/* * Adaptec AIC7xxx device driver for Linux. * * $Id: //depot/aic7xxx/linux/drivers/scsi/aic7xxx/aic7xxx_osm.c#235 $ * * Copyright (c) 1994 John Aycock * The University of Calgary Department of Computer Science. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. * * Sources include the Adaptec 1740 driver (aha1740.c), the Ultrastor 24F * driver (ultrastor.c), various Linux kernel source, the Adaptec EISA * config file (!adp7771.cfg), the Adaptec AHA-2740A Series User's Guide, * the Linux Kernel Hacker's Guide, Writing a SCSI Device Driver for Linux, * the Adaptec 1542 driver (aha1542.c), the Adaptec EISA overlay file * (adp7770.ovl), the Adaptec AHA-2740 Series Technical Reference Manual, * the Adaptec AIC-7770 Data Book, the ANSI SCSI specification, the * ANSI SCSI-2 specification (draft 10c), ... * * -------------------------------------------------------------------------- * * Modifications by Daniel M. Eischen (deischen@iworks.InterWorks.org): * * Substantially modified to include support for wide and twin bus * adapters, DMAing of SCBs, tagged queueing, IRQ sharing, bug fixes, * SCB paging, and other rework of the code. * * -------------------------------------------------------------------------- * Copyright (c) 1994-2000 Justin T. Gibbs. * Copyright (c) 2000-2001 Adaptec Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. * *--------------------------------------------------------------------------- * * Thanks also go to (in alphabetical order) the following: * * Rory Bolt - Sequencer bug fixes * Jay Estabrook - Initial DEC Alpha support * Doug Ledford - Much needed abort/reset bug fixes * Kai Makisara - DMAing of SCBs * * A Boot time option was also added for not resetting the scsi bus. * * Form: aic7xxx=extended * aic7xxx=no_reset * aic7xxx=verbose * * Daniel M. Eischen, deischen@iworks.InterWorks.org, 1/23/97 * * Id: aic7xxx.c,v 4.1 1997/06/12 08:23:42 deang Exp */ /* * Further driver modifications made by Doug Ledford * * Copyright (c) 1997-1999 Doug Ledford * * These changes are released under the same licensing terms as the FreeBSD * driver written by Justin Gibbs. Please see his Copyright notice above * for the exact terms and conditions covering my changes as well as the * warranty statement. * * Modifications made to the aic7xxx.c,v 4.1 driver from Dan Eischen include * but are not limited to: * * 1: Import of the latest FreeBSD sequencer code for this driver * 2: Modification of kernel code to accommodate different sequencer semantics * 3: Extensive changes throughout kernel portion of driver to improve * abort/reset processing and error hanndling * 4: Other work contributed by various people on the Internet * 5: Changes to printk information and verbosity selection code * 6: General reliability related changes, especially in IRQ management * 7: Modifications to the default probe/attach order for supported cards * 8: SMP friendliness has been improved * */ #include "aic7xxx_osm.h" #include "aic7xxx_inline.h" #include /* * Include aiclib.c as part of our * "module dependencies are hard" work around. */ #include "aiclib.c" #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0) #include /* __setup */ #endif #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0) #include "sd.h" /* For geometry detection */ #endif #include /* For fetching system memory size */ #include /* For block_size() */ /* * Lock protecting manipulation of the ahc softc list. */ spinlock_t ahc_list_spinlock; #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0) /* For dynamic sglist size calculation. */ u_int ahc_linux_nseg; #endif #if LINUX_VERSION_CODE < KERNEL_VERSION(2,3,0) struct proc_dir_entry proc_scsi_aic7xxx = { PROC_SCSI_AIC7XXX, 7, "aic7xxx", S_IFDIR | S_IRUGO | S_IXUGO, 2, 