/* * Adaptec AIC79xx device driver for Linux. * * $Id: //depot/aic7xxx/linux/drivers/scsi/aic7xxx/aic79xx_osm.c#171 $ * * -------------------------------------------------------------------------- * Copyright (c) 1994-2000 Justin T. Gibbs. * Copyright (c) 1997-1999 Doug Ledford * Copyright (c) 2000-2003 Adaptec Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include "aic79xx_osm.h" #include "aic79xx_inline.h" #include /* * Include aiclib.c as part of our * "module dependencies are hard" work around. */ #include "aiclib.c" #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0) #include /* __setup */ #endif #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0) #include "sd.h" /* For geometry detection */ #endif #include /* For fetching system memory size */ #include /* For ssleep/msleep */ /* * Lock protecting manipulation of the ahd softc list. */ spinlock_t ahd_list_spinlock; #if LINUX_VERSION_CODE < KERNEL_VERSION(2,3,0) struct proc_dir_entry proc_scsi_aic79xx = { PROC_SCSI_AIC79XX, 7, "aic79xx", S_IFDIR | S_IRUGO | S_IXUGO, 2, 0, 0, 0, NULL, NULL, NULL, NULL, NULL, NULL, NULL }; #endif #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0) /* For dynamic sglist size calculation. */ u_int ahd_linux_nseg; #endif /* * Bucket size for counting good commands in between bad ones. */ #define AHD_LINUX_ERR_THRESH 1000 /* * Set this to the delay in seconds after SCSI bus reset. * Note, we honor this only for the initial bus reset. * The scsi error recovery code performs its own bus settle * delay handling for error recovery actions. */ #ifdef CONFIG_AIC79XX_RESET_DELAY_MS #define AIC79XX_RESET_DELAY CONFIG_AIC79XX_RESET_DELAY_MS #else #define AIC79XX_RESET_DELAY 5000 #endif /* * To change the default number of tagged transactions allowed per-device, * add a line to the lilo.conf file like: * append="aic79xx=verbose,tag_info:{{32,32,32,32},{32,32,32,32}}" * which will result in the first four devices on the first two * controllers being set to a tagged queue depth of 32. * * The tag_commands is an array of 16 to allow for wide and twin adapters. * Twin adapters will use indexes 0-7 for channel 0, and indexes 8-15 * for channel 1. */ typedef struct { uint16_t tag_commands[16]; /* Allow for wide/twin adapters. */ } adapter_tag_info_t; /* * Modify this as you see fit for your system. * * 0 tagged queuing disabled * 1 <= n <= 253 n == max tags ever dispatched. * * The driver will throttle the number of commands dispatched to a * device if it returns queue full. For devices with a fixed maximum * queue depth, the driver will eventually determine this depth and * lock it in (a console message is printed to indicate that a lock * has occurred). On some devices, queue full is returned for a temporary * resource shortage. These devices will return queue full at varying * depths. The driver will throttle back when the queue fulls occur and * attempt to slowly increase the depth over time as the device recovers * from the resource shortage. * * In this example, the first line will disable tagged queueing for all * the devices on the first probed aic79xx adapter. * * The second line enables tagged queueing with 4 commands/LUN for IDs * (0, 2-11, 13-15), disables tagged queueing for ID 12, and tells the * driver to attempt to use up to 64 tags for ID 1. * * The third line is the same as the first line. * * The fourth line disables tagged queueing for devices 0 and 3. It * enables tagged queueing for the other IDs, with 16 commands/LUN * for IDs 1 and 4, 127 commands/LUN for ID 8, and 4 commands/LUN for * IDs 2, 5-7, and 9-15. */ /* * NOTE: The below structure is for reference only, the actual structure * to modify in order to change things is just below this comment block. adapter_tag_info_t aic79xx_tag_info[] = { {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}, {{4, 64, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 4, 4, 4}}, {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}, {{0, 16, 4, 0, 16, 4, 4, 4, 127, 4, 4, 4, 4, 4, 4, 4}} }; */ #ifdef CONFIG_AIC79XX_CMDS_PER_DEVICE #define AIC79XX_CMDS_PER_DEVICE CONFIG_AIC79XX_CMDS_PER_DEVICE #else #define AIC79XX_CMDS_PER_DEVICE AHD_MAX_QUEUE #endif #define AIC79XX_CONFIGED_TAG_COMMANDS { \ AIC79XX_CMDS_PER_DEVICE, AIC79XX_CMDS_PER_DEVICE, \ AIC79XX_CMDS_PER_DEVICE, AIC79XX_CMDS_PER_DEVICE, \ AIC79XX_CMDS_PER_DEVICE, AIC79XX_CMDS_PER_DEVICE, \ AIC79XX_CMDS_PER_DEVICE, AIC79XX_CMDS_PER_DEVICE, \ AIC79XX_CMDS_PER_DEVICE, AIC79XX_CMDS_PER_DEVICE, \ AIC79XX_CMDS_PER_DEVICE, AIC79XX_CMDS_PER_DEVICE, \ AIC79XX_CMDS_PER_DEVICE, AIC79XX_CMDS_PER_DEVICE, \ AIC79XX_CMDS_PER_DEVICE, AIC79XX_CMDS_PER_DEVICE \ } /* * By default, use the number of commands specified by * the users kernel configuration. */ static adapter_tag_info_t aic79xx_tag_info[] = { {AIC79XX_CONFIGED_TAG_COMMANDS}, {AIC79XX_CONFIGED_TAG_COMMANDS}, {AIC79XX_CONFIGED_TAG_COMMANDS}, {AIC79XX_CONFIGED_TAG_COMMANDS}, {AIC79XX_CONFIGED_TAG_COMMANDS}, {AIC79XX_CONFIGED_TAG_COMMANDS}, {AIC79XX_CONFIGED_TAG_COMMANDS}, {AIC79XX_CONFIGED_TAG_COMMANDS}, {AIC79XX_CONFIGED_TAG_COMMANDS}, {AIC79XX_CONFIGED_TAG_COMMANDS}, {AIC79XX_CONFIGED_TAG_COMMANDS}, {AIC79XX_CONFIGED_TAG_COMMANDS}, {AIC79XX_CONFIGED_TAG_COMMANDS}, {AIC79XX_CONFIGED_TAG_COMMANDS}, {AIC79XX_CONFIGED_TAG_COMMANDS}, {AIC79XX_CONFIGED_TAG_COMMANDS} }; /* * By default, read streaming is disabled. In theory, * read streaming should enhance performance, but early * U320 drive firmware actually performs slower with * read streaming enabled. */ #ifdef CONFIG_AIC79XX_ENABLE_RD_STRM #define AIC79XX_CONFIGED_RD_STRM 0xFFFF #else #define AIC79XX_CONFIGED_RD_STRM 0 #endif static uint16_t aic79xx_rd_strm_info[] = { AIC79XX_CONFIGED_RD_STRM, AIC79XX_CONFIGED_RD_STRM, AIC79XX_CONFIGED_RD_STRM, AIC79XX_CONFIGED_RD_STRM, AIC79XX_CONFIGED_RD_STRM, AIC79XX_CONFIGED_RD_STRM, AIC79XX_CONFIGED_RD_STRM, AIC79XX_CONFIGED_RD_STRM, AIC79XX_CONFIGED_RD_STRM, AIC79XX_CONFIGED_RD_STRM, AIC79XX_CONFIGED_RD_STRM, AIC79XX_CONFIGED_RD_STRM, AIC79XX_CONFIGED_RD_STRM, AIC79XX_CONFIGED_RD_STRM, AIC79XX_CONFIGED_RD_STRM, AIC79XX_CONFIGED_RD_STRM }; /* * DV option: * * positive value = DV Enabled * zero = DV Disabled * negative value = DV Default for adapter type/seeprom */ #ifdef CONFIG_AIC79XX_DV_SETTING #define AIC79XX_CONFIGED_DV CONFIG_AIC79XX_DV_SETTING #else #define AIC79XX_CONFIGED_DV -1 #endif static int8_t aic79xx_dv_settings[] = { AIC79XX_CONFIGED_DV, AIC79XX_CONFIGED_DV, AIC79XX_CONFIGED_DV, AIC79XX_CONFIGED_DV, AIC79XX_CONFIGED_DV, AIC79XX_CONFIGED_DV, AIC79XX_CONFIGED_DV, AIC79XX_CONFIGED_DV, AIC79XX_CONFIGED_DV, AIC79XX_CONFIGED_DV, AIC79XX_CONFIGED_DV, AIC79XX_CONFIGED_DV, AIC79XX_CONFIGED_DV, AIC79XX_CONFIGED_DV, AIC79XX_CONFIGED_DV, AIC79XX_CONFIGED_DV }; /* * The I/O cell on the chip is very configurable in respect to its analog * characteristics. Set the defaults here; they can be overriden with * the proper insmod parameters. */ struct ahd_linux_iocell_opts { uint8_t precomp; uint8_t slewrate; uint8_t amplitude; }; #define AIC79XX_DEFAULT_PRECOMP 0xFF #define AIC79XX_DEFAULT_SLEWRATE 0xFF #define AIC79XX_DEFAULT_AMPLITUDE 0xFF #define AIC79XX_DEFAULT_IOOPTS \ { \ AIC79XX_DEFAULT_PRECOMP, \ AIC79XX_DEFAULT_SLEWRATE, \ AIC79XX_DEFAULT_AMPLITUDE \ } #define AIC79XX_PRECOMP_INDEX 0 #define AIC79XX_SLEWRATE_INDEX 1 #define AIC79XX_AMPLITUDE_INDEX 2 static struct ahd_linux_iocell_opts aic79xx_iocell_info[] = { AIC79XX_DEFAULT_IOOPTS, AIC79XX_DEFAULT_IOOPTS, AIC79XX_DEFAULT_IOOPTS, AIC79XX_DEFAULT_IOOPTS, AIC79XX_DEFAULT_IOOPTS, AIC79XX_DEFAULT_IOOPTS, AIC79XX_DEFAULT_IOOPTS, AIC79XX_DEFAULT_IOOPTS, AIC79XX_DEFAULT_IOOPTS, AIC79XX_DEFAULT_IOOPTS, AIC79XX_DEFAULT_IOOPTS, AIC79XX_DEFAULT_IOOPTS, AIC79XX_DEFAULT_IOOPTS, AIC79XX_DEFAULT_IOOPTS, AIC79XX_DEFAULT_IOOPTS, AIC79XX_DEFAULT_IOOPTS }; /* * There should be a specific return value for this in scsi.h, but * it seems that most drivers ignore it. */ #define DID_UNDERFLOW DID_ERROR void ahd_print_path(struct ahd_softc *ahd, struct scb *scb) { printk("(scsi%d:%c:%d:%d): ", ahd->platform_data->host->host_no, scb != NULL ? SCB_GET_CHANNEL(ahd, scb) : 'X', scb != NULL ? SCB_GET_TARGET(ahd, scb) : -1, scb != NULL ? SCB_GET_LUN(scb) : -1); } /* * XXX - these options apply unilaterally to _all_ adapters * cards in the system. This should be fixed. Exceptions to this * rule are noted in the comments. */ /* * Skip the scsi bus reset. Non 0 make us skip the reset at startup. This * has no effect on any later resets that might occur due to things like * SCSI bus timeouts. */ static uint32_t aic79xx_no_reset; /* * Certain PCI motherboards will scan PCI devices from highest to lowest, * others scan from lowest to highest, and they tend to do all kinds of * strange things when they come into contact with PCI bridge chips. The * net result of all this is that the PCI card that is actually used to boot * the machine is very hard to detect. Most motherboards go from lowest * PCI slot number to highest, and the first SCSI controller found is the * one you boot from. The only exceptions to this are when a controller * has its BIOS disabled. So, we by default sort all of our SCSI controllers * from lowest PCI slot number to highest PCI slot number. We also force * all controllers with their BIOS disabled to the end of the list. This * works on *almost* all computers. Where it doesn't work, we have this * option. Setting this option to non-0 will reverse the order of the sort * to highest first, then lowest, but will still leave cards with their BIOS * disabled at the very end. That should fix everyone up unless there are * really strange cirumstances. */ static uint32_t aic79xx_reverse_scan; /* * Should we force EXTENDED translation on a controller. * 0 == Use whatever is in the SEEPROM or default to off * 1 == Use whatever is in the SEEPROM or default to on */ static uint32_t aic79xx_extended; /* * PCI bus parity checking of the Adaptec controllers. This is somewhat * dubious at best. To my knowledge, this option has never actually * solved a PCI parity problem, but on certain machines with broken PCI * chipset configurations, it can generate tons of false error messages. * It's included in the driver for completeness. * 0 = Shut off PCI parity check * non-0 = Enable PCI parity check * * NOTE: you can't actually pass -1 on the lilo prompt. So, to set this * variable to -1 you would actually want to simply pass the variable * name without a number. That will invert the 0 which will result in * -1. */ static uint32_t aic79xx_pci_parity = ~0; /* * There are lots of broken chipsets in the world. Some of them will * violate the PCI spec when we issue byte sized memory writes to our * controller. I/O mapped register access, if allowed by the given * platform, will work in almost all cases. */ uint32_t aic79xx_allow_memio = ~0; /* * aic79xx_detect() has been run, so register all device arrivals * immediately with the system rather than deferring to the sorted * attachment performed by aic79xx_detect(). */ int aic79xx_detect_complete; /* * So that we can set how long each device is given as a selection timeout. * The table of values goes like this: * 0 - 256ms * 1 - 128ms * 2 - 64ms * 3 - 32ms * We default to 256ms because some older devices need a longer time * to respond to initial selection. */ static uint32_t aic79xx_seltime; /* * Certain devices do not perform any aging on commands. Should the * device be saturated by commands in one portion of the disk, it is * possible for transactions on far away sectors to never be serviced. * To handle these devices, we can periodically send an ordered tag to * force all outstanding transactions to be serviced prior to a new * transaction. */ uint32_t aic79xx_periodic_otag; /* * Module information and settable options. */ static char *aic79xx = NULL; /* * Just in case someone uses commas to separate items on the insmod * command line, we define a dummy buffer here to avoid having insmod * write wild stuff into our code segment */ static char dummy_buffer[60] = "Please don't trounce on me insmod!!\n"; MODULE_AUTHOR("Maintainer: Justin T. Gibbs "); MODULE_DESCRIPTION("Adaptec Aic790X U320 SCSI Host Bus Adapter driver"); MODULE_LICENSE("Dual BSD/GPL"); MODULE_VERSION(AIC79XX_DRIVER_VERSION); MODULE_PARM(aic79xx, "s"); MODULE_PARM_DESC(aic79xx, "period delimited, options string.\n" " verbose Enable verbose/diagnostic logging\n" " allow_memio Allow device registers to be memory mapped\n" " debug Bitmask of debug values to enable\n" " no_reset Supress initial bus resets\n" " extended Enable extended geometry on all controllers\n" " periodic_otag Send an ordered tagged transaction\n" " periodically to prevent tag starvation.\n" " This may be required by some older disk\n" " or drives/RAID arrays.\n" " reverse_scan Sort PCI devices highest Bus/Slot to lowest\n" " tag_info: Set per-target tag depth\n" " global_tag_depth: Global tag depth for all targets on all buses\n" " rd_strm: Set per-target read streaming setting.\n" " dv: Set per-controller Domain Validation Setting.\n" " slewrate:Set the signal slew rate (0-15).\n" " precomp: Set the signal precompensation (0-7).\n" " amplitude: Set the signal amplitude (0-7).\n" " seltime: Selection Timeout:\n" " (0/256ms,1/128ms,2/64ms,3/32ms)\n" "\n" " Sample /etc/modprobe.conf line:\n" " Enable verbose logging\n" " Set tag depth on Controller 2/Target 2 to 10 tags\n" " Shorten the selection timeout to 128ms\n" "\n" " options aic79xx 'aic79xx=verbose.tag_info:{{}.{}.{..10}}.seltime:1'\n" "\n" " Sample /etc/modprobe.conf line:\n" " Change Read Streaming for Controller's 2 and 3\n" "\n" " options aic79xx 'aic79xx=rd_strm:{..0xFFF0.0xC0F0}'"); static void ahd_linux_handle_scsi_status(struct ahd_softc *, struct ahd_linux_device *, struct scb *); static void ahd_linux_queue_cmd_complete(struct ahd_softc *ahd, Scsi_Cmnd *cmd); static void ahd_linux_filter_inquiry(struct ahd_softc *ahd, struct ahd_devinfo *devinfo); static void ahd_linux_dev_timed_unfreeze(u_long arg); static void ahd_linux_sem_timeout(u_long arg); static void ahd_linux_initialize_scsi_bus(struct ahd_softc *ahd); static void ahd_linux_size_nseg(void); static void ahd_linux_thread_run_complete_queue(struct ahd_softc *ahd); static void ahd_linux_start_dv(struct ahd_softc *ahd); static void ahd_linux_dv_timeout(struct scsi_cmnd *cmd); static int ahd_linux_dv_thread(void *data); static void ahd_linux_kill_dv_thread(struct ahd_softc *ahd); static void ahd_linux_dv_target(struct ahd_softc *ahd, u_int target); static void ahd_linux_dv_transition(struct ahd_softc *ahd, struct scsi_cmnd *cmd, struct ahd_devinfo *devinfo, struct ahd_linux_target *targ); static void ahd_linux_dv_fill_cmd(struct ahd_softc *ahd, struct scsi_cmnd *cmd, struct ahd_devinfo *devinfo); static void ahd_linux_dv_inq(struct ahd_softc *ahd, struct scsi_cmnd *cmd, struct ahd_devinfo *devinfo, struct ahd_linux_target *targ, u_int request_length); static void ahd_linux_dv_tur(struct ahd_softc *ahd, struct scsi_cmnd *cmd, struct ahd_devinfo *devinfo); static void ahd_linux_dv_rebd(struct ahd_softc *ahd, struct scsi_cmnd *cmd, struct ahd_devinfo *devinfo, struct ahd_linux_target *targ); static void ahd_linux_dv_web(struct ahd_softc *ahd, struct scsi_cmnd *cmd, struct ahd_devinfo *devinfo, struct ahd_linux_target *targ); static void ahd_linux_dv_reb(struct ahd_softc *ahd, struct scsi_cmnd *cmd, struct ahd_devinfo *devinfo, struct ahd_linux_target *targ); static void ahd_linux_dv_su(struct ahd_softc *ahd, struct scsi_cmnd *cmd, struct ahd_devinfo *devinfo, struct ahd_linux_target *targ); static int ahd_linux_fallback(struct ahd_softc *ahd, struct ahd_devinfo *devinfo); static __inline int ahd_linux_dv_fallback(struct ahd_softc *ahd, struct ahd_devinfo *devinfo); static void ahd_linux_dv_complete(Scsi_Cmnd *cmd); static void ahd_linux_generate_dv_pattern(struct ahd_linux_target *targ); static u_int ahd_linux_user_tagdepth(struct ahd_softc *ahd, struct ahd_devinfo *devinfo); static u_int ahd_linux_user_dv_setting(struct ahd_softc *ahd); static void ahd_linux_setup_user_rd_strm_settings(struct ahd_softc *ahd); static void ahd_linux_device_queue_depth(struct ahd_softc *ahd, struct ahd_linux_device *dev); static struct ahd_linux_target* ahd_linux_alloc_target(struct ahd_softc*, u_int, u_int); static void ahd_linux_free_target(struct ahd_softc*, struct ahd_linux_target*); static struct ahd_linux_device* ahd_linux_alloc_device(struct