/** * @file cpu_buffer.c * * @remark Copyright 2002 OProfile authors * @remark Read the file COPYING * * @author John Levon * * Each CPU has a local buffer that stores PC value/event * pairs. We also log context switches when we notice them. * Eventually each CPU's buffer is processed into the global * event buffer by sync_cpu_buffers(). * * We use a local buffer for two reasons: an NMI or similar * interrupt cannot synchronise, and high sampling rates * would lead to catastrophic global synchronisation if * a global buffer was used. */ #include #include #include #include "cpu_buffer.h" #include "oprof.h" struct oprofile_cpu_buffer cpu_buffer[NR_CPUS] __cacheline_aligned; static void __free_cpu_buffers(int num) { int i; for (i=0; i < num; ++i) { struct oprofile_cpu_buffer * b = &cpu_buffer[i]; if (!cpu_possible(i)) continue; vfree(b->buffer); } } int alloc_cpu_buffers(void) { int i; unsigned long buffer_size = fs_cpu_buffer_size; for (i=0; i < NR_CPUS; ++i) { struct oprofile_cpu_buffer * b = &cpu_buffer[i]; if (!cpu_possible(i)) continue; b->buffer = vmalloc(sizeof(struct op_sample) * buffer_size); if (!b->buffer) goto fail; b->last_task = 0; b->last_is_kernel = -1; b->buffer_size = buffer_size; b->tail_pos = 0; b->head_pos = 0; b->sample_received = 0; b->sample_lost_overflow = 0; b->sample_lost_task_exit = 0; } return 0; fail: __free_cpu_buffers(i); return -ENOMEM; } void free_cpu_buffers(void) { __free_cpu_buffers(NR_CPUS); } /* compute number of available slots in cpu_buffer queue */ static unsigned long nr_available_slots(struct oprofile_cpu_buffer const * b) { unsigned long head = b->head_pos; unsigned long tail = b->tail_pos; if (tail > head) return (tail - head) - 1; return tail + (b->buffer_size - head) - 1; } static void increment_head(struct oprofile_cpu_buffer * b) { unsigned long new_head = b->head_pos + 1; /* Ensure anything written to the slot before we * increment is visible */ wmb(); if (new_head < (b->buffer_size)) b->head_pos = new_head; else b->head_pos = 0; } /* This must be safe from any context. It's safe writing here * because of the head/tail separation of the writer and reader * of the CPU buffer. * * is_kernel is needed because on some architectures you cannot * tell if you are in kernel or user space simply by looking at * eip. We tag this in the buffer by generating kernel enter/exit * events whenever is_kernel changes */ void oprofile_add_sample(unsigned long eip, unsigned int is_kernel, unsigned long event, int cpu) { struct oprofile_cpu_buffer * cpu_buf = &cpu_buffer[cpu]; struct task_struct * task; is_kernel = !!is_kernel; cpu_buf->sample_received++; if (nr_available_slots(cpu_buf) < 3) { cpu_buf->sample_lost_overflow++; return; } task = current; /* notice a switch from user->kernel or vice versa */ if (cpu_buf->last_is_kernel != is_kernel) { cpu_buf->last_is_kernel = is_kernel; cpu_buf->buffer[cpu_buf->head_pos].eip = ~0UL; cpu_buf->buffer[cpu_buf->head_pos].event = is_kernel; increment_head(cpu_buf); } /* notice a task switch */ if (cpu_buf->last_task != task) { cpu_buf->last_task = task; if (!(task->flags & PF_EXITING)) { cpu_buf->buffer[cpu_buf->head_pos].eip = ~0UL; cpu_buf->buffer[cpu_buf->head_pos].event = (unsigned long)task; increment_head(cpu_buf); } } /* If the task is exiting it's not safe to take a sample * as the task_struct is about to be freed. We can't just * notify at release_task() time because of CLONE_DETACHED * tasks that release_task() themselves. */ if (task->flags & PF_EXITING) { cpu_buf->sample_lost_task_exit++; return; } cpu_buf->buffer[cpu_buf->head_pos].eip = eip; cpu_buf->buffer[cpu_buf->head_pos].event = event; increment_head(cpu_buf); } /* Resets the cpu buffer to a sane state. */ void cpu_buffer_reset(struct oprofile_cpu_buffer * cpu_buf) { /* reset these to invalid values; the next sample * collected will populate the buffer with proper * values to initialize the buffer */ cpu_buf->last_is_kernel = -1; cpu_buf->last_task = 0; }