0, 0, 0, NULL, NULL, NULL, NULL, NULL, NULL, NULL }; #endif /* * Set this to the delay in seconds after SCSI bus reset. * Note, we honor this only for the initial bus reset. * The scsi error recovery code performs its own bus settle * delay handling for error recovery actions. */ #ifdef CONFIG_AIC7XXX_RESET_DELAY_MS #define AIC7XXX_RESET_DELAY CONFIG_AIC7XXX_RESET_DELAY_MS #else #define AIC7XXX_RESET_DELAY 5000 #endif /* * Control collection of SCSI transfer statistics for the /proc filesystem. * * NOTE: Do NOT enable this when running on kernels version 1.2.x and below. * NOTE: This does affect performance since it has to maintain statistics. */ #ifdef CONFIG_AIC7XXX_PROC_STATS #define AIC7XXX_PROC_STATS #endif /* * To change the default number of tagged transactions allowed per-device, * add a line to the lilo.conf file like: * append="aic7xxx=verbose,tag_info:{{32,32,32,32},{32,32,32,32}}" * which will result in the first four devices on the first two * controllers being set to a tagged queue depth of 32. * * The tag_commands is an array of 16 to allow for wide and twin adapters. * Twin adapters will use indexes 0-7 for channel 0, and indexes 8-15 * for channel 1. */ typedef struct { uint8_t tag_commands[16]; /* Allow for wide/twin adapters. */ } adapter_tag_info_t; /* * Modify this as you see fit for your system. * * 0 tagged queuing disabled * 1 <= n <= 253 n == max tags ever dispatched. * * The driver will throttle the number of commands dispatched to a * device if it returns queue full. For devices with a fixed maximum * queue depth, the driver will eventually determine this depth and * lock it in (a console message is printed to indicate that a lock * has occurred). On some devices, queue full is returned for a temporary * resource shortage. These devices will return queue full at varying * depths. The driver will throttle back when the queue fulls occur and * attempt to slowly increase the depth over time as the device recovers * from the resource shortage. * * In this example, the first line will disable tagged queueing for all * the devices on the first probed aic7xxx adapter. * * The second line enables tagged queueing with 4 commands/LUN for IDs * (0, 2-11, 13-15), disables tagged queueing for ID 12, and tells the * driver to attempt to use up to 64 tags for ID 1. * * The third line is the same as the first line. * * The fourth line disables tagged queueing for devices 0 and 3. It * enables tagged queueing for the other IDs, with 16 commands/LUN * for IDs 1 and 4, 127 commands/LUN for ID 8, and 4 commands/LUN for * IDs 2, 5-7, and 9-15. */ /* * NOTE: The below structure is for reference only, the actual structure * to modify in order to change things is just below this comment block. adapter_tag_info_t aic7xxx_tag_info[] = { {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}, {{4, 64, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 4, 4, 4}}, {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}, {{0, 16, 4, 0, 16, 4, 4, 4, 127, 4, 4, 4, 4, 4, 4, 4}} }; */ #ifdef CONFIG_AIC7XXX_CMDS_PER_DEVICE #define AIC7XXX_CMDS_PER_DEVICE CONFIG_AIC7XXX_CMDS_PER_DEVICE #else #define AIC7XXX_CMDS_PER_DEVICE AHC_MAX_QUEUE #endif #define AIC7XXX_CONFIGED_TAG_COMMANDS { \ AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \ AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \ AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \ AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \ AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \ AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \ AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \ AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE \ } /* * By default, use the number of commands specified by * the users kernel configuration. */ static adapter_tag_info_t aic7xxx_tag_info[] = { {AIC7XXX_CONFIGED_TAG_COMMANDS}, {AIC7XXX_CONFIGED_TAG_COMMANDS}, {AIC7XXX_CONFIGED_TAG_COMMANDS}, {AIC7XXX_CONFIGED_TAG_COMMANDS}, {AIC7XXX_CONFIGED_TAG_COMMANDS}, {AIC7XXX_CONFIGED_TAG_COMMANDS}, {AIC7XXX_CONFIGED_TAG_COMMANDS}, {AIC7XXX_CONFIGED_TAG_COMMANDS}, {AIC7XXX_CONFIGED_TAG_COMMANDS}, {AIC7XXX_CONFIGED_TAG_COMMANDS}, {AIC7XXX_CONFIGED_TAG_COMMANDS}, {AIC7XXX_CONFIGED_TAG_COMMANDS}, {AIC7XXX_CONFIGED_TAG_COMMANDS}, {AIC7XXX_CONFIGED_TAG_COMMANDS}, {AIC7XXX_CONFIGED_TAG_COMMANDS}, {AIC7XXX_CONFIGED_TAG_COMMANDS} }; /* * DV option: * * positive value = DV Enabled * zero = DV Disabled * negative value = DV Default for adapter type/seeprom */ #ifdef CONFIG_AIC7XXX_DV_SETTING #define AIC7XXX_CONFIGED_DV CONFIG_AIC7XXX_DV_SETTING #else #define AIC7XXX_CONFIGED_DV -1 #endif static int8_t aic7xxx_dv_settings[] = { AIC7XXX_CONFIGED_DV, AIC7XXX_CONFIGED_DV, AIC7XXX_CONFIGED_DV, AIC7XXX_CONFIGED_DV, AIC7XXX_CONFIGED_DV, AIC7XXX_CONFIGED_DV, AIC7XXX_CONFIGED_DV, AIC7XXX_CONFIGED_DV, AIC7XXX_CONFIGED_DV, AIC7XXX_CONFIGED_DV, AIC7XXX_CONFIGED_DV, AIC7XXX_CONFIGED_DV, AIC7XXX_CONFIGED_DV, AIC7XXX_CONFIGED_DV, AIC7XXX_CONFIGED_DV, AIC7XXX_CONFIGED_DV }; /* * There should be a specific return value for this in scsi.h, but * it seems that most drivers ignore it. */ #define DID_UNDERFLOW DID_ERROR void ahc_print_path(struct ahc_softc *ahc, struct scb *scb) { printk("(scsi%d:%c:%d:%d): ", ahc->platform_data->host->host_no, scb != NULL ? SCB_GET_CHANNEL(ahc, scb) : 'X', scb != NULL ? SCB_GET_TARGET(ahc, scb) : -1, scb != NULL ? SCB_GET_LUN(scb) : -1); } /* * XXX - these options apply unilaterally to _all_ 274x/284x/294x * cards in the system. This should be fixed. Exceptions to this * rule are noted in the comments. */ /* * Skip the scsi bus reset. Non 0 make us skip the reset at startup. This * has no effect on any later resets that might occur due to things like * SCSI bus timeouts. */ static uint32_t aic7xxx_no_reset; /* * Certain PCI motherboards will scan PCI devices from highest to lowest, * others scan from lowest to highest, and they tend to do all kinds of * strange things when they come into contact with PCI bridge chips. The * net result of all this is that the PCI card that is actually used to boot * the machine is very hard to detect. Most motherboards go from lowest * PCI slot number to highest, and the first SCSI controller found is the * one you boot from. The only exceptions to this are when a controller * has its BIOS disabled. So, we by default sort all of our SCSI controllers * from lowest PCI slot number to highest PCI slot number. We also force * all controllers with their BIOS disabled to the end of the list. This * works on *almost* all computers. Where it doesn't work, we have this * option. Setting this option to non-0 will reverse the order of the sort * to highest first, then lowest, but will still leave cards with their BIOS * disabled at the very end. That should fix everyone up unless there are * really strange cirumstances. */ static uint32_t aic7xxx_reverse_scan; /* * Should we force EXTENDED translation on a controller. * 0 == Use whatever is in the SEEPROM or default to off * 1 == Use whatever is in the SEEPROM or default to on */ static uint32_t aic7xxx_extended; /* * PCI bus parity checking of the Adaptec controllers. This is somewhat * dubious at best. To my knowledge, this option has never actually * solved a PCI parity problem, but on certain machines with broken PCI * chipset configurations where stray PCI transactions with bad parity are * the norm rather than the exception, the error messages can be overwelming. * It's included in the driver for completeness. * 0 = Shut off PCI parity check * non-0 = reverse polarity pci parity checking */ static uint32_t aic7xxx_pci_parity = ~0; /* * Certain newer motherboards have put new PCI based devices into the * IO spaces that used to typically be occupied by VLB or EISA cards. * This overlap can cause these newer motherboards to lock up when scanned * for older EISA and VLB devices. Setting this option to non-0 will * cause the driver to skip scanning for any VLB or EISA controllers and * only support the PCI controllers. NOTE: this means that if the kernel * os compiled with PCI support disabled, then setting this to non-0 * would result in never finding any devices :) */ #ifndef CONFIG_AIC7XXX_PROBE_EISA_VL uint32_t aic7xxx_probe_eisa_vl; #else uint32_t aic7xxx_probe_eisa_vl = ~0; #endif /* * There are lots of broken chipsets in the world. Some of them will * violate the PCI spec when we issue byte sized memory writes to our * controller. I/O mapped register access, if allowed by the given * platform, will work in almost all cases. */ uint32_t aic7xxx_allow_memio = ~0; /* * aic7xxx_detect() has been run, so register all device arrivals * immediately with the system rather than deferring to the sorted * attachment performed by aic7xxx_detect(). */ int aic7xxx_detect_complete; /* * So that we can set how long each device is given as a selection timeout. * The table of values goes like this: * 0 - 256ms * 1 - 128ms * 2 - 64ms * 3 - 32ms * We default to 256ms because some older devices need a longer time * to respond to initial selection. */ static uint32_t aic7xxx_seltime; /* * Certain devices do not perform any aging on commands. Should the * device be saturated by commands in one portion of the disk, it is * possible for transactions on far away sectors to never be serviced. * To handle these devices, we can periodically send an ordered tag to * force all outstanding transactions to be serviced prior to a new * transaction. */ uint32_t aic7xxx_periodic_otag; /* * Module information and settable options. */ #ifdef MODULE static char *aic7xxx = NULL; /* * Just in case someone uses commas to separate items on the insmod * command line, we define a dummy buffer here to avoid having insmod * write wild stuff into our code segment */ static char dummy_buffer[60] = "Please don't trounce on me insmod!!\n"; MODULE_AUTHOR("Maintainer: Justin T. Gibbs "); MODULE_DESCRIPTION("Adaptec Aic77XX/78XX SCSI Host Bus Adapter driver"); #ifdef MODULE_LICENSE MODULE_LICENSE("Dual BSD/GPL"); #endif MODULE_PARM(aic7xxx, "s"); MODULE_PARM_DESC(aic7xxx, "period delimited, options string.\n" " verbose Enable verbose/diagnostic logging\n" " allow_memio Allow device registers to be memory mapped\n" " debug Bitmask of debug values to enable\n" " no_probe Toggle EISA/VLB controller probing\n" " probe_eisa_vl Toggle EISA/VLB controller probing\n" " no_reset Supress initial bus resets\n" " extended Enable extended geometry on all controllers\n" " periodic_otag Send an ordered tagged transaction\n" " periodically to prevent tag starvation.\n" " This may be required by some older disk\n" " drives or RAID arrays.\n" " reverse_scan Sort PCI devices highest Bus/Slot to lowest\n" " tag_info: Set per-target tag depth\n" " global_tag_depth: Global tag depth for every target\n" " on every bus\n" " dv: Set per-controller Domain Validation Setting.\n" " seltime: Selection Timeout\n" " (0/256ms,1/128ms,2/64ms,3/32ms)\n" "\n" " Sample /etc/modprobe.conf line:\n" " Toggle EISA/VLB probing\n" " Set tag depth on Controller 1/Target 1 to 10 tags\n" " Shorten the selection timeout to 128ms\n" "\n" " options aic7xxx 'aic7xxx=probe_eisa_vl.tag_info:{{}.