ahd_softc*, struct ahd_linux_target*, u_int); static void ahd_linux_free_device(struct ahd_softc*, struct ahd_linux_device*); static void ahd_linux_run_device_queue(struct ahd_softc*, struct ahd_linux_device*); static void ahd_linux_setup_tag_info_global(char *p); static aic_option_callback_t ahd_linux_setup_tag_info; static aic_option_callback_t ahd_linux_setup_rd_strm_info; static aic_option_callback_t ahd_linux_setup_dv; static aic_option_callback_t ahd_linux_setup_iocell_info; static int ahd_linux_next_unit(void); static void ahd_runq_tasklet(unsigned long data); static int aic79xx_setup(char *c); /****************************** Inlines ***************************************/ static __inline void ahd_schedule_completeq(struct ahd_softc *ahd); static __inline void ahd_schedule_runq(struct ahd_softc *ahd); static __inline void ahd_setup_runq_tasklet(struct ahd_softc *ahd); static __inline void ahd_teardown_runq_tasklet(struct ahd_softc *ahd); static __inline struct ahd_linux_device* ahd_linux_get_device(struct ahd_softc *ahd, u_int channel, u_int target, u_int lun, int alloc); static struct ahd_cmd *ahd_linux_run_complete_queue(struct ahd_softc *ahd); static __inline void ahd_linux_check_device_queue(struct ahd_softc *ahd, struct ahd_linux_device *dev); static __inline struct ahd_linux_device * ahd_linux_next_device_to_run(struct ahd_softc *ahd); static __inline void ahd_linux_run_device_queues(struct ahd_softc *ahd); static __inline void ahd_linux_unmap_scb(struct ahd_softc*, struct scb*); static __inline int ahd_linux_map_seg(struct ahd_softc *ahd, struct scb *scb, struct ahd_dma_seg *sg, bus_addr_t addr, bus_size_t len); static __inline void ahd_schedule_completeq(struct ahd_softc *ahd) { if ((ahd->platform_data->flags & AHD_RUN_CMPLT_Q_TIMER) == 0) { ahd->platform_data->flags |= AHD_RUN_CMPLT_Q_TIMER; ahd->platform_data->completeq_timer.expires = jiffies; add_timer(&ahd->platform_data->completeq_timer); } } /* * Must be called with our lock held. */ static __inline void ahd_schedule_runq(struct ahd_softc *ahd) { #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0) tasklet_schedule(&ahd->platform_data->runq_tasklet); #else /* * Tasklets are not available, so run inline. */ ahd_runq_tasklet((unsigned long)ahd); #endif } static __inline void ahd_setup_runq_tasklet(struct ahd_softc *ahd) { #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0) tasklet_init(&ahd->platform_data->runq_tasklet, ahd_runq_tasklet, (unsigned long)ahd); #endif } static __inline void ahd_teardown_runq_tasklet(struct ahd_softc *ahd) { #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0) tasklet_kill(&ahd->platform_data->runq_tasklet); #endif } static __inline struct ahd_linux_device* ahd_linux_get_device(struct ahd_softc *ahd, u_int channel, u_int target, u_int lun, int alloc) { struct ahd_linux_target *targ; struct ahd_linux_device *dev; u_int target_offset; target_offset = target; if (channel != 0) target_offset += 8; targ = ahd->platform_data->targets[target_offset]; if (targ == NULL) { if (alloc != 0) { targ = ahd_linux_alloc_target(ahd, channel, target); if (targ == NULL) return (NULL); } else return (NULL); } dev = targ->devices[lun]; if (dev == NULL && alloc != 0) dev = ahd_linux_alloc_device(ahd, targ, lun); return (dev); } #define AHD_LINUX_MAX_RETURNED_ERRORS 4 static struct ahd_cmd * ahd_linux_run_complete_queue(struct ahd_softc *ahd) { struct ahd_cmd *acmd; u_long done_flags; int with_errors; with_errors = 0; ahd_done_lock(ahd, &done_flags); while ((acmd = TAILQ_FIRST(&ahd->platform_data->completeq)) != NULL) { Scsi_Cmnd *cmd; if (with_errors > AHD_LINUX_MAX_RETURNED_ERRORS) { /* * Linux uses stack recursion to requeue * commands that need to be retried. Avoid * blowing out the stack by "spoon feeding" * commands that completed with error back * the operating system in case they are going * to be retried. "ick" */ ahd_schedule_completeq(ahd); break; } TAILQ_REMOVE(&ahd->platform_data->completeq, acmd, acmd_links.tqe); cmd = &acmd_scsi_cmd(acmd); cmd->host_scribble = NULL; if (ahd_cmd_get_transaction_status(cmd) != DID_OK || (cmd->result & 0xFF) != SCSI_STATUS_OK) with_errors++; cmd->scsi_done(cmd); } ahd_done_unlock(ahd, &done_flags); return (acmd); } static __inline void ahd_linux_check_device_queue(struct ahd_softc *ahd, struct ahd_linux_device *dev) { if ((dev->flags & AHD_DEV_FREEZE_TIL_EMPTY) != 0 && dev->active == 0) { dev->flags &= ~AHD_DEV_FREEZE_TIL_EMPTY; dev->qfrozen--; } if (TAILQ_FIRST(&dev->busyq) == NULL || dev->openings == 0 || dev->qfrozen != 0) return; ahd_linux_run_device_queue(ahd, dev); } static __inline struct ahd_linux_device * ahd_linux_next_device_to_run(struct ahd_softc *ahd) { if ((ahd->flags & AHD_RESOURCE_SHORTAGE) != 0 || (ahd->platform_data->qfrozen != 0 && AHD_DV_SIMQ_FROZEN(ahd) == 0)) return (NULL); return (TAILQ_FIRST(&ahd->platform_data->device_runq)); } static __inline void ahd_linux_run_device_queues(struct ahd_softc *ahd) { struct ahd_linux_device *dev; while ((dev = ahd_linux_next_device_to_run(ahd)) != NULL) { TAILQ_REMOVE(&ahd->platform_data->device_runq, dev, links); dev->flags &= ~AHD_DEV_ON_RUN_LIST; ahd_linux_check_device_queue(ahd, dev); } } static __inline void ahd_linux_unmap_scb(struct ahd_softc *ahd, struct scb *scb) { Scsi_Cmnd *cmd; int direction; cmd = scb->io_ctx; direction = scsi_to_pci_dma_dir(cmd->sc_data_direction); ahd_sync_sglist(ahd, scb, BUS_DMASYNC_POSTWRITE); if (cmd->use_sg != 0) { struct scatterlist *sg; sg = (struct scatterlist *)cmd->request_buffer; pci_unmap_sg(ahd->dev_softc, sg, cmd->use_sg, direction); } else if (cmd->request_bufflen != 0) { pci_unmap_single(ahd->dev_softc, scb->platform_data->buf_busaddr, cmd->request_bufflen, direction); } } static __inline int ahd_linux_map_seg(struct ahd_softc *ahd, struct scb *scb, struct ahd_dma_seg *sg, bus_addr_t addr, bus_size_t len) { int consumed; if ((scb->sg_count + 1) > AHD_NSEG) panic("Too few segs for dma mapping. " "Increase AHD_NSEG\n"); consumed = 1; sg->addr = ahd_htole32(addr & 0xFFFFFFFF); scb->platform_data->xfer_len += len; if (sizeof(bus_addr_t) > 4 && (ahd->flags & AHD_39BIT_ADDRESSING) != 0) len |= (addr >> 8) & AHD_SG_HIGH_ADDR_MASK; sg->len = ahd_htole32(len); return (consumed); } /******************************** Macros **************************************/ #define BUILD_SCSIID(ahd, cmd) \ ((((cmd)->device->id << TID_SHIFT) & TID) | (ahd)->our_id) /************************ Host template entry points *************************/ static int ahd_linux_detect(Scsi_Host_Template *); static const char *ahd_linux_info(struct Scsi_Host *); static int ahd_linux_queue(Scsi_Cmnd *, void (*)(Scsi_Cmnd *)); #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0) static int ahd_linux_slave_alloc(Scsi_Device *); static int ahd_linux_slave_configure(Scsi_Device *); static void ahd_linux_slave_destroy(Scsi_Device *); #if defined(__i386__) static int ahd_linux_biosparam(struct scsi_device*, struct block_device*, sector_t, int[]); #endif #else static int ahd_linux_release(struct Scsi_Host *); static void ahd_linux_select_queue_depth(struct Scsi_Host *host, Scsi_Device *scsi_devs); #if defined(__i386__) static int ahd_linux_biosparam(Disk *, kdev_t, int[]); #endif #endif static int ahd_linux_bus_reset(Scsi_Cmnd *); static int ahd_linux_dev_reset(Scsi_Cmnd *); static int ahd_linux_abort(Scsi_Cmnd *); /* * Calculate a safe value for AHD_NSEG (as expressed through ahd_linux_nseg). * * In pre-2.5.X... * The midlayer allocates an S/G array dynamically when a command is issued * using SCSI malloc. This array, which is in an OS dependent format that * must later be copied to our private S/G list, is sized to house just the * number of segments needed for the current transfer. Since the code that * sizes the SCSI malloc pool does not take into consideration fragmentation * of the pool, executing transactions numbering just a fraction of our * concurrent transaction limit with SG list lengths aproaching AHC_NSEG will * quickly depleat the SCSI malloc pool of usable space. Unfortunately, the * mid-layer does not properly handle this scsi malloc failures for the S/G * array and the result can be a lockup of the I/O subsystem. We try to size * our S/G list so that it satisfies our drivers allocation requirements in * addition to avoiding fragmentation of the SCSI malloc pool. */ static void ahd_linux_size_nseg(void) { #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0) u_int cur_size; u_int best_size; /* * The SCSI allocator rounds to the nearest 512 bytes * an cannot allocate across a page boundary. Our algorithm * is to start at 1K of scsi malloc space per-command and * loop through all factors of the PAGE_SIZE and pick the best. */ best_size = 0; for (cur_size = 1024; cur_size <= PAGE_SIZE; cur_size *= 2) { u_int nseg; nseg = cur_size / sizeof(struct scatterlist); if (nseg < AHD_LINUX_MIN_NSEG) continue; if (best_size == 0) { best_size = cur_size; ahd_linux_nseg = nseg; } else { u_int best_rem; u_int cur_rem; /* * Compare the traits of the current "best_size" * with the current size to determine if the * current size is a better size. */ best_rem = best_size % sizeof(struct scatterlist); cur_rem = cur_size % sizeof(struct scatterlist); if (cur_rem < best_rem) { best_size = cur_size; ahd_linux_nseg = nseg; } } } #endif } /* * Try to detect an Adaptec 79XX controller. */ static int ahd_linux_detect(Scsi_Host_Template *template) { struct ahd_softc *ahd; int found; #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0) /* * It is a bug that the upper layer takes * this lock just prior to calling us. */ spin_unlock_irq(&io_request_lock); #endif /* * Sanity checking of Linux SCSI data structures so * that some of our hacks^H^H^H^H^Hassumptions aren't * violated. */ if (offsetof(struct ahd_cmd_internal, end) > offsetof(struct scsi_cmnd, host_scribble)) { printf("ahd_linux_detect: SCSI data structures changed.\n"); printf("ahd_linux_detect: Unable to attach\n"); return (0); } /* * Determine an appropriate size for our Scatter Gatther lists. */ ahd_linux_size_nseg(); #ifdef MODULE /* * If we've been passed any parameters, process them now. */ if (aic79xx) aic79xx_setup(aic79xx); if (dummy_buffer[0] != 'P') printk(KERN_WARNING "aic79xx: Please read the file /usr/src/linux/drivers/scsi/README.aic79xx\n" "aic79xx: to see the proper way to specify options to the aic79xx module\n" "aic79xx: Specifically, don't use any commas when passing arguments to\n" "aic79xx: insmod or else it might trash certain memory areas.\n"); #endif #if LINUX_VERSION_CODE > KERNEL_VERSION(2,3,0) template->proc_name = "aic79xx"; #else template->proc_dir = &proc_scsi_aic79xx; #endif /* * Initialize our softc list lock prior to * probing for any adapters. */ ahd_list_lockinit(); #ifdef CONFIG_PCI ahd_linux_pci_init(); #endif /* * Register with the SCSI layer all * controllers we've found. */ found = 0; TAILQ_FOREACH(ahd, &ahd_tailq, links) { if (ahd_linux_register_host(ahd, template) == 0) found++; } #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0) spin_lock_irq(&io_request_lock); #endif aic79xx_detect_complete++; return (found); } #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0) /* * Free the passed in Scsi_Host memory structures prior to unloading the * module. */ static int ahd_linux_release(struct Scsi_Host * host) { struct ahd_softc *ahd; u_long l; ahd_list_lock(&l); if (host != NULL) { /* * We should be able to just perform * the free directly, but check our * list for extra sanity. */ ahd = ahd_find_softc(*(struct ahd_softc **)host->hostdata); if (ahd != NULL) { u_long s; ahd_lock(ahd, &s); ahd_intr_enable(ahd, FALSE); ahd_unlock(ahd, &s); ahd_free(ahd); } } ahd_list_unlock(&l); return (0); } #endif /* * Return a string describing the driver. */ static const char * ahd_linux_info(struct Scsi_Host *host) { static char buffer[512]; char ahd_info[256]; char *bp; struct ahd_softc *ahd; bp = &buffer[0]; ahd = *(struct ahd_softc **)host->hostdata; memset(bp, 0, sizeof(buffer)); strcpy(bp, "Adaptec AIC79XX PCI-X SCSI HBA DRIVER, Rev "); strcat(bp, AIC79XX_DRIVER_VERSION); strcat(bp, "\n"); strcat(bp, " <"); strcat(bp, ahd->description); strcat(bp, ">\n"); strcat(bp, " "); ahd_controller_info(ahd, ahd_info); strcat(bp, ahd_info); strcat(bp, "\n"); return (bp); } /* * Queue an SCB to the controller. */ static int ahd_linux_queue(Scsi_Cmnd * cmd, void (*scsi_done) (Scsi_Cmnd *)) { struct ahd_softc *ahd; struct ahd_linux_device *dev; u_long flags; ahd = *(struct ahd_softc **)cmd->device->host->hostdata; /* * Save the callback on completion function. */ cmd->scsi_done = scsi_done; ahd_midlayer_entrypoint_lock(ahd, &flags); /* * Close the race of a command that was in the process of * being queued to us just as our simq was frozen. Let * DV commands through so long as we are only frozen to * perform DV. */ if (ahd->platform_data->qfrozen != 0 && AHD_DV_CMD(cmd) == 0) { ahd_cmd_set_transaction_status(cmd, CAM_REQUEUE_REQ); ahd_linux_queue_cmd_complete(ahd, cmd); ahd_schedule_completeq(ahd); ahd_midlayer_entrypoint_unlock(ahd, &flags); return (0); } dev = ahd_linux_get_device(ahd, cmd->device->channel, cmd->device->id, cmd->device->lun, /*alloc*/TRUE); if (dev == NULL) { ahd_cmd_set_transaction_status(cmd, CAM_RESRC_UNAVAIL); ahd_linux_queue_cmd_complete(ahd, cmd); ahd_schedule_completeq(ahd); ahd_midlayer_entrypoint_unlock(ahd, &flags); printf("%s: aic79xx_linux_queue - Unable to allocate device!\n", ahd_name(ahd)); return (0); } if (cmd->cmd_len > MAX_CDB_LEN) return (-EINVAL); cmd->result = CAM_REQ_INPROG << 16; TAILQ_INSERT_TAIL(&dev->busyq, (struct ahd_cmd *)cmd, acmd_links.tqe); if ((dev->flags & AHD_DEV_ON_RUN_LIST) == 0) { TAILQ_INSERT_TAIL(&ahd->platform_data->device_runq, dev, links); dev->flags |= AHD_DEV_ON_RUN_LIST; ahd_linux_run_device_queues(ahd); } ahd_midlayer_entrypoint_unlock(ahd, &flags); return (0); } #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0) static int ahd_linux_slave_alloc(Scsi_Device *device) { struct ahd_softc *ahd; ahd = *((struct ahd_softc **)device->host->hostdata); if (bootverbose) printf("%s: Slave Alloc %d\n", ahd_name(ahd), device->id); return (0); } static int ahd_linux_slave_configure(Scsi_Device *device) { struct ahd_softc *ahd; struct ahd_linux_device *dev; u_long flags; ahd = *((struct ahd_softc **)device->host->hostdata); if (bootverbose) printf("%s: Slave Configure %d\n", ahd_name(ahd), device->id); ahd_midlayer_entrypoint_lock(ahd, &flags); /* * Since Linux has attached to the device, configure * it so we don't free and allocate the device * structure on every command. */ dev = ahd_linux_get_device(ahd, device->channel, device->id, device->lun, /*alloc*/TRUE); if (dev != NULL) { dev->flags &= ~AHD_DEV_UNCONFIGURED; dev->flags |= AHD_DEV_SLAVE_CONFIGURED; dev->scsi_device = device; ahd_linux_device_queue_depth(ahd, dev); } ahd_midlayer_entrypoint_unlock(ahd, &flags); return (0); } static void ahd_linux_slave_destroy(Scsi_Device *device) { struct ahd_softc *ahd; struct ahd_linux_device *dev; u_long flags; ahd = *((struct ahd_softc **)device->host->hostdata); if (bootverbose) printf("%s: Slave Destroy %d\n", ahd_name(ahd), device->id); ahd_midlayer_entrypoint_lock(ahd, &flags); dev = ahd_linux_get_device(ahd, device->channel, device->id, device->lun, /*alloc*/FALSE); /* * Filter out "silly" deletions of real devices by only * deleting devices that have had slave_configure() * called on them. All other devices that have not * been configured will automatically be deleted by * the refcounting process. */ if (dev != NULL && (dev->flags & AHD_DEV_SLAVE_CONFIGURED) != 0) { dev->flags |= AHD_DEV_UNCONFIGURED; if (TAILQ_EMPTY(&dev->busyq) && dev->active == 0 && (dev->flags & AHD_DEV_TIMER_ACTIVE) == 0) ahd_linux_free_device(ahd, dev); } ahd_midlayer_entrypoint_unlock(ahd, &flags); } #else /* * Sets the queue depth for each SCSI device hanging * off the input host adapter. */ static void ahd_linux_select_queue_depth(struct Scsi_Host * host, Scsi_Device * scsi_devs) { Scsi_Device *device; Scsi_Device *ldev; struct ahd_softc *ahd; u_long flags; ahd = *((struct ahd_softc **)host->hostdata); ahd_lock(ahd, &flags); for (device = scsi_devs; device != NULL; device = device->next) { /* * Watch out for duplicate devices. This works around * some quirks in how the SCSI scanning code does its * device management. */ for (ldev = scsi_devs; ldev != device; ldev = ldev->next) { if (ldev->host == device->host && ldev->channel == device->channel && ldev->id == device->id && ldev->lun == device->lun) break; } /* Skip duplicate. */ if (ldev != device) continue; if (device->host == host) { struct ahd_linux_device *dev; /* * Since Linux has attached to the device, configure * it so we don't free and allocate the device * structure on every command. */ dev = ahd_linux_get_device(ahd, device->channel, device->id, device->lun, /*alloc*/TRUE); if (dev != NULL) { dev->flags &= ~AHD_DEV_UNCONFIGURED; dev->scsi_device = device; ahd_linux_device_queue_depth(ahd, dev); device->queue_depth = dev->openings + dev->active; if ((dev->flags & (AHD_DEV_Q_BASIC | AHD_DEV_Q_TAGGED)) == 0) { /* * We allow the OS to queue 2 untagged * transactions to us at any time even * though we can only execute them * serially on the controller/device. * This should remove some latency. */ device->queue_depth = 2; } } } } ahd_unlock(ahd, &flags); } #endif #if defined(__i386__) /* * Return the disk geometry for the given SCSI device. */ static int #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0) ahd_linux_biosparam(struct scsi_device *sdev, struct block_device *bdev, sector_t capacity, int geom[]) { uint8_t *bh; #else ahd_linux_biosparam(Disk *disk, kdev_t dev, int geom[]) { struct scsi_device *sdev = disk->device; u_long capacity = disk->capacity; struct buffer_head *bh; #endif int heads; int sectors; int cylinders; int ret; int extended; struct ahd_softc *ahd; ahd = *((struct ahd_softc **)sdev->host->hostdata); #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0) bh = scsi_bios_ptable(bdev); #elif LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,17) bh = bread(MKDEV(MAJOR(dev), MINOR(dev) & ~0xf), 0, block_size(dev)); #else bh = bread(MKDEV(MAJOR(dev), MINOR(dev) & ~0xf), 0, 1024); #endif if (bh) { ret = scsi_partsize(bh, capacity, &geom[2], &geom[0], &geom[1]); #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0) kfree(bh); #else brelse(bh); #endif if (ret != -1) return (ret); } heads = 64; sectors = 32; cylinders = aic_sector_div(capacity, heads, sectors); if (aic79xx_extended != 0) extended = 1; else extended = (ahd->flags & AHD_EXTENDED_TRANS_A) != 0; if (extended && cylinders >= 1024) { heads = 255; sectors = 63; cylinders = aic_sector_div(capacity, heads, sectors); } geom[0] = heads; geom[1] = sectors; geom[2] = cylinders; return (0); } #endif /* * Abort the current SCSI command(s). */ static int ahd_linux_abort(Scsi_Cmnd *cmd) { struct ahd_softc *ahd; struct ahd_cmd *acmd; struct ahd_cmd *list_acmd; struct ahd_linux_device *dev; struct scb *pending_scb; u_long s; u_int saved_scbptr; u_int active_scbptr; u_int last_phase; u_int cdb_byte; int retval; int was_paused; int paused; int wait; int disconnected; ahd_mode_state saved_modes; pending_scb = NULL; paused = FALSE; wait = FALSE; ahd = *(struct ahd_softc **)cmd->device->host->hostdata; acmd = (struct ahd_cmd *)cmd; printf("%s:%d:%d:%d: Attempting to abort cmd %p:", ahd_name(ahd), cmd->device->channel, cmd->device->id, cmd->device->lun, cmd); for (cdb_byte = 0; cdb_byte < cmd->cmd_len; cdb_byte++) printf(" 0x%x", cmd->cmnd[cdb_byte]); printf("\n"); /* * In all versions of Linux, we have to work around * a major flaw in how the mid-layer is locked down * if we are to sleep successfully in our error handler * while allowing our interrupt handler to run. Since * the midlayer acquires either the io_request_lock or * our lock prior to calling us, we must use the * spin_unlock_irq() method for unlocking our lock. * This will force interrupts to be enabled on the * current CPU. Since the EH thread should not have * been running with CPU interrupts disabled other than * by acquiring either the io_request_lock or our own * lock, this *should* be safe. */ ahd_midlayer_entrypoint_lock(ahd, &s); /* * First determine if we currently own this command. * Start by searching the device queue. If not found * there, check the pending_scb list. If not found * at all, and the system wanted us to just abort the * command, return success. */ dev = ahd_linux_get_device(ahd, cmd->device->channel, cmd->device->id, cmd->device->lun, /*alloc*/FALSE); if (dev == NULL) { /* * No target device for this command exists, * so we must not still own the command. */ printf("%s:%d:%d:%d: Is not an active device\n", ahd_name(ahd), cmd->device->channel, cmd->device->id, cmd->device->lun); retval = SUCCESS; goto no_cmd; } TAILQ_FOREACH(list_acmd, &dev->busyq, acmd_links.tqe) { if (list_acmd == acmd) break; } if (list_acmd != NULL) { printf("%s:%d:%d:%d: Command found on device queue\n", ahd_name(ahd), cmd->device->channel, cmd->device->id, cmd->device->lun); TAILQ_REMOVE(&dev->busyq, list_acmd, acmd_links.tqe); cmd->result = DID_ABORT << 16; ahd_linux_queue_cmd_complete(ahd, cmd); retval = SUCCESS; goto done; } /* * See if we can find a matching cmd in the pending list. */ LIST_FOREACH(pending_scb, &ahd->pending_scbs, pending_links) { if (pending_scb->io_ctx == cmd) break; } if (pending_scb == NULL) { printf("%s:%d:%d:%d: Command not found\n", ahd_name(ahd), cmd->device->channel, cmd->device->id, cmd->device->lun); goto no_cmd; } if ((pending_scb->flags & SCB_RECOVERY_SCB) != 0) { /* * We can't queue two recovery actions using the same SCB */ retval = FAILED; goto done; } /* * Ensure that the card doesn't do anything * behind our back. Also make sure that we * didn't "just" miss an interrupt that would * affect this cmd. */ was_paused = ahd_is_paused(ahd); ahd_pause_and_flushwork(ahd); paused = TRUE; if ((pending_scb->flags & SCB_ACTIVE) == 0) { printf("%s:%d:%d:%d: Command already completed\n", ahd_name(ahd), cmd->device->channel, cmd->device->id, cmd->device->lun); goto no_cmd; } printf("%s: At time of recovery, card was %spaused\n", ahd_name(ahd), was_paused ? "" : "not "); ahd_dump_card_state(ahd); disconnected = TRUE; if (ahd_search_qinfifo(ahd, cmd->device->id, cmd->device->channel + 'A', cmd->device->lun, SCB_GET_TAG(pending_scb), ROLE_INITIATOR, CAM_REQ_ABORTED, SEARCH_COMPLETE) > 0) { printf("%s:%d:%d:%d: Cmd aborted from QINFIFO\n", ahd_name(ahd), cmd->device->channel, cmd->device->id, cmd->device->lun); retval = SUCCESS; goto done; } saved_modes = ahd_save_modes(ahd); ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); last_phase = ahd_inb(ahd, LASTPHASE); saved_scbptr = ahd_get_scbptr(ahd); active_scbptr = saved_scbptr; if (disconnected && (ahd_inb(ahd, SEQ_FLAGS) & NOT_IDENTIFIED) == 0) { struct scb *bus_scb; bus_scb = ahd_lookup_scb(ahd, active_scbptr); if (bus_scb == pending_scb) disconnected = FALSE; } /* * At this point, pending_scb is the scb associated with the * passed in command. That command is currently active on the * bus or is in the disconnected state. */ if (last_phase != P_BUSFREE && SCB_GET_TAG(pending_scb) == active_scbptr) { /* * We're active on the bus, so assert ATN * and hope that the target responds. */ pending_scb = ahd_lookup_scb(ahd, active_scbptr); pending_scb->flags |= SCB_RECOVERY_SCB|SCB_ABORT; ahd_outb(ahd, MSG_OUT, HOST_MSG); ahd_outb(ahd, SCSISIGO, last_phase|ATNO); printf("%s:%d:%d:%d: Device is active, asserting ATN\n", ahd_name(ahd), cmd->device->channel, cmd->device->id, cmd->device->lun); wait = TRUE; } else if (disconnected) { /* * Actually re-queue this SCB in an attempt * to select the device before it reconnects. */ pending_scb->flags |= SCB_RECOVERY_SCB|SCB_ABORT; ahd_set_scbptr(ahd, SCB_GET_TAG(pending_scb)); pending_scb->hscb->cdb_len = 0; pending_scb->hscb->task_attribute = 0; pending_scb->hscb->task_management = SIU_TASKMGMT_ABORT_TASK; if ((pending_scb->flags & SCB_PACKETIZED) != 0) { /* * Mark the SCB has having an outstanding * task management function. Should the command * complete normally before the task management * function can be sent, the host will be notified * to abort our requeued SCB. */ ahd_outb(ahd, SCB_TASK_MANAGEMENT, pending_scb->hscb->task_management); } else { /* * If non-packetized, set the MK_MESSAGE control * bit indicating that we desire to send a message. * We also set the disconnected flag since there is * no guarantee that our SCB control byte matches * the version on the card. We don't want the * sequencer to abort the command thinking an * unsolicited reselection occurred. */ pending_scb->hscb->control |= MK_MESSAGE|DISCONNECTED; /* * The sequencer will never re-reference the * in-core SCB. To make sure we are notified * during reslection, set the MK_MESSAGE flag in * the card's copy of the SCB. */ ahd_outb(ahd, SCB_CONTROL, ahd_inb(ahd, SCB_CONTROL)|MK_MESSAGE); } /* * Clear out any entries in the QINFIFO first * so we are the next SCB for this target * to run. */ ahd_search_qinfifo(ahd, cmd->device->id, cmd->device->channel + 'A', cmd->device->lun, SCB_LIST_NULL, ROLE_INITIATOR, CAM_REQUEUE_REQ, SEARCH_COMPLETE); ahd_qinfifo_requeue_tail(ahd, pending_scb); ahd_set_scbptr(ahd, saved_scbptr); ahd_print_path(ahd, pending_scb); printf("Device is disconnected, re-queuing SCB\n"); wait = TRUE; } else { printf("%s:%d:%d:%d: Unable to deliver message\n", ahd_name(ahd), cmd->device->channel, cmd->device->id, cmd->device->lun); retval = FAILED; goto done; } no_cmd: /* * Our assumption is that if we don't have the command, no * recovery action was required, so we return success. Again, * the semantics of the mid-layer recovery engine are not * well defined, so this may change in time. */ retval = SUCCESS; done: if (paused) ahd_unpause(ahd); if (wait) { struct timer_list timer; int ret; pending_scb->platform_data->flags |= AHD_SCB_UP_EH_SEM; spin_unlock_irq(&ahd->platform_data->spin_lock); init_timer(&timer); timer.data = (u_long)pending_scb; timer.expires = jiffies + (5 * HZ); timer.function = ahd_linux_sem_timeout; add_timer(&timer); printf("Recovery code sleeping\n"); down(&ahd->platform_data->eh_sem); printf("Recovery code awake\n"); ret = del_timer_sync(&timer); if (ret == 0) { printf("Timer Expired\n"); retval = FAILED; } spin_lock_irq(&ahd->platform_data->spin_lock); } ahd_schedule_runq(ahd); ahd_linux_run_complete_queue(ahd); ahd_midlayer_entrypoint_unlock(ahd, &s); return (retval); } static void ahd_linux_dev_reset_complete(Scsi_Cmnd *cmd) { free(cmd, M_DEVBUF); } /* * Attempt to send a target reset message to the device that timed out. */ static int ahd_linux_dev_reset(Scsi_Cmnd *cmd) { struct ahd_softc *ahd; struct scsi_cmnd *recovery_cmd; struct ahd_linux_device *dev; struct ahd_initiator_tinfo *tinfo; struct ahd_tmode_tstate *tstate; struct scb *scb; struct hardware_scb *hscb; u_long s; struct timer_list timer; int retval; ahd = *(struct ahd_softc **)cmd->device->host->hostdata; recovery_cmd = malloc(sizeof(struct scsi_cmnd), M_DEVBUF, M_WAITOK); memset(recovery_cmd, 0, sizeof(struct scsi_cmnd)); recovery_cmd->device = cmd->device; recovery_cmd->scsi_done = ahd_linux_dev_reset_complete; #if AHD_DEBUG if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) printf("%s:%d:%d:%d: Device reset called for cmd %p\n", ahd_name(ahd), cmd->device->channel, cmd->device->id, cmd->device->lun, cmd); #endif ahd_midlayer_entrypoint_lock(ahd, &s); dev = ahd_linux_get_device(ahd, cmd->device->channel, cmd->device->id, cmd->device->lun, /*alloc*/FALSE); if (dev == NULL) { ahd_midlayer_entrypoint_unlock(ahd, &s); return (FAILED); } if ((scb = ahd_get_scb(ahd, AHD_NEVER_COL_IDX)) == NULL) { ahd_midlayer_entrypoint_unlock(ahd, &s); return (FAILED); } tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id, cmd->device->id, &tstate); recovery_cmd->result = CAM_REQ_INPROG << 16; recovery_cmd->host_scribble = (char *)scb; scb->io_ctx = recovery_cmd; scb->platform_data->dev = dev; scb->sg_count = 0; ahd_set_residual(scb, 0); ahd_set_sense_residual(scb, 0); hscb = scb->hscb; hscb->control = 0; hscb->scsiid = BUILD_SCSIID(ahd, cmd); hscb->lun = cmd->device->lun; hscb->cdb_len = 0; hscb->task_management = SIU_TASKMGMT_LUN_RESET; scb->flags |= SCB_DEVICE_RESET|SCB_RECOVERY_SCB|SCB_ACTIVE; if ((tinfo->curr.ppr_options & MSG_EXT_PPR_IU_REQ) != 0) { scb->flags |= SCB_PACKETIZED; } else { hscb->control |= MK_MESSAGE; } dev->openings--; dev->active++; dev->commands_issued++; LIST_INSERT_HEAD(&ahd->pending_scbs, scb, pending_links); ahd_queue_scb(ahd, scb); scb->platform_data->flags |= AHD_SCB_UP_EH_SEM; spin_unlock_irq(&ahd->platform_data->spin_lock); init_timer(&timer); timer.data = (u_long)scb; timer.expires = jiffies + (5 * HZ); timer.function = ahd_linux_sem_timeout; add_timer(&timer); printf("Recovery code sleeping\n"); down(&ahd->platform_data->eh_sem); printf("Recovery code awake\n"); retval = SUCCESS; if (del_timer_sync(&timer) == 0) { printf("Timer Expired\n"); retval = FAILED; } spin_lock_irq(&ahd->platform_data->spin_lock); ahd_schedule_runq(ahd); ahd_linux_run_complete_queue(ahd); ahd_midlayer_entrypoint_unlock(ahd, &s); printf("%s: Device reset returning 0x%x\n", ahd_name(ahd), retval); return (retval); } /* * Reset the SCSI bus. */ static int ahd_linux_bus_reset(Scsi_Cmnd *cmd) { struct ahd_softc *ahd; u_long s; int found; ahd = *(struct ahd_softc **)cmd->device->host->hostdata; #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) printf("%s: Bus reset called for cmd %p\n", ahd_name(ahd), cmd); #endif ahd_midlayer_entrypoint_lock(ahd, &s); found = ahd_reset_channel(ahd, cmd->device->channel + 'A', /*initiate reset*/TRUE); ahd_linux_run_complete_queue(ahd); ahd_midlayer_entrypoint_unlock(ahd, &s); if (bootverbose) printf("%s: SCSI bus reset delivered. " "%d SCBs aborted.\n", ahd_name(ahd), found); return (SUCCESS); } Scsi_Host_Template aic79xx_driver_template = { .module = THIS_MODULE, .name = "aic79xx", .proc_info = ahd_linux_proc_info, .info = ahd_linux_info, .queuecommand = ahd_linux_queue, .eh_abort_handler = ahd_linux_abort, .eh_device_reset_handler = ahd_linux_dev_reset, .eh_bus_reset_handler = ahd_linux_bus_reset, #if defined(__i386__) .bios_param = ahd_linux_biosparam, #endif .can_queue = AHD_MAX_QUEUE, .this_id = -1, .cmd_per_lun = 2, .use_clustering = ENABLE_CLUSTERING, .slave_alloc = ahd_linux_slave_alloc, .slave_configure = ahd_linux_slave_configure, .slave_destroy = ahd_linux_slave_destroy, }; /**************************** Tasklet Handler *********************************/ /* * In 2.4.X and above, this routine is called from a tasklet, * so we must re-acquire our lock prior to executing this code. * In all prior kernels, ahd_schedule_runq() calls this routine * directly and ahd_schedule_runq() is called with our lock held. */ static void ahd_runq_tasklet(unsigned long data) { struct ahd_softc* ahd; struct ahd_linux_device *dev; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0) u_long flags; #endif ahd = (struct ahd_softc *)data; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0) ahd_lock(ahd, &flags); #endif while ((dev = ahd_linux_next_device_to_run(ahd)) != NULL) { TAILQ_REMOVE(&ahd->platform_data->device_runq, dev, links); dev->flags &= ~AHD_DEV_ON_RUN_LIST; ahd_linux_check_device_queue(ahd, dev); #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0) /* Yeild to our interrupt handler */ ahd_unlock(ahd, &flags); ahd_lock(ahd, &flags); #endif } #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0) ahd_unlock(ahd, &flags); #endif } /******************************** Bus DMA *************************************/ int ahd_dma_tag_create(struct ahd_softc *ahd, bus_dma_tag_t parent, bus_size_t alignment, bus_size_t boundary, bus_addr_t lowaddr, bus_addr_t highaddr, bus_dma_filter_t *filter, void *filterarg, bus_size_t maxsize, int nsegments, bus_size_t maxsegsz, int flags, bus_dma_tag_t *ret_tag) { bus_dma_tag_t dmat; dmat = malloc(sizeof(*dmat), M_DEVBUF, M_NOWAIT); if (dmat == NULL) return (ENOMEM); /* * Linux is very simplistic about DMA memory. For now don't * maintain all specification information. Once Linux supplies * better facilities for doing these operations, or the * needs of this particular driver change, we might need to do * more here. */ dmat->alignment = alignment; dmat->boundary = boundary; dmat->maxsize = maxsize; *ret_tag = dmat; return (0); } void ahd_dma_tag_destroy(struct ahd_softc *ahd, bus_dma_tag_t dmat) { free(dmat, M_DEVBUF); } int ahd_dmamem_alloc(struct ahd_softc *ahd, bus_dma_tag_t dmat, void** vaddr, int flags, bus_dmamap_t *mapp) { bus_dmamap_t map; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0) map = malloc(sizeof(*map), M_DEVBUF, M_NOWAIT); if (map == NULL) return (ENOMEM); /* * Although we can dma data above 4GB, our * "consistent" memory is below 4GB for * space efficiency reasons (only need a 4byte * address). For this reason, we have to reset * our dma mask when doing allocations. */ if (ahd->dev_softc != NULL) if (ahd_pci_set_dma_mask(ahd->dev_softc, 0xFFFFFFFF)) { printk(KERN_WARNING "aic79xx: No suitable DMA available.