL); unregister_netdev(dev); free_netdev(dev); } int __init s2io_starter(void) { return pci_module_init(&s2io_driver); } void s2io_closer(void) { pci_unregister_driver(&s2io_driver); DBG_PRINT(INIT_DBG, "cleanup done\n"); } module_init(s2io_starter); module_exit(s2io_closer);