{.10}}.seltime:1'\n" ); #endif static void ahc_linux_handle_scsi_status(struct ahc_softc *, struct ahc_linux_device *, struct scb *); static void ahc_linux_queue_cmd_complete(struct ahc_softc *ahc, Scsi_Cmnd *cmd); static void ahc_linux_filter_inquiry(struct ahc_softc*, struct ahc_devinfo*); static void ahc_linux_sem_timeout(u_long arg); static void ahc_linux_freeze_simq(struct ahc_softc *ahc); static void ahc_linux_release_simq(u_long arg); static void ahc_linux_dev_timed_unfreeze(u_long arg); static int ahc_linux_queue_recovery_cmd(Scsi_Cmnd *cmd, scb_flag flag); static void ahc_linux_initialize_scsi_bus(struct ahc_softc *ahc); static void ahc_linux_size_nseg(void); static void ahc_linux_thread_run_complete_queue(struct ahc_softc *ahc); static void ahc_linux_start_dv(struct ahc_softc *ahc); static void ahc_linux_dv_timeout(struct scsi_cmnd *cmd); static int ahc_linux_dv_thread(void *data); static void ahc_linux_kill_dv_thread(struct ahc_softc *ahc); static void ahc_linux_dv_target(struct ahc_softc *ahc, u_int target); static void ahc_linux_dv_transition(struct ahc_softc *ahc, struct scsi_cmnd *cmd, struct ahc_devinfo *devinfo, struct ahc_linux_target *targ); static void ahc_linux_dv_fill_cmd(struct ahc_softc *ahc, struct scsi_cmnd *cmd, struct ahc_devinfo *devinfo); static void ahc_linux_dv_inq(struct ahc_softc *ahc, struct scsi_cmnd *cmd, struct ahc_devinfo *devinfo, struct ahc_linux_target *targ, u_int request_length); static void ahc_linux_dv_tur(struct ahc_softc *ahc, struct scsi_cmnd *cmd, struct ahc_devinfo *devinfo); static void ahc_linux_dv_rebd(struct ahc_softc *ahc, struct scsi_cmnd *cmd, struct ahc_devinfo *devinfo, struct ahc_linux_target *targ); static void ahc_linux_dv_web(struct ahc_softc *ahc, struct scsi_cmnd *cmd, struct ahc_devinfo *devinfo, struct ahc_linux_target *targ); static void ahc_linux_dv_reb(struct ahc_softc *ahc, struct scsi_cmnd *cmd, struct ahc_devinfo *devinfo, struct ahc_linux_target *targ); static void ahc_linux_dv_su(struct ahc_softc *ahc, struct scsi_cmnd *cmd, struct ahc_devinfo *devinfo, struct ahc_linux_target *targ); static int ahc_linux_fallback(struct ahc_softc *ahc, struct ahc_devinfo *devinfo); static void ahc_linux_dv_complete(Scsi_Cmnd *cmd); static void ahc_linux_generate_dv_pattern(struct ahc_linux_target *targ); static u_int ahc_linux_user_tagdepth(struct ahc_softc *ahc, struct ahc_devinfo *devinfo); static u_int ahc_linux_user_dv_setting(struct ahc_softc *ahc); static void ahc_linux_device_queue_depth(struct ahc_softc *ahc, struct ahc_linux_device *dev); static struct ahc_linux_target* ahc_linux_alloc_target(struct ahc_softc*, u_int, u_int); static void ahc_linux_free_target(struct ahc_softc*, struct ahc_linux_target*); static struct ahc_linux_device* ahc_linux_alloc_device(struct ahc_softc*, struct ahc_linux_target*, u_int); static void ahc_linux_free_device(struct ahc_softc*, struct ahc_linux_device*); static void ahc_linux_run_device_queue(struct ahc_softc*, struct ahc_linux_device*); static void ahc_linux_setup_tag_info_global(char *p); static aic_option_callback_t ahc_linux_setup_tag_info; static aic_option_callback_t ahc_linux_setup_dv; static int aic7xxx_setup(char *s); static int ahc_linux_next_unit(void); static void ahc_runq_tasklet(unsigned long data); static struct ahc_cmd *ahc_linux_run_complete_queue(struct ahc_softc *ahc); /********************************* Inlines ************************************/ static __inline void ahc_schedule_runq(struct ahc_softc *ahc); static __inline struct ahc_linux_device* ahc_linux_get_device(struct ahc_softc *ahc, u_int channel, u_int target, u_int lun, int alloc); static __inline void ahc_schedule_completeq(struct ahc_softc *ahc); static __inline void ahc_linux_check_device_queue(struct ahc_softc *ahc, struct ahc_linux_device *dev); static __inline struct ahc_linux_device * ahc_linux_next_device_to_run(struct ahc_softc *ahc); static __inline void ahc_linux_run_device_queues(struct ahc_softc *ahc); static __inline void ahc_linux_unmap_scb(struct ahc_softc*, struct scb*); static __inline int ahc_linux_map_seg(struct ahc_softc *ahc, struct scb *scb, struct ahc_dma_seg *sg, bus_addr_t addr, bus_size_t len); static __inline void ahc_schedule_completeq(struct ahc_softc *ahc) { if ((ahc->platform_data->flags & AHC_RUN_CMPLT_Q_TIMER) == 0) { ahc->platform_data->flags |= AHC_RUN_CMPLT_Q_TIMER; ahc->platform_data->completeq_timer.expires = jiffies; add_timer(&ahc->platform_data->completeq_timer); } } /* * Must be called with our lock held. */ static __inline void ahc_schedule_runq(struct ahc_softc *ahc) { #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0) tasklet_schedule(&ahc->platform_data->runq_tasklet); #else /* * Tasklets are not available, so run inline. */ ahc_runq_tasklet((unsigned long)ahc); #endif } static __inline struct ahc_linux_device* ahc_linux_get_device(struct ahc_softc *ahc, u_int channel, u_int target, u_int lun, int alloc) { struct ahc_linux_target *targ; struct ahc_linux_device *dev; u_int target_offset; target_offset = target; if (channel != 0) target_offset += 8; targ = ahc->platform_data->targets[target_offset]; if (targ == NULL) { if (alloc != 0) { targ = ahc_linux_alloc_target(ahc, channel, target); if (targ == NULL) return (NULL); } else return (NULL); } dev = targ->devices[lun]; if (dev == NULL && alloc != 0) dev = ahc_linux_alloc_device(ahc, targ, lun); return (dev); } #define AHC_LINUX_MAX_RETURNED_ERRORS 4 static struct ahc_cmd * ahc_linux_run_complete_queue(struct ahc_softc *ahc) { struct ahc_cmd *acmd; u_long done_flags; int with_errors; with_errors = 0; ahc_done_lock(ahc, &done_flags); while ((acmd = TAILQ_FIRST(&ahc->platform_data->completeq)) != NULL) { Scsi_Cmnd *cmd; if (with_errors > AHC_LINUX_MAX_RETURNED_ERRORS) { /* * Linux uses stack recursion to requeue * commands that need to be retried. Avoid * blowing out the stack by "spoon feeding" * commands that completed with error back * the operating system in case they are going * to be retried. "ick" */ ahc_schedule_completeq(ahc); break; } TAILQ_REMOVE(&ahc->platform_data->completeq, acmd, acmd_links.tqe); cmd = &acmd_scsi_cmd(acmd); cmd->host_scribble = NULL; if (ahc_cmd_get_transaction_status(cmd) != DID_OK || (cmd->result & 0xFF) != SCSI_STATUS_OK) with_errors++; cmd->scsi_done(cmd); } ahc_done_unlock(ahc, &done_flags); return (acmd); } static __inline void ahc_linux_check_device_queue(struct ahc_softc *ahc, struct ahc_linux_device *dev) { if ((dev->flags & AHC_DEV_FREEZE_TIL_EMPTY) != 0 && dev->active == 0) { dev->flags &= ~AHC_DEV_FREEZE_TIL_EMPTY; dev->qfrozen--; } if (TAILQ_FIRST(&dev->busyq) == NULL || dev->openings == 0 || dev->qfrozen != 0) return; ahc_linux_run_device_queue(ahc, dev); } static __inline struct ahc_linux_device * ahc_linux_next_device_to_run(struct ahc_softc *ahc) { if ((ahc->flags & AHC_RESOURCE_SHORTAGE) != 0 || (ahc->platform_data->qfrozen != 0 && AHC_DV_SIMQ_FROZEN(ahc) == 0)) return (NULL); return (TAILQ_FIRST(&ahc->platform_data->device_runq)); } static __inline void ahc_linux_run_device_queues(struct ahc_softc *ahc) { struct ahc_linux_device *dev; while ((dev = ahc_linux_next_device_to_run(ahc)) != NULL) { TAILQ_REMOVE(&ahc->platform_data->device_runq, dev, links); dev->flags &= ~AHC_DEV_ON_RUN_LIST; ahc_linux_check_device_queue(ahc, dev); } } static __inline void ahc_linux_unmap_scb(struct ahc_softc *ahc, struct scb *scb) { Scsi_Cmnd *cmd; cmd = scb->io_ctx; ahc_sync_sglist(ahc, scb, BUS_DMASYNC_POSTWRITE); if (cmd->use_sg != 0) { struct scatterlist *sg; sg = (struct scatterlist *)cmd->request_buffer; pci_unmap_sg(ahc->dev_softc, sg, cmd->use_sg, scsi_to_pci_dma_dir(cmd->sc_data_direction)); } else if (cmd->request_bufflen != 0) { pci_unmap_single(ahc->dev_softc, scb->platform_data->buf_busaddr, cmd->request_bufflen, scsi_to_pci_dma_dir(cmd->sc_data_direction)); } } static __inline int ahc_linux_map_seg(struct ahc_softc *ahc, struct scb *scb, struct ahc_dma_seg *sg, bus_addr_t addr, bus_size_t len) { int consumed; if ((scb->sg_count + 1) > AHC_NSEG) panic("Too few segs for dma mapping. " "Increase AHC_NSEG\n"); consumed = 1; sg->addr = ahc_htole32(addr & 0xFFFFFFFF); scb->platform_data->xfer_len += len; if (sizeof(bus_addr_t) > 4 && (ahc->flags & AHC_39BIT_ADDRESSING) != 0) len |= (addr >> 8) & AHC_SG_HIGH_ADDR_MASK; sg->len = ahc_htole32(len); return (consumed); } /************************ Host template entry points *************************/ static int ahc_linux_detect(Scsi_Host_Template *); static int ahc_linux_queue(Scsi_Cmnd *, void (*)(Scsi_Cmnd *)); static const char *ahc_linux_info(struct Scsi_Host *); #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0) static int ahc_linux_slave_alloc(Scsi_Device *); static int ahc_linux_slave_configure(Scsi_Device *); static void ahc_linux_slave_destroy(Scsi_Device *); #if defined(__i386__) static int ahc_linux_biosparam(struct scsi_device*, struct block_device*, sector_t, int[]); #endif #else static int ahc_linux_release(struct Scsi_Host *); static void ahc_linux_select_queue_depth(struct Scsi_Host *host, Scsi_Device *scsi_devs); #if defined(__i386__) static int ahc_linux_biosparam(Disk *, kdev_t, int[]); #endif #endif static int ahc_linux_bus_reset(Scsi_Cmnd *); static int ahc_linux_dev_reset(Scsi_Cmnd *); static int ahc_linux_abort(Scsi_Cmnd *); /* * Calculate a safe value for AHC_NSEG (as expressed through ahc_linux_nseg). * * In pre-2.5.X... * The midlayer allocates an S/G array dynamically when a command is issued * using SCSI malloc. This array, which is in an OS dependent format that * must later be copied to our private S/G list, is sized to house just the * number of segments needed for the current transfer. Since the code that * sizes the SCSI malloc pool does not take into consideration fragmentation * of the pool, executing transactions numbering just a fraction of our * concurrent transaction limit with list lengths aproaching AHC_NSEG will * quickly depleat the SCSI malloc pool of usable space. Unfortunately, the * mid-layer does not properly handle this scsi malloc failures for the S/G * array and the result can be a lockup of the I/O subsystem. We try to size * our S/G list so that it satisfies our drivers allocation requirements in * addition to avoiding fragmentation of the SCSI malloc pool. */ static void ahc_linux_size_nseg(void) { #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0) u_int cur_size; u_int best_size; /* * The SCSI allocator rounds to the nearest 512 bytes * an cannot allocate across a page boundary. Our algorithm * is to start at 1K of scsi malloc space per-command and * loop through all factors of the PAGE_SIZE and pick the best. */ best_size = 0; for (cur_size = 1024; cur_size <= PAGE_SIZE; cur_size *= 2) { u_int nseg; nseg = cur_size / sizeof(struct scatterlist); if (nseg < AHC_LINUX_MIN_NSEG) continue; if (best_size == 0) { best_size = cur_size; ahc_linux_nseg = nseg; } else { u_int best_rem; u_int cur_rem; /* * Compare the traits of the current "best_size" * with the current size to determine if the * current size is a better size. */ best_rem = best_size % sizeof(struct scatterlist); cur_rem = cur_size % sizeof(struct scatterlist); if (cur_rem < best_rem) { best_size = cur_size; ahc_linux_nseg = nseg; } } } #endif } /* * Try to detect an Adaptec 7XXX controller. */ static int ahc_linux_detect(Scsi_Host_Template *template) { struct ahc_softc *ahc; int found; #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0) /* * It is a bug that the upper layer takes * this lock just prior to calling us. */ spin_unlock_irq(&io_request_lock); #endif /* * Sanity checking of Linux SCSI data structures so * that some of our hacks^H^H^H^H^Hassumptions aren't * violated. */ if (offsetof(struct ahc_cmd_internal, end) > offsetof(struct scsi_cmnd, host_scribble)) { printf("ahc_linux_detect: SCSI data structures changed.