\n"); return (ENODEV); } *vaddr = pci_alloc_consistent(ahd->dev_softc, dmat->maxsize, &map->bus_addr); if (ahd->dev_softc != NULL) if (ahd_pci_set_dma_mask(ahd->dev_softc, ahd->platform_data->hw_dma_mask)) { printk(KERN_WARNING "aic79xx: No suitable DMA available.\n"); return (ENODEV); } #else /* LINUX_VERSION_CODE < KERNEL_VERSION(2,3,0) */ /* * At least in 2.2.14, malloc is a slab allocator so all * allocations are aligned. We assume for these kernel versions * that all allocations will be bellow 4Gig, physically contiguous, * and accessible via DMA by the controller. */ map = NULL; /* No additional information to store */ *vaddr = malloc(dmat->maxsize, M_DEVBUF, M_NOWAIT); #endif if (*vaddr == NULL) return (ENOMEM); *mapp = map; return(0); } void ahd_dmamem_free(struct ahd_softc *ahd, bus_dma_tag_t dmat, void* vaddr, bus_dmamap_t map) { #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0) pci_free_consistent(ahd->dev_softc, dmat->maxsize, vaddr, map->bus_addr); #else free(vaddr, M_DEVBUF); #endif } int ahd_dmamap_load(struct ahd_softc *ahd, bus_dma_tag_t dmat, bus_dmamap_t map, void *buf, bus_size_t buflen, bus_dmamap_callback_t *cb, void *cb_arg, int flags) { /* * Assume for now that this will only be used during * initialization and not for per-transaction buffer mapping. */ bus_dma_segment_t stack_sg; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0) stack_sg.ds_addr = map->bus_addr; #else #define VIRT_TO_BUS(a) (uint32_t)virt_to_bus((void *)(a)) stack_sg.ds_addr = VIRT_TO_BUS(buf); #endif stack_sg.ds_len = dmat->maxsize; cb(cb_arg, &stack_sg, /*nseg*/1, /*error*/0); return (0); } void ahd_dmamap_destroy(struct ahd_softc *ahd, bus_dma_tag_t dmat, bus_dmamap_t map) { /* * The map may is NULL in our < 2.3.X implementation. */ if (map != NULL) free(map, M_DEVBUF); } int ahd_dmamap_unload(struct ahd_softc *ahd, bus_dma_tag_t dmat, bus_dmamap_t map) { /* Nothing to do */ return (0); } /********************* Platform Dependent Functions ***************************/ /* * Compare "left hand" softc with "right hand" softc, returning: * < 0 - lahd has a lower priority than rahd * 0 - Softcs are equal * > 0 - lahd has a higher priority than rahd */ int ahd_softc_comp(struct ahd_softc *lahd, struct ahd_softc *rahd) { int value; /* * Under Linux, cards are ordered as follows: * 1) PCI devices that are marked as the boot controller. * 2) PCI devices with BIOS enabled sorted by bus/slot/func. * 3) All remaining PCI devices sorted by bus/slot/func. */ #if 0 value = (lahd->flags & AHD_BOOT_CHANNEL) - (rahd->flags & AHD_BOOT_CHANNEL); if (value != 0) /* Controllers set for boot have a *higher* priority */ return (value); #endif value = (lahd->flags & AHD_BIOS_ENABLED) - (rahd->flags & AHD_BIOS_ENABLED); if (value != 0) /* Controllers with BIOS enabled have a *higher* priority */ return (value); /* Still equal. Sort by bus/slot/func. */ if (aic79xx_reverse_scan != 0) value = ahd_get_pci_bus(lahd->dev_softc) - ahd_get_pci_bus(rahd->dev_softc); else value = ahd_get_pci_bus(rahd->dev_softc) - ahd_get_pci_bus(lahd->dev_softc); if (value != 0) return (value); if (aic79xx_reverse_scan != 0) value = ahd_get_pci_slot(lahd->dev_softc) - ahd_get_pci_slot(rahd->dev_softc); else value = ahd_get_pci_slot(rahd->dev_softc) - ahd_get_pci_slot(lahd->dev_softc); if (value != 0) return (value); value = rahd->channel - lahd->channel; return (value); } static void ahd_linux_setup_tag_info(u_long arg, int instance, int targ, int32_t value) { if ((instance >= 0) && (targ >= 0) && (instance < NUM_ELEMENTS(aic79xx_tag_info)) && (targ < AHD_NUM_TARGETS)) { aic79xx_tag_info[instance].tag_commands[targ] = value & 0x1FF; if (bootverbose) printf("tag_info[%d:%d] = %d\n", instance, targ, value); } } static void ahd_linux_setup_rd_strm_info(u_long arg, int instance, int targ, int32_t value) { if ((instance >= 0) && (instance < NUM_ELEMENTS(aic79xx_rd_strm_info))) { aic79xx_rd_strm_info[instance] = value & 0xFFFF; if (bootverbose) printf("rd_strm[%d] = 0x%x\n", instance, value); } } static void ahd_linux_setup_dv(u_long arg, int instance, int targ, int32_t value) { if ((instance >= 0) && (instance < NUM_ELEMENTS(aic79xx_dv_settings))) { aic79xx_dv_settings[instance] = value; if (bootverbose) printf("dv[%d] = %d\n", instance, value); } } static void ahd_linux_setup_iocell_info(u_long index, int instance, int targ, int32_t value) { if ((instance >= 0) && (instance < NUM_ELEMENTS(aic79xx_iocell_info))) { uint8_t *iocell_info; iocell_info = (uint8_t*)&aic79xx_iocell_info[instance]; iocell_info[index] = value & 0xFFFF; if (bootverbose) printf("iocell[%d:%ld] = %d\n", instance, index, value); } } static void ahd_linux_setup_tag_info_global(char *p) { int tags, i, j; tags = simple_strtoul(p + 1, NULL, 0) & 0xff; printf("Setting Global Tags= %d\n", tags); for (i = 0; i < NUM_ELEMENTS(aic79xx_tag_info); i++) { for (j = 0; j < AHD_NUM_TARGETS; j++) { aic79xx_tag_info[i].tag_commands[j] = tags; } } } /* * Handle Linux boot parameters. This routine allows for assigning a value * to a parameter with a ':' between the parameter and the value. * ie. aic79xx=stpwlev:1,extended */ static int aic79xx_setup(char *s) { int i, n; char *p; char *end; static struct { const char *name; uint32_t *flag; } options[] = { { "extended", &aic79xx_extended }, { "no_reset", &aic79xx_no_reset }, { "verbose", &aic79xx_verbose }, { "allow_memio", &aic79xx_allow_memio}, #ifdef AHD_DEBUG { "debug", &ahd_debug }, #endif { "reverse_scan", &aic79xx_reverse_scan }, { "periodic_otag", &aic79xx_periodic_otag }, { "pci_parity", &aic79xx_pci_parity }, { "seltime", &aic79xx_seltime }, { "tag_info", NULL }, { "global_tag_depth", NULL}, { "rd_strm", NULL }, { "dv", NULL }, { "slewrate", NULL }, { "precomp", NULL }, { "amplitude", NULL }, }; end = strchr(s, '\0'); /* * XXX ia64 gcc isn't smart enough to know that NUM_ELEMENTS * will never be 0 in this case. */ n = 0; while ((p = strsep(&s, ",.")) != NULL) { if (*p == '\0') continue; for (i = 0; i < NUM_ELEMENTS(options); i++) { n = strlen(options[i].name); if (strncmp(options[i].name, p, n) == 0) break; } if (i == NUM_ELEMENTS(options)) continue; if (strncmp(p, "global_tag_depth", n) == 0) { ahd_linux_setup_tag_info_global(p + n); } else if (strncmp(p, "tag_info", n) == 0) { s = aic_parse_brace_option("tag_info", p + n, end, 2, ahd_linux_setup_tag_info, 0); } else if (strncmp(p, "rd_strm", n) == 0) { s = aic_parse_brace_option("rd_strm", p + n, end, 1, ahd_linux_setup_rd_strm_info, 0); } else if (strncmp(p, "dv", n) == 0) { s = aic_parse_brace_option("dv", p + n, end, 1, ahd_linux_setup_dv, 0); } else if (strncmp(p, "slewrate", n) == 0) { s = aic_parse_brace_option("slewrate", p + n, end, 1, ahd_linux_setup_iocell_info, AIC79XX_SLEWRATE_INDEX); } else if (strncmp(p, "precomp", n) == 0) { s = aic_parse_brace_option("precomp", p + n, end, 1, ahd_linux_setup_iocell_info, AIC79XX_PRECOMP_INDEX); } else if (strncmp(p, "amplitude", n) == 0) { s = aic_parse_brace_option("amplitude", p + n, end, 1, ahd_linux_setup_iocell_info, AIC79XX_AMPLITUDE_INDEX); } else if (p[n] == ':') { *(options[i].flag) = simple_strtoul(p + n + 1, NULL, 0); } else if (!strncmp(p, "verbose", n)) { *(options[i].flag) = 1; } else { *(options[i].flag) ^= 0xFFFFFFFF; } } return 1; } #if LINUX_VERSION_CODE > KERNEL_VERSION(2,3,0) __setup("aic79xx=", aic79xx_setup); #endif uint32_t aic79xx_verbose; int ahd_linux_register_host(struct ahd_softc *ahd, Scsi_Host_Template *template) { char buf[80]; struct Scsi_Host *host; char *new_name; u_long s; u_long target; template->name = ahd->description; host = scsi_host_alloc(template, sizeof(struct ahd_softc *)); if (host == NULL) return (ENOMEM); *((struct ahd_softc **)host->hostdata) = ahd; ahd_lock(ahd, &s); #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0) scsi_assign_lock(host, &ahd->platform_data->spin_lock); #elif AHD_SCSI_HAS_HOST_LOCK != 0 host->lock = &ahd->platform_data->spin_lock; #endif ahd->platform_data->host = host; host->can_queue = AHD_MAX_QUEUE; host->cmd_per_lun = 2; host->sg_tablesize = AHD_NSEG; host->this_id = ahd->our_id; host->irq = ahd->platform_data->irq; host->max_id = (ahd->features & AHD_WIDE) ? 16 : 8; host->max_lun = AHD_NUM_LUNS; host->max_channel = 0; host->sg_tablesize = AHD_NSEG; ahd_set_unit(ahd, ahd_linux_next_unit()); sprintf(buf, "scsi%d", host->host_no); new_name = malloc(strlen(buf) + 1, M_DEVBUF, M_NOWAIT); if (new_name != NULL) { strcpy(new_name, buf); ahd_set_name(ahd, new_name); } host->unique_id = ahd->unit; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,4) && \ LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0) scsi_set_pci_device(host, ahd->dev_softc); #endif ahd_linux_setup_user_rd_strm_settings(ahd); ahd_linux_initialize_scsi_bus(ahd); ahd_unlock(ahd, &s); ahd->platform_data->dv_pid = kernel_thread(ahd_linux_dv_thread, ahd, 0); ahd_lock(ahd, &s); if (ahd->platform_data->dv_pid < 0) { printf("%s: Failed to create DV thread, error= %d\n", ahd_name(ahd), ahd->platform_data->dv_pid); return (-ahd->platform_data->dv_pid); } /* * Initially allocate *all* of our linux target objects * so that the DV thread will scan them all in parallel * just after driver initialization. Any device that * does not exist will have its target object destroyed * by the selection timeout handler. In the case of a * device that appears after the initial DV scan, async * negotiation will occur for the first command, and DV * will comence should that first command be successful. */ for (target = 0; target < host->max_id; target++) { /* * Skip our own ID. Some Compaq/HP storage devices * have enclosure management devices that respond to * single bit selection (i.e. selecting ourselves). * It is expected that either an external application * or a modified kernel will be used to probe this * ID if it is appropriate. To accommodate these * installations, ahc_linux_alloc_target() will allocate * for our ID if asked to do so. */ if (target == ahd->our_id) continue; ahd_linux_alloc_target(ahd, 0, target); } ahd_intr_enable(ahd, TRUE); ahd_linux_start_dv(ahd); ahd_unlock(ahd, &s); #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0) scsi_add_host(host, &ahd->dev_softc->dev); /* XXX handle failure */ scsi_scan_host(host); #endif return (0); } uint64_t ahd_linux_get_memsize(void) { struct sysinfo si; si_meminfo(&si); return ((uint64_t)si.totalram << PAGE_SHIFT); } /* * Find the smallest available unit number to use * for a new device. We don't just use a static * count to handle the "repeated hot-(un)plug" * scenario. */ static int ahd_linux_next_unit(void) { struct ahd_softc *ahd; int unit; unit = 0; retry: TAILQ_FOREACH(ahd, &ahd_tailq, links) { if (ahd->unit == unit) { unit++; goto retry; } } return (unit); } /* * Place the SCSI bus into a known state by either resetting it, * or forcing transfer negotiations on the next command to any * target. */ static void ahd_linux_initialize_scsi_bus(struct ahd_softc *ahd) { u_int target_id; u_int numtarg; target_id = 0; numtarg = 0; if (aic79xx_no_reset != 0) ahd->flags &= ~AHD_RESET_BUS_A; if ((ahd->flags & AHD_RESET_BUS_A) != 0) ahd_reset_channel(ahd, 'A', /*initiate_reset*/TRUE); else numtarg = (ahd->features & AHD_WIDE) ? 16 : 8; /* * Force negotiation to async for all targets that * will not see an initial bus reset. */ for (; target_id < numtarg; target_id++) { struct ahd_devinfo devinfo; struct ahd_initiator_tinfo *tinfo; struct ahd_tmode_tstate *tstate; tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id, target_id, &tstate); ahd_compile_devinfo(&devinfo, ahd->our_id, target_id, CAM_LUN_WILDCARD, 'A', ROLE_INITIATOR); ahd_update_neg_request(ahd, &devinfo, tstate, tinfo, AHD_NEG_ALWAYS); } /* Give the bus some time to recover */ if ((ahd->flags & AHD_RESET_BUS_A) != 0) { ahd_freeze_simq(ahd); init_timer(&ahd->platform_data->reset_timer); ahd->platform_data->reset_timer.data = (u_long)ahd; ahd->platform_data->reset_timer.expires = jiffies + (AIC79XX_RESET_DELAY * HZ)/1000; ahd->platform_data->reset_timer.function = (ahd_linux_callback_t *)ahd_release_simq; add_timer(&ahd->platform_data->reset_timer); } } int ahd_platform_alloc(struct ahd_softc *ahd, void *platform_arg) { ahd->platform_data = malloc(sizeof(struct ahd_platform_data), M_DEVBUF, M_NOWAIT); if (ahd->platform_data == NULL) return (ENOMEM); memset(ahd->platform_data, 0, sizeof(struct ahd_platform_data)); TAILQ_INIT(&ahd->platform_data->completeq); TAILQ_INIT(&ahd->platform_data->device_runq); ahd->platform_data->irq = AHD_LINUX_NOIRQ; ahd->platform_data->hw_dma_mask = 0xFFFFFFFF; ahd_lockinit(ahd); ahd_done_lockinit(ahd); init_timer(&ahd->platform_data->completeq_timer); ahd->platform_data->completeq_timer.data = (u_long)ahd; ahd->platform_data->completeq_timer.function = (ahd_linux_callback_t *)ahd_linux_thread_run_complete_queue; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0) init_MUTEX_LOCKED(&ahd->platform_data->eh_sem); init_MUTEX_LOCKED(&ahd->platform_data->dv_sem); init_MUTEX_LOCKED(&ahd->platform_data->dv_cmd_sem); #else ahd->platform_data->eh_sem = MUTEX_LOCKED; ahd->platform_data->dv_sem = MUTEX_LOCKED; ahd->platform_data->dv_cmd_sem = MUTEX_LOCKED; #endif ahd_setup_runq_tasklet(ahd); ahd->seltime = (aic79xx_seltime & 0x3) << 4; return (0); } void ahd_platform_free(struct ahd_softc *ahd) { struct ahd_linux_target *targ; struct ahd_linux_device *dev; int i, j; if (ahd->platform_data != NULL) { del_timer_sync(&ahd->platform_data->completeq_timer); ahd_linux_kill_dv_thread(ahd); ahd_teardown_runq_tasklet(ahd); if (ahd->platform_data->host != NULL) { #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0) scsi_remove_host(ahd->platform_data->host); #endif scsi_host_put(ahd->platform_data->host); } /* destroy all of the device and target objects */ for (i = 0; i < AHD_NUM_TARGETS; i++) { targ = ahd->platform_data->targets[i]; if (targ != NULL) { /* Keep target around through the loop. */ targ->refcount++; for (j = 0; j < AHD_NUM_LUNS; j++) { if (targ->devices[j] == NULL) continue; dev = targ->devices[j]; ahd_linux_free_device(ahd, dev); } /* * Forcibly free the target now that * all devices are gone. */ ahd_linux_free_target(ahd, targ); } } if (ahd->platform_data->irq != AHD_LINUX_NOIRQ) free_irq(ahd->platform_data->irq, ahd); if (ahd->tags[0] == BUS_SPACE_PIO && ahd->bshs[0].ioport != 0) release_region(ahd->bshs[0].ioport, 256); if (ahd->tags[1] == BUS_SPACE_PIO && ahd->bshs[1].ioport != 0) release_region(ahd->bshs[1].ioport, 256); if (ahd->tags[0] == BUS_SPACE_MEMIO && ahd->bshs[0].maddr != NULL) { u_long base_addr; base_addr = (u_long)ahd->bshs[0].maddr; base_addr &= PAGE_MASK; iounmap((void *)base_addr); #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0) release_mem_region(ahd->platform_data->mem_busaddr, 0x1000); #endif } #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0) && \ LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0) /* * In 2.4 we detach from the scsi midlayer before the PCI * layer invokes our remove callback. No per-instance * detach is provided, so we must reach inside the PCI * subsystem's internals and detach our driver manually. */ if (ahd->dev_softc != NULL) ahd->dev_softc->driver = NULL; #endif free(ahd->platform_data, M_DEVBUF); } } void ahd_platform_init(struct ahd_softc *ahd) { /* * Lookup and commit any modified IO Cell options. */ if (ahd->unit < NUM_ELEMENTS(aic79xx_iocell_info)) { struct ahd_linux_iocell_opts *iocell_opts; iocell_opts = &aic79xx_iocell_info[ahd->unit]; if (iocell_opts->precomp != AIC79XX_DEFAULT_PRECOMP) AHD_SET_PRECOMP(ahd, iocell_opts->precomp); if (iocell_opts->slewrate != AIC79XX_DEFAULT_SLEWRATE) AHD_SET_SLEWRATE(ahd, iocell_opts->slewrate); if (iocell_opts->amplitude != AIC79XX_DEFAULT_AMPLITUDE) AHD_SET_AMPLITUDE(ahd, iocell_opts->amplitude); } } void ahd_platform_freeze_devq(struct ahd_softc *ahd, struct scb *scb) { ahd_platform_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb), SCB_GET_CHANNEL(ahd, scb), SCB_GET_LUN(scb), SCB_LIST_NULL, ROLE_UNKNOWN, CAM_REQUEUE_REQ); } void ahd_platform_set_tags(struct ahd_softc *ahd, struct ahd_devinfo *devinfo, ahd_queue_alg alg) { struct ahd_linux_device *dev; int was_queuing; int now_queuing; dev = ahd_linux_get_device(ahd, devinfo->channel - 'A', devinfo->target, devinfo->lun, /*alloc*/FALSE); if (dev == NULL) return; was_queuing = dev->flags & (AHD_DEV_Q_BASIC|AHD_DEV_Q_TAGGED); switch (alg) { default: case AHD_QUEUE_NONE: now_queuing = 0; break; case AHD_QUEUE_BASIC: now_queuing = AHD_DEV_Q_BASIC; break; case AHD_QUEUE_TAGGED: now_queuing = AHD_DEV_Q_TAGGED; break; } if ((dev->flags & AHD_DEV_FREEZE_TIL_EMPTY) == 0 && (was_queuing != now_queuing) && (dev->active != 0)) { dev->flags |= AHD_DEV_FREEZE_TIL_EMPTY; dev->qfrozen++; } dev->flags &= ~(AHD_DEV_Q_BASIC|AHD_DEV_Q_TAGGED|AHD_DEV_PERIODIC_OTAG); if (now_queuing) { u_int usertags; usertags = ahd_linux_user_tagdepth(ahd, devinfo); if (!was_queuing) { /* * Start out agressively and allow our * dynamic queue depth algorithm to take * care of the rest. */ dev->maxtags = usertags; dev->openings = dev->maxtags - dev->active; } if (dev->maxtags == 0) { /* * Queueing is disabled by the user. */ dev->openings = 1; } else if (alg == AHD_QUEUE_TAGGED) { dev->flags |= AHD_DEV_Q_TAGGED; if (aic79xx_periodic_otag != 0) dev->flags |= AHD_DEV_PERIODIC_OTAG; } else dev->flags |= AHD_DEV_Q_BASIC; } else { /* We can only have one opening. */ dev->maxtags = 0; dev->openings = 1 - dev->active; } #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0) if (dev->scsi_device != NULL) { switch ((dev->flags & (AHD_DEV_Q_BASIC|AHD_DEV_Q_TAGGED))) { case AHD_DEV_Q_BASIC: scsi_adjust_queue_depth(dev->scsi_device, MSG_SIMPLE_TASK, dev->openings + dev->active); break; case AHD_DEV_Q_TAGGED: scsi_adjust_queue_depth(dev->scsi_device, MSG_ORDERED_TASK, dev->openings + dev->active); break; default: /* * We allow the OS to queue 2 untagged transactions to * us at any time even though we can only execute them * serially on the controller/device. This should * remove some latency. */ scsi_adjust_queue_depth(dev->scsi_device, /*NON-TAGGED*/0, /*queue depth*/2); break; } } #endif } int ahd_platform_abort_scbs(struct ahd_softc *ahd, int target, char channel, int lun, u_int tag, role_t role, uint32_t status) { int targ; int maxtarg; int maxlun; int clun; int count; if (tag != SCB_LIST_NULL) return (0); targ = 0; if (target != CAM_TARGET_WILDCARD) { targ = target; maxtarg = targ + 1; } else { maxtarg = (ahd->features & AHD_WIDE) ? 16 : 8; } clun = 0; if (lun != CAM_LUN_WILDCARD) { clun = lun; maxlun = clun + 1; } else { maxlun = AHD_NUM_LUNS; } count = 0; for (; targ < maxtarg; targ++) { for (; clun < maxlun; clun++) { struct ahd_linux_device *dev; struct ahd_busyq *busyq; struct ahd_cmd *acmd; dev = ahd_linux_get_device(ahd, /*chan*/0, targ, clun, /*alloc*/FALSE); if (dev == NULL) continue; busyq = &dev->busyq; while ((acmd = TAILQ_FIRST(busyq)) != NULL) { Scsi_Cmnd *cmd; cmd = &acmd_scsi_cmd(acmd); TAILQ_REMOVE(busyq, acmd, acmd_links.tqe); count++; cmd->result = status << 16; ahd_linux_queue_cmd_complete(ahd, cmd); } } } return (count); } static void ahd_linux_thread_run_complete_queue(struct ahd_softc *ahd) { u_long flags; ahd_lock(ahd, &flags); del_timer(&ahd->platform_data->completeq_timer); ahd->platform_data->flags &= ~AHD_RUN_CMPLT_Q_TIMER; ahd_linux_run_complete_queue(ahd); ahd_unlock(ahd, &flags); } static void ahd_linux_start_dv(struct ahd_softc *ahd) { /* * Freeze the simq and signal ahd_linux_queue to not let any * more commands through */ if ((ahd->platform_data->flags & AHD_DV_ACTIVE) == 0) { #ifdef AHD_DEBUG if (ahd_debug & AHD_SHOW_DV) printf("%s: Starting DV\n", ahd_name(ahd)); #endif ahd->platform_data->flags |= AHD_DV_ACTIVE; ahd_freeze_simq(ahd); /* Wake up the DV kthread */ up(&ahd->platform_data->dv_sem); } } static int ahd_linux_dv_thread(void *data) { struct ahd_softc *ahd; int target; u_long s; ahd = (struct ahd_softc *)data; #ifdef AHD_DEBUG if (ahd_debug & AHD_SHOW_DV) printf("In DV Thread\n"); #endif /* * Complete thread creation. */ lock_kernel(); #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,60) /* * Don't care about any signals. */ siginitsetinv(¤t->blocked, 0); daemonize(); sprintf(current->comm, "ahd_dv_%d", ahd->unit); #else daemonize("ahd_dv_%d", ahd->unit); current->flags |= PF_FREEZE; #endif unlock_kernel(); while (1) { /* * Use down_interruptible() rather than down() to * avoid inclusion in the load average. */ down_interruptible(&ahd->platform_data->dv_sem); /* Check to see if we've been signaled to exit */ ahd_lock(ahd, &s); if ((ahd->platform_data->flags & AHD_DV_SHUTDOWN) != 0) { ahd_unlock(ahd, &s); break; } ahd_unlock(ahd, &s); #ifdef AHD_DEBUG if (ahd_debug & AHD_SHOW_DV) printf("%s: Beginning Domain Validation\n", ahd_name(ahd)); #endif /* * Wait for any pending commands to drain before proceeding. */ ahd_lock(ahd, &s); while (LIST_FIRST(&ahd->pending_scbs) != NULL) { ahd->platform_data->flags |= AHD_DV_WAIT_SIMQ_EMPTY; ahd_unlock(ahd, &s); down_interruptible(&ahd->platform_data->dv_sem); ahd_lock(ahd, &s); } /* * Wait for the SIMQ to be released so that DV is the * only reason the queue is frozen. */ while (AHD_DV_SIMQ_FROZEN(ahd) == 0) { ahd->platform_data->flags |= AHD_DV_WAIT_SIMQ_RELEASE; ahd_unlock(ahd, &s); down_interruptible(&ahd->platform_data->dv_sem); ahd_lock(ahd, &s); } ahd_unlock(ahd, &s); for (target = 0; target < AHD_NUM_TARGETS; target++) ahd_linux_dv_target(ahd, target); ahd_lock(ahd, &s); ahd->platform_data->flags &= ~AHD_DV_ACTIVE; ahd_unlock(ahd, &s); /* * Release the SIMQ so that normal commands are * allowed to continue on the bus. */ ahd_release_simq(ahd); } up(&ahd->platform_data->eh_sem); return (0); } static void ahd_linux_kill_dv_thread(struct ahd_softc *ahd) { u_long s; ahd_lock(ahd, &s); if (ahd->platform_data->dv_pid != 0) { ahd->platform_data->flags |= AHD_DV_SHUTDOWN; ahd_unlock(ahd, &s); up(&ahd->platform_data->dv_sem); /* * Use the eh_sem as an indicator that the * dv thread is exiting. Note that the dv * thread must still return after performing * the up on our semaphore before it has * completely exited this module. Unfortunately, * there seems to be no easy way to wait for the * exit of a thread for which you are not the * parent (dv threads are parented by init). * Cross your fingers... */ down(&ahd->platform_data->eh_sem); /* * Mark the dv thread as already dead. This * avoids attempting to kill it a second time. * This is necessary because we must kill the * DV thread before calling ahd_free() in the * module shutdown case to avoid bogus locking * in the SCSI mid-layer, but we ahd_free() is * called without killing the DV thread in the * instance detach case, so ahd_platform_free() * calls us again to verify that the DV thread * is dead. */ ahd->platform_data->dv_pid = 0; } else { ahd_unlock(ahd, &s); } } #define AHD_LINUX_DV_INQ_SHORT_LEN 36 #define AHD_LINUX_DV_INQ_LEN 256 #define AHD_LINUX_DV_TIMEOUT (HZ / 4) #define AHD_SET_DV_STATE(ahd, targ, newstate) \ ahd_set_dv_state(ahd, targ, newstate, __LINE__) static __inline void ahd_set_dv_state(struct ahd_softc *ahd, struct ahd_linux_target *targ, ahd_dv_state newstate, u_int line) { ahd_dv_state oldstate; oldstate = targ->dv_state; #ifdef AHD_DEBUG if (ahd_debug & AHD_SHOW_DV) printf("%s:%d: Going from state %d to state %d\n", ahd_name(ahd), line, oldstate, newstate); #endif if (oldstate == newstate) targ->dv_state_retry++; else targ->dv_state_retry = 0; targ->dv_state = newstate; } static void ahd_linux_dv_target(struct ahd_softc *ahd, u_int target_offset) { struct ahd_devinfo devinfo; struct ahd_linux_target *targ; struct scsi_cmnd *cmd; struct scsi_device *scsi_dev; struct scsi_sense_data *sense; uint8_t *buffer; u_long s; u_int timeout; int echo_size; sense = NULL; buffer = NULL; echo_size = 0; ahd_lock(ahd, &s); targ = ahd->platform_data->targets[target_offset]; if (targ == NULL || (targ->flags & AHD_DV_REQUIRED) == 0) { ahd_unlock(ahd, &s); return; } ahd_compile_devinfo(&devinfo, ahd->our_id, targ->target, /*lun*/0, targ->channel + 'A', ROLE_INITIATOR); #ifdef AHD_DEBUG if (ahd_debug & AHD_SHOW_DV) { ahd_print_devinfo(ahd, &devinfo); printf("Performing DV\n"); } #endif ahd_unlock(ahd, &s); cmd = malloc(sizeof(struct scsi_cmnd), M_DEVBUF, M_WAITOK); scsi_dev = malloc(sizeof(struct scsi_device), M_DEVBUF, M_WAITOK); scsi_dev->host = ahd->platform_data->host; scsi_dev->id = devinfo.target; scsi_dev->lun = devinfo.lun; scsi_dev->channel = devinfo.channel - 'A'; ahd->platform_data->dv_scsi_dev = scsi_dev; AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_INQ_SHORT_ASYNC); while (targ->dv_state != AHD_DV_STATE_EXIT) { timeout = AHD_LINUX_DV_TIMEOUT; switch (targ->dv_state) { case AHD_DV_STATE_INQ_SHORT_ASYNC: case AHD_DV_STATE_INQ_ASYNC: case AHD_DV_STATE_INQ_ASYNC_VERIFY: /* * Set things to async narrow to reduce the * chance that the INQ will fail. */ ahd_lock(ahd, &s); ahd_set_syncrate(ahd, &devinfo, 0, 0, 0, AHD_TRANS_GOAL, /*paused*/FALSE); ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT, AHD_TRANS_GOAL, /*paused*/FALSE); ahd_unlock(ahd, &s); timeout = 10 * HZ; targ->flags &= ~AHD_INQ_VALID; /* FALLTHROUGH */ case AHD_DV_STATE_INQ_VERIFY: { u_int inq_len; if (targ->dv_state == AHD_DV_STATE_INQ_SHORT_ASYNC) inq_len = AHD_LINUX_DV_INQ_SHORT_LEN; else inq_len = targ->inq_data->additional_length + 5; ahd_linux_dv_inq(ahd, cmd, &devinfo, targ, inq_len); break; } case AHD_DV_STATE_TUR: case AHD_DV_STATE_BUSY: timeout = 5 * HZ; ahd_linux_dv_tur(ahd, cmd, &devinfo); break; case AHD_DV_STATE_REBD: ahd_linux_dv_rebd(ahd, cmd, &devinfo, targ); break; case AHD_DV_STATE_WEB: ahd_linux_dv_web(ahd, cmd, &devinfo, targ); break; case AHD_DV_STATE_REB: ahd_linux_dv_reb(ahd, cmd, &devinfo, targ); break; case AHD_DV_STATE_SU: ahd_linux_dv_su(ahd, cmd, &devinfo, targ); timeout = 50 * HZ; break; default: ahd_print_devinfo(ahd, &devinfo); printf("Unknown DV state %d\n", targ->dv_state); goto out; } /* Queue the command and wait for it to complete */ /* Abuse eh_timeout in the scsi_cmnd struct for our purposes */ init_timer(&cmd->eh_timeout); #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) /* * All of the printfs during negotiation * really slow down the negotiation. * Add a bit of time just to be safe. */ timeout += HZ; #endif scsi_add_timer(cmd, timeout, ahd_linux_dv_timeout); /* * In 2.5.X, it is assumed that all calls from the * "midlayer" (which we are emulating) will have the * ahd host lock held. For other kernels, the * io_request_lock must be held. */ #if AHD_SCSI_HAS_HOST_LOCK != 0 ahd_lock(ahd, &s); #else spin_lock_irqsave(&io_request_lock, s); #endif ahd_linux_queue(cmd, ahd_linux_dv_complete); #if AHD_SCSI_HAS_HOST_LOCK != 0 ahd_unlock(ahd, &s); #else spin_unlock_irqrestore(&io_request_lock, s); #endif down_interruptible(&ahd->platform_data->dv_cmd_sem); /* * Wait for the SIMQ to be released so that DV is the * only reason the queue is frozen. */ ahd_lock(ahd, &s); while (AHD_DV_SIMQ_FROZEN(ahd) == 0) { ahd->platform_data->flags |= AHD_DV_WAIT_SIMQ_RELEASE; ahd_unlock(ahd, &s); down_interruptible(&ahd->platform_data->dv_sem); ahd_lock(ahd, &s); } ahd_unlock(ahd, &s); ahd_linux_dv_transition(ahd, cmd, &devinfo, targ); } out: if ((targ->flags & AHD_INQ_VALID) != 0 && ahd_linux_get_device(ahd, devinfo.channel - 'A', devinfo.target, devinfo.lun, /*alloc*/FALSE) == NULL) { /* * The DV state machine failed to configure this device. * This is normal if DV is disabled. Since we have inquiry * data, filter it and use the "optimistic" negotiation * parameters found in the inquiry string. */ ahd_linux_filter_inquiry(ahd, &devinfo); if ((targ->flags & (AHD_BASIC_DV|AHD_ENHANCED_DV)) != 0) { ahd_print_devinfo(ahd, &devinfo); printf("DV failed to configure device. " "Please file a bug report against " "this driver.\n"); } } if (cmd != NULL) free(cmd, M_DEVBUF); if (ahd->platform_data->dv_scsi_dev != NULL) { free(ahd->platform_data->dv_scsi_dev, M_DEVBUF); ahd->platform_data->dv_scsi_dev = NULL; } ahd_lock(ahd, &s); if (targ->dv_buffer != NULL) { free(targ->dv_buffer, M_DEVBUF); targ->dv_buffer = NULL; } if (targ->dv_buffer1 != NULL) { free(targ->dv_buffer1, M_DEVBUF); targ->dv_buffer1 = NULL; } targ->flags &= ~AHD_DV_REQUIRED; if (targ->refcount == 0) ahd_linux_free_target(ahd, targ); ahd_unlock(ahd, &s); } static __inline int ahd_linux_dv_fallback(struct ahd_softc *ahd, struct ahd_devinfo *devinfo) { u_long s; int retval; ahd_lock(ahd, &s); retval = ahd_linux_fallback(ahd, devinfo); ahd_unlock(ahd, &s); return (retval); } static void ahd_linux_dv_transition(struct ahd_softc *ahd, struct scsi_cmnd *cmd, struct ahd_devinfo *devinfo, struct ahd_linux_target *targ) { u_int32_t status; status = aic_error_action(cmd, targ->inq_data, ahd_cmd_get_transaction_status(cmd), ahd_cmd_get_scsi_status(cmd)); #ifdef AHD_DEBUG if (ahd_debug & AHD_SHOW_DV) { ahd_print_devinfo(ahd, devinfo); printf("Entering ahd_linux_dv_transition, state= %d, " "status= 0x%x, cmd->result= 0x%x\n", targ->dv_state, status, cmd->result); } #endif switch (targ->dv_state) { case AHD_DV_STATE_INQ_SHORT_ASYNC: case AHD_DV_STATE_INQ_ASYNC: switch (status & SS_MASK) { case SS_NOP: { AHD_SET_DV_STATE(ahd, targ, targ->dv_state+1); break; } case SS_INQ_REFRESH: AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_INQ_SHORT_ASYNC); break; case SS_TUR: case SS_RETRY: AHD_SET_DV_STATE(ahd, targ, targ->dv_state); if (ahd_cmd_get_transaction_status(cmd) == CAM_REQUEUE_REQ) targ->dv_state_retry--; if ((status & SS_ERRMASK) == EBUSY) AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_BUSY); if (targ->dv_state_retry < 10) break; /* FALLTHROUGH */ default: AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT); #ifdef AHD_DEBUG if (ahd_debug & AHD_SHOW_DV) { ahd_print_devinfo(ahd, devinfo); printf("Failed DV inquiry, skipping\n"); } #endif break; } break; case AHD_DV_STATE_INQ_ASYNC_VERIFY: switch (status & SS_MASK) { case SS_NOP: { u_int xportflags; u_int spi3data; if (memcmp(targ->inq_data, targ->dv_buffer, AHD_LINUX_DV_INQ_LEN) != 0) { /* * Inquiry data must have changed. * Try from the top again. */ AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_INQ_SHORT_ASYNC); break; } AHD_SET_DV_STATE(ahd, targ, targ->dv_state+1); targ->flags |= AHD_INQ_VALID; if (ahd_linux_user_dv_setting(ahd) == 0) break; xportflags = targ->inq_data->flags; if ((xportflags & (SID_Sync|SID_WBus16)) == 0) break; spi3data = targ->inq_data->spi3data; switch (spi3data & SID_SPI_CLOCK_DT_ST) { default: case SID_SPI_CLOCK_ST: /* Assume only basic DV is supported. */ targ->flags |= AHD_BASIC_DV; break; case SID_SPI_CLOCK_DT: case SID_SPI_CLOCK_DT_ST: targ->flags |= AHD_ENHANCED_DV; break; } break; } case SS_INQ_REFRESH: AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_INQ_SHORT_ASYNC); break; case SS_TUR: case SS_RETRY: AHD_SET_DV_STATE(ahd, targ, targ->dv_state); if (ahd_cmd_get_transaction_status(cmd) == CAM_REQUEUE_REQ) targ->dv_state_retry--; if ((status & SS_ERRMASK) == EBUSY) AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_BUSY); if (targ->dv_state_retry < 10) break; /* FALLTHROUGH */ default: AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT); #ifdef AHD_DEBUG if (ahd_debug & AHD_SHOW_DV) { ahd_print_devinfo(ahd, devinfo); printf("Failed DV inquiry, skipping\n"); } #endif break; } break; case AHD_DV_STATE_INQ_VERIFY: switch (status & SS_MASK) { case SS_NOP: { if (memcmp(targ->inq_data, targ->dv_buffer, AHD_LINUX_DV_INQ_LEN) == 0) { AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT); break; } #ifdef AHD_DEBUG if (ahd_debug & AHD_SHOW_DV) { int i; ahd_print_devinfo(ahd, devinfo); printf("Inquiry buffer mismatch:"); for (i = 0; i < AHD_LINUX_DV_INQ_LEN; i++) { if ((i & 0xF) == 0) printf("\n "); printf("0x%x:0x0%x ", ((uint8_t *)targ->inq_data)[i], targ->dv_buffer[i]); } printf("\n"); } #endif if (ahd_linux_dv_fallback(ahd, devinfo) != 0) { AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT); break; } /* * Do not count "falling back" * against our retries. */ targ->dv_state_retry = 0; AHD_SET_DV_STATE(ahd, targ, targ->dv_state); break; } case SS_INQ_REFRESH: AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_INQ_SHORT_ASYNC); break; case SS_TUR: case SS_RETRY: AHD_SET_DV_STATE(ahd, targ, targ->dv_state); if (ahd_cmd_get_transaction_status(cmd) == CAM_REQUEUE_REQ) { targ->dv_state_retry--; } else if ((status & SSQ_FALLBACK) != 0) { if (ahd_linux_dv_fallback(ahd, devinfo) != 0) { AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT); break; } /* * Do not count "falling back" * against our retries. */ targ->dv_state_retry = 0; } else if ((status & SS_ERRMASK) == EBUSY) AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_BUSY); if (targ->dv_state_retry < 10) break; /* FALLTHROUGH */ default: AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT); #ifdef AHD_DEBUG if (ahd_debug & AHD_SHOW_DV) { ahd_print_devinfo(ahd, devinfo); printf("Failed DV inquiry, skipping\n"); } #endif break; } break; case AHD_DV_STATE_TUR: switch (status & SS_MASK) { case SS_NOP: if ((targ->flags & AHD_BASIC_DV) != 0) { ahd_linux_filter_inquiry(ahd, devinfo); AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_INQ_VERIFY); } else if ((targ->flags & AHD_ENHANCED_DV) != 0) { AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_REBD); } else { AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT); } break; case SS_RETRY: case SS_TUR: if ((status & SS_ERRMASK) == EBUSY) { AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_BUSY); break; } AHD_SET_DV_STATE(ahd, targ, targ->dv_state); if (ahd_cmd_get_transaction_status(cmd) == CAM_REQUEUE_REQ) { targ->dv_state_retry--; } else if ((status & SSQ_FALLBACK) != 0) { if (ahd_linux_dv_fallback(ahd, devinfo) != 0) { AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT); break; } /* * Do not count "falling back" * against our retries. */ targ->dv_state_retry = 0; } if (targ->dv_state_retry >= 10) { #ifdef AHD_DEBUG if (ahd_debug & AHD_SHOW_DV) { ahd_print_devinfo(ahd, devinfo); printf("DV TUR reties exhausted\n"); } #endif AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT); break; } if (status & SSQ_DELAY) ssleep(1); break; case SS_START: AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_SU); break; case SS_INQ_REFRESH: AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_INQ_SHORT_ASYNC); break; default: AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT); break; } break; case AHD_DV_STATE_REBD: switch (status & SS_MASK) { case SS_NOP: { uint32_t echo_size; AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_WEB); echo_size = scsi_3btoul(&targ->dv_buffer[1]); echo_size &= 0x1FFF; #ifdef AHD_DEBUG if (ahd_debug & AHD_SHOW_DV) { ahd_print_devinfo(ahd, devinfo); printf("Echo buffer size= %d\n", echo_size); } #endif if (echo_size == 0) { AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT); break; } /* Generate the buffer pattern */ targ->dv_echo_size = echo_size; ahd_linux_generate_dv_pattern(targ); /* * Setup initial negotiation values. */ ahd_linux_filter_inquiry(ahd, devinfo); break; } case SS_INQ_REFRESH: AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_INQ_SHORT_ASYNC); break; case SS_RETRY: AHD_SET_DV_STATE(ahd, targ, targ->dv_state); if (ahd_cmd_get_transaction_status(cmd) == CAM_REQUEUE_REQ) targ->dv_state_retry--; if (targ->dv_state_retry <= 10) break; #ifdef AHD_DEBUG if (ahd_debug & AHD_SHOW_DV) { ahd_print_devinfo(ahd, devinfo); printf("DV REBD reties exhausted\n"); } #endif /* FALLTHROUGH */ case SS_FATAL: default: /* * Setup initial negotiation values * and try level 1 DV. */ ahd_linux_filter_inquiry(ahd, devinfo); AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_INQ_VERIFY); targ->dv_echo_size = 0; break; } break; case AHD_DV_STATE_WEB: switch (status & SS_MASK) { case SS_NOP: AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_REB); break; case SS_INQ_REFRESH: AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_INQ_SHORT_ASYNC); break; case SS_RETRY: AHD_SET_DV_STATE(ahd, targ, targ->dv_state); if (ahd_cmd_get_transaction_status(cmd) == CAM_REQUEUE_REQ) { targ->dv_state_retry--; } else if ((status & SSQ_FALLBACK) != 0) { if (ahd_linux_dv_fallback(ahd, devinfo) != 0) { AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT); break; } /* * Do not count "falling back" * against our retries. */ targ->dv_state_retry = 0; } if (targ->dv_state_retry <= 10) break; /* FALLTHROUGH */ #ifdef AHD_DEBUG if (ahd_debug & AHD_SHOW_DV) { ahd_print_devinfo(ahd, devinfo); printf("DV WEB reties exhausted\n"); } #endif default: AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT); break; } break; case AHD_DV_STATE_REB: switch (status & SS_MASK) { case SS_NOP: if (memcmp(targ->dv_buffer, targ->dv_buffer1, targ->dv_echo_size) != 0) { if (ahd_linux_dv_fallback(ahd, devinfo) != 0) AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT); else AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_WEB); break; } if (targ->dv_buffer != NULL) { free(targ->dv_buffer, M_DEVBUF); targ->dv_buffer = NULL; } if (targ->dv_buffer1 != NULL) { free(targ->dv_buffer1, M_DEVBUF); targ->dv_buffer1 = NULL; } AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT); break; case SS_INQ_REFRESH: AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_INQ_SHORT_ASYNC); break; case SS_RETRY: AHD_SET_DV_STATE(ahd, targ, targ->dv_state); if (ahd_cmd_get_transaction_status(cmd) == CAM_REQUEUE_REQ) { targ->dv_state_retry--; } else if ((status & SSQ_FALLBACK) != 0) { if (ahd_linux_dv_fallback(ahd, devinfo) != 0) { AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT); break; } AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_WEB); } if (targ->dv_state_retry <= 10) { if ((status & (SSQ_DELAY_RANDOM|SSQ_DELAY))!= 0) msleep(ahd->our_id*1000/10); break; } #ifdef AHD_DEBUG if (ahd_debug & AHD_SHOW_DV) { ahd_print_devinfo(ahd, devinfo); printf("DV REB reties exhausted\n"); } #endif /* FALLTHROUGH */ default: AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT); break; } break; case AHD_DV_STATE_SU: switch (status & SS_MASK) { case SS_NOP: case SS_INQ_REFRESH: AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_INQ_SHORT_ASYNC); break; default: AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT); break; } break; case AHD_DV_STATE_BUSY: switch (status & SS_MASK) { case SS_NOP: case SS_INQ_REFRESH: AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_INQ_SHORT_ASYNC); break; case SS_TUR: case SS_RETRY: AHD_SET_DV_STATE(ahd, targ, targ->dv_state); if (ahd_cmd_get_transaction_status(cmd) == CAM_REQUEUE_REQ) { targ->dv_state_retry--; } else if (targ->dv_state_retry < 60) { if ((status & SSQ_DELAY) != 0) ssleep(1); } else { #ifdef AHD_DEBUG if (ahd_debug & AHD_SHOW_DV) { ahd_print_devinfo(ahd, devinfo); printf("DV BUSY reties exhausted\n"); } #endif AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT); } break; default: AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT); break; } break; default: printf("%s: Invalid DV completion state %d\n", ahd_name(ahd), targ->dv_state); AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT); break; } } static void ahd_linux_dv_fill_cmd(struct ahd_softc *ahd, struct scsi_cmnd *cmd, struct ahd_devinfo *devinfo) { memset(cmd, 0, sizeof(struct scsi_cmnd)); cmd->device = ahd->platform_data->dv_scsi_dev; cmd->scsi_done = ahd_linux_dv_complete; } /* * Synthesize an inquiry command. On the return trip, it'll be * sniffed and the device transfer settings set for us. */ static void ahd_linux_dv_inq(struct ahd_softc *ahd, struct scsi_cmnd *cmd, struct ahd_devinfo *devinfo, struct ahd_linux_target *targ, u_int request_length) { #ifdef AHD_DEBUG if (ahd_debug & AHD_SHOW_DV) { ahd_print_devinfo(ahd, devinfo); printf("Sending INQ\n"); } #endif if (targ->inq_data == NULL) targ->inq_data = malloc(AHD_LINUX_DV_INQ_LEN, M_DEVBUF, M_WAITOK); if (targ->dv_state > AHD_DV_STATE_INQ_ASYNC) { if (targ->dv_buffer != NULL) free(targ->dv_buffer, M_DEVBUF); targ->dv_buffer = malloc(AHD_LINUX_DV_INQ_LEN, M_DEVBUF, M_WAITOK); } ahd_linux_dv_fill_cmd(ahd, cmd, devinfo); cmd->sc_data_direction = SCSI_DATA_READ; cmd->cmd_len = 6; cmd->cmnd[0] = INQUIRY; cmd->cmnd[4] = request_length; cmd->request_bufflen = request_length; if (targ->dv_state > AHD_DV_STATE_INQ_ASYNC) cmd->request_buffer = targ->dv_buffer; else cmd->request_buffer = targ->inq_data; memset(cmd->request_buffer, 0, AHD_LINUX_DV_INQ_LEN); } static void ahd_linux_dv_tur(struct ahd_softc *ahd, struct scsi_cmnd *cmd, struct ahd_devinfo *devinfo) { #ifdef AHD_DEBUG if (ahd_debug & AHD_SHOW_DV) { ahd_print_devinfo(ahd, devinfo); printf("Sending TUR\n"); } #endif /* Do a TUR to clear out any non-fatal transitional state */ ahd_linux_dv_fill_cmd(ahd, cmd, devinfo); cmd->sc_data_direction = SCSI_DATA_NONE; cmd->cmd_len = 6; cmd->cmnd[0] = TEST_UNIT_READY; } #define AHD_REBD_LEN 4 static void ahd_linux_dv_rebd(struct ahd_softc *ahd, struct scsi_cmnd *cmd, struct ahd_devinfo *devinfo, struct ahd_linux_target *targ) { #ifdef AHD_DEBUG if (ahd_debug & AHD_SHOW_DV) { ahd_print_devinfo(ahd, devinfo); printf("Sending REBD\n"); } #endif if (targ->dv_buffer != NULL) free(targ->dv_buffer, M_DEVBUF); targ->dv_buffer = malloc(AHD_REBD_LEN, M_DEVBUF, M_WAITOK); ahd_linux_dv_fill_cmd(ahd, cmd, devinfo); cmd->sc_data_direction = SCSI_DATA_READ; cmd->cmd_len = 10; cmd->cmnd[0] = READ_BUFFER; cmd->cmnd[1] = 0x0b; scsi_ulto3b(AHD_REBD_LEN, &cmd->cmnd[6]); cmd->request_bufflen = AHD_REBD_LEN; cmd->underflow = cmd->request_bufflen; cmd->request_buffer = targ->dv_buffer; } static void ahd_linux_dv_web(struct ahd_softc *ahd, struct scsi_cmnd *cmd, struct ahd_devinfo *devinfo, struct ahd_linux_target *targ) { #ifdef AHD_DEBUG if (ahd_debug & AHD_SHOW_DV) { ahd_print_devinfo(ahd, devinfo); printf("Sending WEB\n"); } #endif ahd_linux_dv_fill_cmd(ahd, cmd, devinfo); cmd->sc_data_direction = SCSI_DATA_WRITE; cmd->cmd_len = 10; cmd->cmnd[0] = WRITE_BUFFER; cmd->cmnd[1] = 0x0a; scsi_ulto3b(targ->dv_echo_size, &cmd->cmnd[6]); cmd->request_bufflen = targ->dv_echo_size; cmd->underflow = cmd->request_bufflen; cmd->request_buffer = targ->dv_buffer; } static void ahd_linux_dv_reb(struct ahd_softc *ahd, struct scsi_cmnd *cmd, struct ahd_devinfo *devinfo, struct ahd_linux_target *targ) { #ifdef AHD_DEBUG if (ahd_debug & AHD_SHOW_DV) { ahd_print_devinfo(ahd, devinfo); printf("Sending REB\n"); } #endif ahd_linux_dv_fill_cmd(ahd, cmd, devinfo); cmd->sc_data_direction = SCSI_DATA_READ; cmd->cmd_len = 10; cmd->cmnd[0] = READ_BUFFER; cmd->cmnd[1] = 0x0a; scsi_ulto3b(targ->dv_echo_size, &cmd->cmnd[6]); cmd->request_bufflen = targ->dv_echo_size; cmd->underflow = cmd->request_bufflen; cmd->request_buffer = targ->dv_buffer1; } static void ahd_linux_dv_su(struct ahd_softc *ahd, struct scsi_cmnd *cmd, struct ahd_devinfo *devinfo, struct ahd_linux_target *targ) { u_int le; le = SID_IS_REMOVABLE(targ->inq_data) ? SSS_LOEJ : 0; #ifdef AHD_DEBUG if (ahd_debug & AHD_SHOW_DV) { ahd_print_devinfo(ahd, devinfo); printf("Sending SU\n"); } #endif ahd_linux_dv_fill_cmd(ahd, cmd, devinfo); cmd->sc_data_direction = SCSI_DATA_NONE; cmd->cmd_len = 6; cmd->cmnd[0] = START_STOP_UNIT; cmd->cmnd[4] = le | SSS_START; } static int ahd_linux_fallback(struct ahd_softc *ahd, struct ahd_devinfo *devinfo) { struct ahd_linux_target *targ; struct ahd_initiator_tinfo *tinfo; struct ahd_transinfo *goal; struct ahd_tmode_tstate *tstate; u_int width; u_int period; u_int offset; u_int ppr_options; u_int cur_speed; u_int wide_speed; u_int narrow_speed; u_int fallback_speed; #ifdef AHD_DEBUG if (ahd_debug & AHD_SHOW_DV) { ahd_print_devinfo(ahd, devinfo); printf("Trying to fallback\n"); } #endif targ = ahd->platform_data->targets[devinfo->target_offset]; tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid, devinfo->target, &tstate); goal = &tinfo->goal; width = goal->width; period = goal->period; offset = goal->offset; ppr_options = goal->ppr_options; if (offset == 0) period = AHD_ASYNC_XFER_PERIOD; if (targ->dv_next_narrow_period == 0) targ->dv_next_narrow_period = MAX(period, AHD_SYNCRATE_ULTRA2); if (targ->dv_next_wide_period == 0) targ->dv_next_wide_period = period; if (targ->dv_max_width == 0) targ->dv_max_width = width; if (targ->dv_max_ppr_options == 0) targ->dv_max_ppr_options = ppr_options; if (targ->dv_last_ppr_options == 0) targ->dv_last_ppr_options = ppr_options; cur_speed = aic_calc_speed(width, period, offset, AHD_SYNCRATE_MIN); wide_speed = aic_calc_speed(MSG_EXT_WDTR_BUS_16_BIT, targ->dv_next_wide_period, MAX_OFFSET, AHD_SYNCRATE_MIN); narrow_speed = aic_calc_speed(MSG_EXT_WDTR_BUS_8_BIT, targ->dv_next_narrow_period, MAX_OFFSET, AHD_SYNCRATE_MIN); fallback_speed = aic_calc_speed(width, period+1, offset, AHD_SYNCRATE_MIN); #ifdef AHD_DEBUG if (ahd_debug & AHD_SHOW_DV) { printf("cur_speed= %d, wide_speed= %d, narrow_speed= %d, " "fallback_speed= %d\n", cur_speed, wide_speed, narrow_speed, fallback_speed); } #endif if (cur_speed > 160000) { /* * Paced/DT/IU_REQ only transfer speeds. All we * can do is fallback in terms of syncrate. */ period++; } else if (cur_speed > 80000) { if ((ppr_options & MSG_EXT_PPR_IU_REQ) != 0) { /* * Try without IU_REQ as it may be confusing * an expander. */ ppr_options &= ~MSG_EXT_PPR_IU_REQ; } else { /* * Paced/DT only transfer speeds. All we * can do is fallback in terms of syncrate. */ period++; ppr_options = targ->dv_max_ppr_options; } } else if (cur_speed > 3300) { /* * In this range we the following * options ordered from highest to * lowest desireability: * * o Wide/DT * o Wide/non-DT * o Narrow at a potentally higher sync rate. * * All modes are tested with and without IU_REQ * set since using IUs may confuse an expander. */ if ((ppr_options & MSG_EXT_PPR_IU_REQ) != 0) { ppr_options &= ~MSG_EXT_PPR_IU_REQ; } else if ((ppr_options & MSG_EXT_PPR_DT_REQ) != 0) { /* * Try going non-DT. */ ppr_options = targ->dv_max_ppr_options; ppr_options &= ~MSG_EXT_PPR_DT_REQ; } else if (targ->dv_last_ppr_options != 0) { /* * Try without QAS or any other PPR options. * We may need a non-PPR message to work with * an expander. We look at the "last PPR options" * so we will perform this fallback even if the * target responded to our PPR negotiation with * no option bits set. */ ppr_options = 0; } else if (width == MSG_EXT_WDTR_BUS_16_BIT) { /* * If the next narrow speed is greater than * the next wide speed, fallback to narrow. * Otherwise fallback to the next DT/Wide setting. * The narrow async speed will always be smaller * than the wide async speed, so handle this case * specifically. */ ppr_options = targ->dv_max_ppr_options; if (narrow_speed > fallback_speed || period >= AHD_ASYNC_XFER_PERIOD) { targ->dv_next_wide_period = period+1; width = MSG_EXT_WDTR_BUS_8_BIT; period = targ->dv_next_narrow_period; } else { period++; } } else if ((ahd->features & AHD_WIDE) != 0 && targ->dv_max_width != 0 && wide_speed >= fallback_speed && (targ->dv_next_wide_period <= AHD_ASYNC_XFER_PERIOD || period >= AHD_ASYNC_XFER_PERIOD)) { /* * We are narrow. Try falling back * to the next wide speed with * all supported ppr options set. */ targ->dv_next_narrow_period = period+1; width = MSG_EXT_WDTR_BUS_16_BIT; period = targ->dv_next_wide_period; ppr_options = targ->dv_max_ppr_options; } else { /* Only narrow fallback is allowed. */ period++; ppr_options = targ->dv_max_ppr_options; } } else { return (-1); } offset = MAX_OFFSET; ahd_find_syncrate(ahd, &period, &ppr_options, AHD_SYNCRATE_PACED); ahd_set_width(ahd, devinfo, width, AHD_TRANS_GOAL, FALSE); if (period == 0) { period = 0; offset = 0; ppr_options = 0; if (width == MSG_EXT_WDTR_BUS_8_BIT) targ->dv_next_narrow_period = AHD_ASYNC_XFER_PERIOD; else targ->dv_next_wide_period = AHD_ASYNC_XFER_PERIOD; } ahd_set_syncrate(ahd, devinfo, period, offset, ppr_options, AHD_TRANS_GOAL, FALSE); targ->dv_last_ppr_options = ppr_options; return (0); } static void ahd_linux_dv_timeout(struct scsi_cmnd *cmd) { struct ahd_softc *ahd; struct scb *scb; u_long flags; ahd = *((struct ahd_softc **)cmd->device->host->hostdata); ahd_lock(ahd, &flags); #ifdef AHD_DEBUG if (ahd_debug & AHD_SHOW_DV) { printf("%s: Timeout while doing DV command %x.\n", ahd_name(ahd), cmd->cmnd[0]); ahd_dump_card_state(ahd); } #endif /* * Guard against "done race". No action is * required if we just completed. */ if ((scb = (struct scb *)cmd->host_scribble) == NULL) { ahd_unlock(ahd, &flags); return; } /* * Command has not completed. Mark this * SCB as having failing status prior to * resetting the bus, so we get the correct * error code. */ if ((scb->flags & SCB_SENSE) != 0) ahd_set_transaction_status(scb, CAM_AUTOSENSE_FAIL); else ahd_set_transaction_status(scb, CAM_CMD_TIMEOUT); ahd_reset_channel(ahd, cmd->device->channel + 'A', /*initiate*/TRUE); /* * Add a minimal bus settle delay for devices that are slow to * respond after bus resets. */ ahd_freeze_simq(ahd); init_timer(&ahd->platform_data->reset_timer); ahd->platform_data->reset_timer.data = (u_long)ahd; ahd->platform_data->reset_timer.expires = jiffies + HZ / 2; ahd->platform_data->reset_timer.function = (ahd_linux_callback_t *)ahd_release_simq; add_timer(&ahd->platform_data->reset_timer); if (ahd_linux_next_device_to_run(ahd) != NULL) ahd_schedule_runq(ahd); ahd_linux_run_complete_queue(ahd); ahd_unlock(ahd, &flags); } static void ahd_linux_dv_complete(struct scsi_cmnd *cmd) { struct ahd_softc *ahd; ahd = *((struct ahd_softc **)cmd->device->host->hostdata); /* Delete the DV timer before it goes off! */ scsi_delete_timer(cmd); #ifdef AHD_DEBUG if (ahd_debug & AHD_SHOW_DV) printf("%s:%c:%d: Command completed, status= 0x%x\n", ahd_name(ahd), cmd->device->channel, cmd->device->id, cmd->result); #endif /* Wake up the state machine */ up(&ahd->platform_data->dv_cmd_sem); } static void ahd_linux_generate_dv_pattern(struct ahd_linux_target *targ) { uint16_t b; u_int i; u_int j; if (targ->dv_buffer != NULL) free(targ->dv_buffer, M_DEVBUF); targ->dv_buffer = malloc(targ->dv_echo_size, M_DEVBUF, M_WAITOK); if (targ->dv_buffer1 != NULL) free(targ->dv_buffer1, M_DEVBUF); targ->dv_buffer1 = malloc(targ->dv_echo_size, M_DEVBUF, M_WAITOK); i = 0; b = 0x0001; for (j = 0 ; i < targ->dv_echo_size; j++) { if (j < 32) { /* * 32bytes of sequential numbers. */ targ->dv_buffer[i++] = j & 0xff; } else if (j < 48) { /* * 32bytes of repeating 0x0000, 0xffff. */ targ->dv_buffer[i++] = (j & 0x02) ? 0xff : 0x00; } else if (j < 64) { /* * 32bytes of repeating 0x5555, 0xaaaa. */ targ->dv_buffer[i++] = (j & 0x02) ? 0xaa : 0x55; } else { /* * Remaining buffer is filled with a repeating * patter of: * * 0xffff * ~0x0001 << shifted once in each loop. */ if (j & 0x02) { if (j & 0x01) { targ->dv_buffer[i++] = ~(b >> 8) & 0xff; b <<= 1; if (b == 0x0000) b = 0x0001; } else { targ->dv_buffer[i++] = (~b & 0xff); } } else { targ->dv_buffer[i++] = 0xff; } } } } static u_int ahd_linux_user_tagdepth(struct ahd_softc *ahd, struct ahd_devinfo *devinfo) { static int warned_user; u_int tags; tags = 0; if ((ahd->user_discenable & devinfo->target_mask) != 0) { if (ahd->unit >= NUM_ELEMENTS(aic79xx_tag_info)) { if (warned_user == 0) { printf(KERN_WARNING "aic79xx: WARNING: Insufficient tag_info instances\n" "aic79xx: for installed controllers. Using defaults\n" "aic79xx: Please update the aic79xx_tag_info array in\n" "aic79xx: the aic79xx_osm.c source file.\n"); warned_user++; } tags = AHD_MAX_QUEUE; } else { adapter_tag_info_t *tag_info; tag_info = &aic79xx_tag_info[ahd->unit]; tags = tag_info->tag_commands[devinfo->target_offset]; if (tags > AHD_MAX_QUEUE) tags = AHD_MAX_QUEUE; } } return (tags); } static u_int ahd_linux_user_dv_setting(struct ahd_softc *ahd) { static int warned_user; int dv; if (ahd->unit >= NUM_ELEMENTS(aic79xx_dv_settings)) { if (warned_user == 0) { printf(KERN_WARNING "aic79xx: WARNING: Insufficient dv settings instances\n" "aic79xx: for installed controllers. Using defaults\n" "aic79xx: Please update the aic79xx_dv_settings array in" "aic79xx: the aic79xx_osm.c source file.\n"); warned_user++; } dv = -1; } else { dv = aic79xx_dv_settings[ahd->unit]; } if (dv < 0) { /* * Apply the default. */ dv = 1; if (ahd->seep_config != 0) dv = (ahd->seep_config->bios_control & CFENABLEDV); } return (dv); } static void ahd_linux_setup_user_rd_strm_settings(struct ahd_softc *ahd) { static int warned_user; u_int rd_strm_mask; u_int target_id; /* * If we have specific read streaming info for this controller, * apply it. Otherwise use the defaults. */ if (ahd->unit >= NUM_ELEMENTS(aic79xx_rd_strm_info)) { if (warned_user == 0) { printf(KERN_WARNING "aic79xx: WARNING: Insufficient rd_strm instances\n" "aic79xx: for installed controllers. Using defaults\n" "aic79xx: Please update the aic79xx_rd_strm_info array\n" "aic79xx: in the aic79xx_osm.c source file.\n"); warned_user++; } rd_strm_mask = AIC79XX_CONFIGED_RD_STRM; } else { rd_strm_mask = aic79xx_rd_strm_info[ahd->unit]; } for (target_id = 0; target_id < 16; target_id++) { struct ahd_devinfo devinfo; struct ahd_initiator_tinfo *tinfo; struct ahd_tmode_tstate *tstate; tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id, target_id, &tstate); ahd_compile_devinfo(&devinfo, ahd->our_id, target_id, CAM_LUN_WILDCARD, 'A', ROLE_INITIATOR); tinfo->user.ppr_options &= ~MSG_EXT_PPR_RD_STRM; if ((rd_strm_mask & devinfo.target_mask) != 0) tinfo->user.ppr_options |= MSG_EXT_PPR_RD_STRM; } } /* * Determines the queue depth for a given device. */ static void ahd_linux_device_queue_depth(struct ahd_softc *ahd, struct ahd_linux_device *dev) { struct ahd_devinfo devinfo; u_int tags; ahd_compile_devinfo(&devinfo, ahd->our_id, dev->target->target, dev->lun, dev->target->channel == 0 ? 'A' : 'B', ROLE_INITIATOR); tags = ahd_linux_user_tagdepth(ahd, &devinfo); if (tags != 0 && dev->scsi_device != NULL && dev->scsi_device->tagged_supported != 0) { ahd_set_tags(ahd, &devinfo, AHD_QUEUE_TAGGED); ahd_print_devinfo(ahd, &devinfo); printf("Tagged Queuing enabled. Depth %d\n", tags); } else { ahd_set_tags(ahd, &devinfo, AHD_QUEUE_NONE); } } static void ahd_linux_run_device_queue(struct ahd_softc *ahd, struct ahd_linux_device *dev) { struct ahd_cmd *acmd; struct scsi_cmnd *cmd; struct scb *scb; struct hardware_scb *hscb; struct ahd_initiator_tinfo *tinfo; struct ahd_tmode_tstate *tstate; u_int col_idx; uint16_t mask; if ((dev->flags & AHD_DEV_ON_RUN_LIST) != 0) panic("running device on run list"); while ((acmd = TAILQ_FIRST(&dev->busyq)) != NULL && dev->openings > 0 && dev->qfrozen == 0) { /* * Schedule us to run later. The only reason we are not * running is because the whole controller Q is frozen. */ if (ahd->platform_data->qfrozen != 0 && AHD_DV_SIMQ_FROZEN(ahd) == 0) { TAILQ_INSERT_TAIL(&ahd->platform_data->device_runq, dev, links); dev->flags |= AHD_DEV_ON_RUN_LIST; return; } cmd = &acmd_scsi_cmd(acmd); /* * Get an scb to use. */ tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id, cmd->device->id, &tstate); if ((dev->flags & (AHD_DEV_Q_TAGGED|AHD_DEV_Q_BASIC)) == 0 || (tinfo->curr.ppr_options & MSG_EXT_PPR_IU_REQ) != 0) { col_idx = AHD_NEVER_COL_IDX; } else { col_idx = AHD_BUILD_COL_IDX(cmd->device->id, cmd->device->lun); } if ((scb = ahd_get_scb(ahd, col_idx)) == NULL) { TAILQ_INSERT_TAIL(&ahd->platform_data->device_runq, dev, links); dev->flags |= AHD_DEV_ON_RUN_LIST; ahd->flags |= AHD_RESOURCE_SHORTAGE; return; } TAILQ_REMOVE(&dev->busyq, acmd, acmd_links.tqe); scb->io_ctx = cmd; scb->platform_data->dev = dev; hscb = scb->hscb; cmd->host_scribble = (char *)scb; /* * Fill out basics of the HSCB. */ hscb->control = 0; hscb->scsiid = BUILD_SCSIID(ahd, cmd); hscb->lun = cmd->device->lun; scb->hscb->task_management = 0; mask = SCB_GET_TARGET_MASK(ahd, scb); if ((ahd->user_discenable & mask) != 0) hscb->control |= DISCENB; if (AHD_DV_CMD(cmd) != 0) scb->flags |= SCB_SILENT; if ((tinfo->curr.ppr_options & MSG_EXT_PPR_IU_REQ) != 0) scb->flags |= SCB_PACKETIZED; if ((tstate->auto_negotiate & mask) != 0) { scb->flags |= SCB_AUTO_NEGOTIATE; scb->hscb->control |= MK_MESSAGE; } if ((dev->flags & (AHD_DEV_Q_TAGGED|AHD_DEV_Q_BASIC)) != 0) { #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0) int msg_bytes; uint8_t tag_msgs[2]; msg_bytes = scsi_populate_tag_msg(cmd, tag_msgs); if (msg_bytes && tag_msgs[0] != MSG_SIMPLE_TASK) { hscb->control |= tag_msgs[0]; if (tag_msgs[0] == MSG_ORDERED_TASK) dev->commands_since_idle_or_otag = 0; } else #endif if (dev->commands_since_idle_or_otag == AHD_OTAG_THRESH && (dev->flags & AHD_DEV_Q_TAGGED) != 0) { hscb->control |= MSG_ORDERED_TASK; dev->commands_since_idle_or_otag = 0; } else { hscb->control |= MSG_SIMPLE_TASK; } } hscb->cdb_len = cmd->cmd_len; memcpy(hscb->shared_data.idata.cdb, cmd->cmnd, hscb->cdb_len); scb->sg_count = 0; ahd_set_residual(scb, 0); ahd_set_sense_residual(scb, 0); if (cmd->use_sg != 0) { void *sg; struct scatterlist *cur_seg; u_int nseg; int dir; cur_seg = (struct scatterlist *)cmd->request_buffer; dir = scsi_to_pci_dma_dir(cmd->sc_data_direction); nseg = pci_map_sg(ahd->dev_softc, cur_seg, cmd->use_sg, dir); scb->platform_data->xfer_len = 0; for (sg = scb->sg_list; nseg > 0; nseg--, cur_seg++) { bus_addr_t addr; bus_size_t len; addr = sg_dma_address(cur_seg); len = sg_dma_len(cur_seg); scb->platform_data->xfer_len += len; sg = ahd_sg_setup(ahd, scb, sg, addr, len, /*last*/nseg == 1); } } else if (cmd->request_bufflen != 0) { void *sg; bus_addr_t addr; int dir; sg = scb->sg_list; dir = scsi_to_pci_dma_dir(cmd->sc_data_direction); addr = pci_map_single(ahd->dev_softc, cmd->request_buffer, cmd->request_bufflen, dir); scb->platform_data->xfer_len = cmd->request_bufflen; scb->platform_data->buf_busaddr = addr; sg = ahd_sg_setup(ahd, scb, sg, addr, cmd->request_bufflen, /*last*/TRUE); } LIST_INSERT_HEAD(&ahd->pending_scbs, scb, pending_links); dev->openings--; dev->active++; dev->commands_issued++; /* Update the error counting bucket and dump if needed */ if (dev->target->cmds_since_error) { dev->target->cmds_since_error++; if (dev->target->cmds_since_error > AHD_LINUX_ERR_THRESH) dev->target->cmds_since_error = 0; } if ((dev->flags & AHD_DEV_PERIODIC_OTAG) != 0) dev->commands_since_idle_or_otag++; scb->flags |= SCB_ACTIVE; ahd_queue_scb(ahd, scb); } } /* * SCSI controller interrupt handler. */ irqreturn_t ahd_linux_isr(int irq, void *dev_id, struct pt_regs * regs) { struct ahd_softc *ahd; u_long flags; int ours; ahd = (struct ahd_softc *) dev_id; ahd_lock(ahd, &flags); ours = ahd_intr(ahd); if (ahd_linux_next_device_to_run(ahd) != NULL) ahd_schedule_runq(ahd); ahd_linux_run_complete_queue(ahd); ahd_unlock(ahd, &flags); return IRQ_RETVAL(ours); } void ahd_platform_flushwork(struct ahd_softc *ahd) { while (ahd_linux_run_complete_queue(ahd) != NULL) ; } static struct ahd_linux_target* ahd_linux_alloc_target(struct ahd_softc *ahd, u_int channel, u_int target) { struct ahd_linux_target *targ; targ = malloc(sizeof(*targ), M_DEVBUF, M_NOWAIT); if (targ == NULL) return (NULL); memset(targ, 0, sizeof(*targ)); targ->channel = channel; targ->target = target; targ->ahd = ahd; targ->flags = AHD_DV_REQUIRED; ahd->platform_data->targets[target] = targ; return (targ); } static void ahd_linux_free_target(struct ahd_softc *ahd, struct ahd_linux_target *targ) { struct ahd_devinfo devinfo; struct ahd_initiator_tinfo *tinfo; struct ahd_tmode_tstate *tstate; u_int our_id; u_int target_offset; char channel; /* * Force a negotiation to async/narrow on any * future command to this device unless a bus * reset occurs between now and that command. */ channel = 'A' + targ->channel; our_id = ahd->our_id; target_offset = targ->target; tinfo = ahd_fetch_transinfo(ahd, channel, our_id, targ->target, &tstate); ahd_compile_devinfo(&devinfo, our_id, targ->target, CAM_LUN_WILDCARD, channel, ROLE_INITIATOR); ahd_set_syncrate(ahd, &devinfo, 0, 0, 0, AHD_TRANS_GOAL, /*paused*/FALSE); ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT, AHD_TRANS_GOAL, /*paused*/FALSE); ahd_update_neg_request(ahd, &devinfo, tstate, tinfo, AHD_NEG_ALWAYS); ahd->platform_data->targets[target_offset] = NULL; if (targ->inq_data != NULL) free(targ->inq_data, M_DEVBUF); if (targ->dv_buffer != NULL) free(targ->dv_buffer, M_DEVBUF); if (targ->dv_buffer1 != NULL) free(targ->dv_buffer1, M_DEVBUF); free(targ, M_DEVBUF); } static struct ahd_linux_device* ahd_linux_alloc_device(struct ahd_softc *ahd, struct ahd_linux_target *targ, u_int lun) { struct ahd_linux_device *dev; dev = malloc(sizeof(*dev), M_DEVBUG, M_NOWAIT); if (dev == NULL) return (NULL); memset(dev, 0, sizeof(*dev)); init_timer(&dev->timer); TAILQ_INIT(&dev->busyq); dev->flags = AHD_DEV_UNCONFIGURED; dev->lun = lun; dev->target = targ; /* * We start out life using untagged * transactions of which we allow one. */ dev->openings = 1; /* * Set maxtags to 0. This will be changed if we * later determine that we are dealing with * a tagged queuing capable device. */ dev->maxtags = 0; targ->refcount++; targ->devices[lun] = dev; return (dev); } static void ahd_linux_free_device(struct ahd_softc *ahd, struct ahd_linux_device *dev) { struct ahd_linux_target *targ; del_timer(&dev->timer); targ = dev->target; targ->devices[dev->lun] = NULL; free(dev, M_DEVBUF); targ->refcount--; if (targ->refcount == 0 && (targ->flags & AHD_DV_REQUIRED) == 0) ahd_linux_free_target(ahd, targ); } void ahd_send_async(struct ahd_softc *ahd, char channel, u_int target, u_int lun, ac_code code, void *arg) { switch (code) { case AC_TRANSFER_NEG: { char buf[80]; struct ahd_linux_target *targ; struct info_str info; struct ahd_initiator_tinfo *tinfo; struct ahd_tmode_tstate *tstate; info.buffer = buf; info.length = sizeof(buf); info.offset = 0; info.pos = 0; tinfo = ahd_fetch_transinfo(ahd, channel, ahd->our_id, target, &tstate); /* * Don't bother reporting results while * negotiations are still pending. */ if (tinfo->curr.period != tinfo->goal.period || tinfo->curr.width != tinfo->goal.width || tinfo->curr.offset != tinfo->goal.offset || tinfo->curr.ppr_options != tinfo->goal.ppr_options) if (bootverbose == 0) break; /* * Don't bother reporting results that * are identical to those last reported. */ targ = ahd->platform_data->targets[target]; if (targ == NULL) break; if (tinfo->curr.period == targ->last_tinfo.period && tinfo->curr.width == targ->last_tinfo.width && tinfo->curr.offset == targ->last_tinfo.offset && tinfo->curr.ppr_options == targ->last_tinfo.ppr_options) if (bootverbose == 0) break; targ->last_tinfo.period = tinfo->curr.period; targ->last_tinfo.width = tinfo->curr.width; targ->last_tinfo.offset = tinfo->curr.offset; targ->last_tinfo.ppr_options = tinfo->curr.ppr_options; printf("(%s:%c:", ahd_name(ahd), channel); if (target == CAM_TARGET_WILDCARD) printf("*): "); else printf("%d): ", target); ahd_format_transinfo(&info, &tinfo->curr); if (info.pos < info.length) *info.buffer = '\0'; else buf[info.length - 1] = '\0'; printf("%s", buf); break; } case AC_SENT_BDR: { #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0) WARN_ON(lun != CAM_LUN_WILDCARD); scsi_report_device_reset(ahd->platform_data->host, channel - 'A', target); #elif LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0) Scsi_Device *scsi_dev; /* * Find the SCSI device associated with this * request and indicate that a UA is expected. */ for (scsi_dev = ahd->platform_data->host->host_queue; scsi_dev != NULL; scsi_dev = scsi_dev->next) { if (channel - 'A' == scsi_dev->channel && target == scsi_dev->id && (lun == CAM_LUN_WILDCARD || lun == scsi_dev->lun)) { scsi_dev->was_reset = 1; scsi_dev->expecting_cc_ua = 1; } } #endif break; } case AC_BUS_RESET: #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0) if (ahd->platform_data->host != NULL) { scsi_report_bus_reset(ahd->platform_data->host, channel - 'A'); } #endif break; default: panic("ahd_send_async: Unexpected async event"); } } /* * Calls the higher level scsi done function and frees the scb. */ void ahd_done(struct ahd_softc *ahd, struct scb *scb) { Scsi_Cmnd *cmd; struct ahd_linux_device *dev; if ((scb->flags & SCB_ACTIVE) == 0) { printf("SCB %d done'd twice\n", SCB_GET_TAG(scb)); ahd_dump_card_state(ahd); panic("Stopping for safety"); } LIST_REMOVE(scb, pending_links); cmd = scb->io_ctx; dev = scb->platform_data->dev; dev->active--; dev->openings++; if ((cmd->result & (CAM_DEV_QFRZN << 16)) != 0) { cmd->result &= ~(CAM_DEV_QFRZN << 16); dev->qfrozen--; } ahd_linux_unmap_scb(ahd, scb); /* * Guard against stale sense data. * The Linux mid-layer assumes that sense * was retrieved anytime the first byte of * the sense buffer looks "sane". */ cmd->sense_buffer[0] = 0; if (ahd_get_transaction_status(scb) == CAM_REQ_INPROG) { uint32_t amount_xferred; amount_xferred = ahd_get_transfer_length(scb) - ahd_get_residual(scb); if ((scb->flags & SCB_TRANSMISSION_ERROR) != 0) { #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_MISC) != 0) { ahd_print_path(ahd, scb); printf("Set CAM_UNCOR_PARITY\n"); } #endif ahd_set_transaction_status(scb, CAM_UNCOR_PARITY); #ifdef AHD_REPORT_UNDERFLOWS /* * This code is disabled by default as some * clients of the SCSI system do not properly * initialize the underflow parameter. This * results in spurious termination of commands * that complete as expected (e.g. underflow is * allowed as command can return variable amounts * of data. */ } else if (amount_xferred < scb->io_ctx->underflow) { u_int i; ahd_print_path(ahd, scb); printf("CDB:"); for (i = 0; i < scb->io_ctx->cmd_len; i++) printf(" 0x%x", scb->io_ctx->cmnd[i]); printf("\n"); ahd_print_path(ahd, scb); printf("Saw underflow (%ld of %ld bytes). " "Treated as error\n", ahd_get_residual(scb), ahd_get_transfer_length(scb)); ahd_set_transaction_status(scb, CAM_DATA_RUN_ERR); #endif } else { ahd_set_transaction_status(scb, CAM_REQ_CMP); } } else if (ahd_get_transaction_status(scb) == CAM_SCSI_STATUS_ERROR) { ahd_linux_handle_scsi_status(ahd, dev, scb); } else if (ahd_get_transaction_status(scb) == CAM_SEL_TIMEOUT) { dev->flags |= AHD_DEV_UNCONFIGURED; if (AHD_DV_CMD(cmd) == FALSE) dev->target->flags &= ~AHD_DV_REQUIRED; } /* * Start DV for devices that require it assuming the first command * sent does not result in a selection timeout. */ if (ahd_get_transaction_status(scb) != CAM_SEL_TIMEOUT && (dev->target->flags & AHD_DV_REQUIRED) != 0) ahd_linux_start_dv(ahd); if (dev->openings == 1 && ahd_get_transaction_status(scb) == CAM_REQ_CMP && ahd_get_scsi_status(scb) != SCSI_STATUS_QUEUE_FULL) dev->tag_success_count++; /* * Some devices deal with temporary internal resource * shortages by returning queue full. When the queue * full occurrs, we throttle back. Slowly try to get * back to our previous queue depth. */ if ((dev->openings + dev->active) < dev->maxtags && dev->tag_success_count > AHD_TAG_SUCCESS_INTERVAL) { dev->tag_success_count = 0; dev->openings++; } if (dev->active == 0) dev->commands_since_idle_or_otag = 0; if (TAILQ_EMPTY(&dev->busyq)) { if ((dev->flags & AHD_DEV_UNCONFIGURED) != 0 && dev->active == 0 && (dev->flags & AHD_DEV_TIMER_ACTIVE) == 0) ahd_linux_free_device(ahd, dev); } else if ((dev->flags & AHD_DEV_ON_RUN_LIST) == 0) { TAILQ_INSERT_TAIL(&ahd->platform_data->device_runq, dev, links); dev->flags |= AHD_DEV_ON_RUN_LIST; } if ((scb->flags & SCB_RECOVERY_SCB) != 0) { printf("Recovery SCB completes\n"); if (ahd_get_transaction_status(scb) == CAM_BDR_SENT || ahd_get_transaction_status(scb) == CAM_REQ_ABORTED) ahd_set_transaction_status(scb, CAM_CMD_TIMEOUT); if ((scb->platform_data->flags & AHD_SCB_UP_EH_SEM) != 0) { scb->platform_data->flags &= ~AHD_SCB_UP_EH_SEM; up(&ahd->platform_data->eh_sem); } } ahd_free_scb(ahd, scb); ahd_linux_queue_cmd_complete(ahd, cmd); if ((ahd->platform_data->flags & AHD_DV_WAIT_SIMQ_EMPTY) != 0 && LIST_FIRST(&ahd->pending_scbs) == NULL) { ahd->platform_data->flags &= ~AHD_DV_WAIT_SIMQ_EMPTY; up(&ahd->platform_data->dv_sem); } } static void ahd_linux_handle_scsi_status(struct ahd_softc *ahd, struct ahd_linux_device *dev, struct scb *scb) { struct ahd_devinfo devinfo; ahd_compile_devinfo(&devinfo, ahd->our_id, dev->target->target, dev->lun, dev->target->channel == 0 ? 'A' : 'B', ROLE_INITIATOR); /* * We don't currently trust the mid-layer to * properly deal with queue full or busy. So, * when one occurs, we tell the mid-layer to * unconditionally requeue the command to us * so that we can retry it ourselves. We also * implement our own throttling mechanism so * we don't clobber the device with too many * commands. */ switch (ahd_get_scsi_status(scb)) { default: break; case SCSI_STATUS_CHECK_COND: case SCSI_STATUS_CMD_TERMINATED: { Scsi_Cmnd *cmd; /* * Copy sense information to the OS's cmd * structure if it is available. */ cmd = scb->io_ctx; if ((scb->flags & (SCB_SENSE|SCB_PKT_SENSE)) != 0) { struct scsi_status_iu_header *siu; u_int sense_size; u_int sense_offset; if (scb->flags & SCB_SENSE) { sense_size = MIN(sizeof(struct scsi_sense_data) - ahd_get_sense_residual(scb), sizeof(cmd->sense_buffer)); sense_offset = 0; } else { /* * Copy only the sense data into the provided * buffer. */ siu = (struct scsi_status_iu_header *) scb->sense_data; sense_size = MIN(scsi_4btoul(siu->sense_length), sizeof(cmd->sense_buffer)); sense_offset = SIU_SENSE_OFFSET(siu); } memset(cmd->sense_buffer, 0, sizeof(cmd->sense_buffer)); memcpy(cmd->sense_buffer, ahd_get_sense_buf(ahd, scb) + sense_offset, sense_size); cmd->result |= (DRIVER_SENSE << 24); #ifdef AHD_DEBUG if (ahd_debug & AHD_SHOW_SENSE) { int i; printf("Copied %d bytes of sense data at %d:", sense_size, sense_offset); for (i = 0; i < sense_size; i++) { if ((i & 0xF) == 0) printf("\n"); printf("0x%x ", cmd->sense_buffer[i]); } printf("\n"); } #endif } break; } case SCSI_STATUS_QUEUE_FULL: { /* * By the time the core driver has returned this * command, all other commands that were queued * to us but not the device have been returned. * This ensures that dev->active is equal to * the number of commands actually queued to * the device. */ dev->tag_success_count = 0; if (dev->active != 0) { /* * Drop our opening count to the number * of commands currently outstanding. */ dev->openings = 0; #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_QFULL) != 0) { ahd_print_path(ahd, scb); printf("Dropping tag count to %d\n", dev->active); } #endif if (dev->active == dev->tags_on_last_queuefull) { dev->last_queuefull_same_count++; /* * If we repeatedly see a queue full * at the same queue depth, this * device has a fixed number of tag * slots. Lock in this tag depth * so we stop seeing queue fulls from * this device. */ if (dev->last_queuefull_same_count == AHD_LOCK_TAGS_COUNT) { dev->maxtags = dev->active; ahd_print_path(ahd, scb); printf("Locking max tag count at %d\n", dev->active); } } else { dev->tags_on_last_queuefull = dev->active; dev->last_queuefull_same_count = 0; } ahd_set_transaction_status(scb, CAM_REQUEUE_REQ); ahd_set_scsi_status(scb, SCSI_STATUS_OK); ahd_platform_set_tags(ahd, &devinfo, (dev->flags & AHD_DEV_Q_BASIC) ? AHD_QUEUE_BASIC : AHD_QUEUE_TAGGED); break; } /* * Drop down to a single opening, and treat this * as if the target returned BUSY SCSI status. */ dev->openings = 1; ahd_platform_set_tags(ahd, &devinfo, (dev->flags & AHD_DEV_Q_BASIC) ? AHD_QUEUE_BASIC : AHD_QUEUE_TAGGED); ahd_set_scsi_status(scb, SCSI_STATUS_BUSY); /* FALLTHROUGH */ } case SCSI_STATUS_BUSY: /* * Set a short timer to defer sending commands for * a bit since Linux will not delay in this case. */ if ((dev->flags & AHD_DEV_TIMER_ACTIVE) != 0) { printf("%s:%c:%d: Device Timer still active during " "busy processing\n", ahd_name(ahd), dev->target->channel, dev->target->target); break; } dev->flags |= AHD_DEV_TIMER_ACTIVE; dev->qfrozen++; init_timer(&dev->timer); dev->timer.data = (u_long)dev; dev->timer.expires = jiffies + (HZ/2); dev->timer.function = ahd_linux_dev_timed_unfreeze; add_timer(&dev->timer); break; } } static void ahd_linux_queue_cmd_complete(struct ahd_softc *ahd, Scsi_Cmnd *cmd) { /* * Typically, the complete queue has very few entries * queued to it before the queue is emptied by * ahd_linux_run_complete_queue, so sorting the entries * by generation number should be inexpensive. * We perform the sort so that commands that complete * with an error are retuned in the order origionally * queued to the controller so that any subsequent retries * are performed in order. The underlying ahd routines do * not guarantee the order that aborted commands will be * returned to us. */ struct ahd_completeq *completeq; struct ahd_cmd *list_cmd; struct ahd_cmd *acmd; /* * Map CAM error codes into Linux Error codes. We * avoid the conversion so that the DV code has the * full error information available when making * state change decisions. */ if (AHD_DV_CMD(cmd) == FALSE) { uint32_t status; u_int new_status; status = ahd_cmd_get_transaction_status(cmd); if (status != CAM_REQ_CMP) { struct ahd_linux_device *dev; struct ahd_devinfo devinfo; cam_status cam_status; uint32_t action; u_int scsi_status; dev = ahd_linux_get_device(ahd, cmd->device->channel, cmd->device->id, cmd->device->lun, /*alloc*/FALSE); if (dev == NULL) goto no_fallback; ahd_compile_devinfo(&devinfo, ahd->our_id, dev->target->target, dev->lun, dev->target->channel == 0 ? 'A':'B', ROLE_INITIATOR); scsi_status = ahd_cmd_get_scsi_status(cmd); cam_status = ahd_cmd_get_transaction_status(cmd); action = aic_error_action(cmd, dev->target->inq_data, cam_status, scsi_status); if ((action & SSQ_FALLBACK) != 0) { /* Update stats */ dev->target->errors_detected++; if (dev->target->cmds_since_error == 0) dev->target->cmds_since_error++; else { dev->target->cmds_since_error = 0; ahd_linux_fallback(ahd, &devinfo); } } } no_fallback: switch (status) { case CAM_REQ_INPROG: case CAM_REQ_CMP: case CAM_SCSI_STATUS_ERROR: new_status = DID_OK; break; case CAM_REQ_ABORTED: new_status = DID_ABORT; break; case CAM_BUSY: new_status = DID_BUS_BUSY; break; case CAM_REQ_INVALID: case CAM_PATH_INVALID: new_status = DID_BAD_TARGET; break; case CAM_SEL_TIMEOUT: new_status = DID_NO_CONNECT; break; case CAM_SCSI_BUS_RESET: case CAM_BDR_SENT: new_status = DID_RESET; break; case CAM_UNCOR_PARITY: new_status = DID_PARITY; break; case CAM_CMD_TIMEOUT: new_status = DID_TIME_OUT; break; case CAM_UA_ABORT: case CAM_REQ_CMP_ERR: case CAM_AUTOSENSE_FAIL: case CAM_NO_HBA: case CAM_DATA_RUN_ERR: case CAM_UNEXP_BUSFREE: case CAM_SEQUENCE_FAIL: case CAM_CCB_LEN_ERR: case CAM_PROVIDE_FAIL: case CAM_REQ_TERMIO: case CAM_UNREC_HBA_ERROR: case CAM_REQ_TOO_BIG: new_status = DID_ERROR; break; case CAM_REQUEUE_REQ: /* * If we want the request requeued, make sure there * are sufficent retries. In the old scsi error code, * we used to be able to specify a result code that * bypassed the retry count. Now we must use this * hack. We also "fake" a check condition with * a sense code of ABORTED COMMAND. This seems to * evoke a retry even if this command is being sent * via the eh thread. Ick! Ick! Ick! */ if (cmd->retries > 0) cmd->retries--; new_status = DID_OK; ahd_cmd_set_scsi_status(cmd, SCSI_STATUS_CHECK_COND); cmd->result |= (DRIVER_SENSE << 24); memset(cmd->sense_buffer, 0, sizeof(cmd->sense_buffer)); cmd->sense_buffer[0] = SSD_ERRCODE_VALID | SSD_CURRENT_ERROR; cmd->sense_buffer[2] = SSD_KEY_ABORTED_COMMAND; break; default: /* We should never get here */ new_status = DID_ERROR; break; } ahd_cmd_set_transaction_status(cmd, new_status); } completeq = &ahd->platform_data->completeq; list_cmd = TAILQ_FIRST(completeq); acmd = (struct ahd_cmd *)cmd; while (list_cmd != NULL && acmd_scsi_cmd(list_cmd).serial_number < acmd_scsi_cmd(acmd).serial_number) list_cmd = TAILQ_NEXT(list_cmd, acmd_links.tqe); if (list_cmd != NULL) TAILQ_INSERT_BEFORE(list_cmd, acmd, acmd_links.tqe); else TAILQ_INSERT_TAIL(completeq, acmd, acmd_links.tqe); } static void ahd_linux_filter_inquiry(struct ahd_softc *ahd, struct ahd_devinfo *devinfo) { struct scsi_inquiry_data *sid; struct ahd_initiator_tinfo *tinfo; struct ahd_transinfo *user; struct ahd_transinfo *goal; struct ahd_transinfo *curr; struct ahd_tmode_tstate *tstate; struct ahd_linux_device *dev; u_int width; u_int period; u_int offset; u_int ppr_options; u_int trans_version; u_int prot_version; /* * Determine if this lun actually exists. If so, * hold on to its corresponding device structure. * If not, make sure we release the device and * don't bother processing the rest of this inquiry * command. */ dev = ahd_linux_get_device(ahd, devinfo->channel - 'A', devinfo->target, devinfo->lun, /*alloc*/TRUE); sid = (struct scsi_inquiry_data *)dev->target->inq_data; if (SID_QUAL(sid) == SID_QUAL_LU_CONNECTED) { dev->flags &= ~AHD_DEV_UNCONFIGURED; } else { dev->flags |= AHD_DEV_UNCONFIGURED; return; } /* * Update our notion of this device's transfer * negotiation capabilities. */ tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid, devinfo->target, &tstate); user = &tinfo->user; goal = &tinfo->goal; curr = &tinfo->curr; width = user->width; period = user->period; offset = user->offset; ppr_options = user->ppr_options; trans_version = user->transport_version; prot_version = MIN(user->protocol_version, SID_ANSI_REV(sid)); /* * Only attempt SPI3/4 once we've verified that * the device claims to support SPI3/4 features. */ if (prot_version < SCSI_REV_2) trans_version = SID_ANSI_REV(sid); else trans_version = SCSI_REV_2; if ((sid->flags & SID_WBus16) == 0) width = MSG_EXT_WDTR_BUS_8_BIT; if ((sid->flags & SID_Sync) == 0) { period = 0; offset = 0; ppr_options = 0; } if ((sid->spi3data & SID_SPI_QAS) == 0) ppr_options &= ~MSG_EXT_PPR_QAS_REQ; if ((sid->spi3data & SID_SPI_CLOCK_DT) == 0) ppr_options &= MSG_EXT_PPR_QAS_REQ; if ((sid->spi3data & SID_SPI_IUS) == 0) ppr_options &= (MSG_EXT_PPR_DT_REQ | MSG_EXT_PPR_QAS_REQ); if (prot_version > SCSI_REV_2 && ppr_options != 0) trans_version = user->transport_version; ahd_validate_width(ahd, /*tinfo limit*/NULL, &width, ROLE_UNKNOWN); ahd_find_syncrate(ahd, &period, &ppr_options, AHD_SYNCRATE_MAX); ahd_validate_offset(ahd, /*tinfo limit*/NULL, period, &offset, width, ROLE_UNKNOWN); if (offset == 0 || period == 0) { period = 0; offset = 0; ppr_options = 0; } /* Apply our filtered user settings. */ curr->transport_version = trans_version; curr->protocol_version = prot_version; ahd_set_width(ahd, devinfo, width, AHD_TRANS_GOAL, /*paused*/FALSE); ahd_set_syncrate(ahd, devinfo, period, offset, ppr_options, AHD_TRANS_GOAL, /*paused*/FALSE); } void ahd_freeze_simq(struct ahd_softc *ahd) { ahd->platform_data->qfrozen++; if (ahd->platform_data->qfrozen == 1) { scsi_block_requests(ahd->platform_data->host); ahd_platform_abort_scbs(ahd, CAM_TARGET_WILDCARD, ALL_CHANNELS, CAM_LUN_WILDCARD, SCB_LIST_NULL, ROLE_INITIATOR, CAM_REQUEUE_REQ); } } void ahd_release_simq(struct ahd_softc *ahd) { u_long s; int unblock_reqs; unblock_reqs = 0; ahd_lock(ahd, &s); if (ahd->platform_data->qfrozen > 0) ahd->platform_data->qfrozen--; if (ahd->platform_data->qfrozen == 0) { unblock_reqs = 1; } if (AHD_DV_SIMQ_FROZEN(ahd) && ((ahd->platform_data->flags & AHD_DV_WAIT_SIMQ_RELEASE) != 0)) { ahd->platform_data->flags &= ~AHD_DV_WAIT_SIMQ_RELEASE; up(&ahd->platform_data->dv_sem); } ahd_schedule_runq(ahd); ahd_unlock(ahd, &s); /* * There is still a race here. The mid-layer * should keep its own freeze count and use * a bottom half handler to run the queues * so we can unblock with our own lock held. */ if (unblock_reqs) scsi_unblock_requests(ahd->platform_data->host); } static void ahd_linux_sem_timeout(u_long arg) { struct scb *scb; struct ahd_softc *ahd; u_long s; scb = (struct scb *)arg; ahd = scb->ahd_softc; ahd_lock(ahd, &s); if ((scb->platform_data->flags & AHD_SCB_UP_EH_SEM) != 0) { scb->platform_data->flags &= ~AHD_SCB_UP_EH_SEM; up(&ahd->platform_data->eh_sem); } ahd_unlock(ahd, &s); } static void ahd_linux_dev_timed_unfreeze(u_long arg) { struct ahd_linux_device *dev; struct ahd_softc *ahd; u_long s; dev = (struct ahd_linux_device *)arg; ahd = dev->target->ahd; ahd_lock(ahd, &s); dev->flags &= ~AHD_DEV_TIMER_ACTIVE; if (dev->qfrozen > 0) dev->qfrozen--; if (dev->qfrozen == 0 && (dev->flags & AHD_DEV_ON_RUN_LIST) == 0) ahd_linux_run_device_queue(ahd, dev); if ((dev->flags & AHD_DEV_UNCONFIGURED) != 0 && dev->active == 0) ahd_linux_free_device(ahd, dev); ahd_unlock(ahd, &s); } void ahd_platform_dump_card_state(struct ahd_softc *ahd) { struct ahd_linux_device *dev; int target; int maxtarget; int lun; int i; maxtarget = (ahd->features & AHD_WIDE) ? 15 : 7; for (target = 0; target <=maxtarget; target++) { for (lun = 0; lun < AHD_NUM_LUNS; lun++) { struct ahd_cmd *acmd; dev = ahd_linux_get_device(ahd, 0, target, lun, /*alloc*/FALSE); if (dev == NULL) continue; printf("DevQ(%d:%d:%d): ", 0, target, lun); i = 0; TAILQ_FOREACH(acmd, &dev->busyq, acmd_links.tqe) { if (i++ > AHD_SCB_MAX) break; } printf("%d waiting\n", i); } } } static int __init ahd_linux_init(void) { #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0) return (ahd_linux_detect(&aic79xx_driver_template) ? 0 : -ENODEV); #else scsi_register_module(MODULE_SCSI_HA, &aic79xx_driver_template); if (aic79xx_driver_template.present == 0) { scsi_unregister_module(MODULE_SCSI_HA, &aic79xx_driver_template); return (-ENODEV); } return (0); #endif } static void __exit ahd_linux_exit(void) { struct ahd_softc *ahd; u_long l; /* * Shutdown DV threads before going into the SCSI mid-layer. * This avoids situations where the mid-layer locks the entire * kernel so that waiting for our DV threads to exit leads * to deadlock. */ ahd_list_lock(&l); TAILQ_FOREACH(ahd, &ahd_tailq, links) { ahd_linux_kill_dv_thread(ahd); } ahd_list_unlock(&l); #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0) /* * In 2.4 we have to unregister from the PCI core _after_ * unregistering from the scsi midlayer to avoid dangling * references. */ scsi_unregister_module(MODULE_SCSI_HA, &aic79xx_driver_template); #endif ahd_linux_pci_exit(); } module_init(ahd_linux_init); module_exit(ahd_linux_exit);