\n"); printf("ahc_linux_detect: Unable to attach\n"); return (0); } ahc_linux_size_nseg(); #ifdef MODULE /* * If we've been passed any parameters, process them now. */ if (aic7xxx) aic7xxx_setup(aic7xxx); if (dummy_buffer[0] != 'P') printk(KERN_WARNING "aic7xxx: Please read the file /usr/src/linux/drivers/scsi/README.aic7xxx\n" "aic7xxx: to see the proper way to specify options to the aic7xxx module\n" "aic7xxx: Specifically, don't use any commas when passing arguments to\n" "aic7xxx: insmod or else it might trash certain memory areas.\n"); #endif #if LINUX_VERSION_CODE > KERNEL_VERSION(2,3,0) template->proc_name = "aic7xxx"; #else template->proc_dir = &proc_scsi_aic7xxx; #endif /* * Initialize our softc list lock prior to * probing for any adapters. */ ahc_list_lockinit(); #ifdef CONFIG_PCI ahc_linux_pci_init(); #endif #ifdef CONFIG_EISA ahc_linux_eisa_init(); #endif /* * Register with the SCSI layer all * controllers we've found. */ found = 0; TAILQ_FOREACH(ahc, &ahc_tailq, links) { if (ahc_linux_register_host(ahc, template) == 0) found++; } #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0) spin_lock_irq(&io_request_lock); #endif aic7xxx_detect_complete++; return (found); } #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0) /* * Free the passed in Scsi_Host memory structures prior to unloading the * module. */ int ahc_linux_release(struct Scsi_Host * host) { struct ahc_softc *ahc; u_long l; ahc_list_lock(&l); if (host != NULL) { /* * We should be able to just perform * the free directly, but check our * list for extra sanity. */ ahc = ahc_find_softc(*(struct ahc_softc **)host->hostdata); if (ahc != NULL) { u_long s; ahc_lock(ahc, &s); ahc_intr_enable(ahc, FALSE); ahc_unlock(ahc, &s); ahc_free(ahc); } } ahc_list_unlock(&l); return (0); } #endif /* * Return a string describing the driver. */ static const char * ahc_linux_info(struct Scsi_Host *host) { static char buffer[512]; char ahc_info[256]; char *bp; struct ahc_softc *ahc; bp = &buffer[0]; ahc = *(struct ahc_softc **)host->hostdata; memset(bp, 0, sizeof(buffer)); strcpy(bp, "Adaptec AIC7XXX EISA/VLB/PCI SCSI HBA DRIVER, Rev "); strcat(bp, AIC7XXX_DRIVER_VERSION); strcat(bp, "\n"); strcat(bp, " <"); strcat(bp, ahc->description); strcat(bp, ">\n"); strcat(bp, " "); ahc_controller_info(ahc, ahc_info); strcat(bp, ahc_info); strcat(bp, "\n"); return (bp); } /* * Queue an SCB to the controller. */ static int ahc_linux_queue(Scsi_Cmnd * cmd, void (*scsi_done) (Scsi_Cmnd *)) { struct ahc_softc *ahc; struct ahc_linux_device *dev; u_long flags; ahc = *(struct ahc_softc **)cmd->device->host->hostdata; /* * Save the callback on completion function. */ cmd->scsi_done = scsi_done; ahc_midlayer_entrypoint_lock(ahc, &flags); /* * Close the race of a command that was in the process of * being queued to us just as our simq was frozen. Let * DV commands through so long as we are only frozen to * perform DV. */ if (ahc->platform_data->qfrozen != 0 && AHC_DV_CMD(cmd) == 0) { ahc_cmd_set_transaction_status(cmd, CAM_REQUEUE_REQ); ahc_linux_queue_cmd_complete(ahc, cmd); ahc_schedule_completeq(ahc); ahc_midlayer_entrypoint_unlock(ahc, &flags); return (0); } dev = ahc_linux_get_device(ahc, cmd->device->channel, cmd->device->id, cmd->device->lun, /*alloc*/TRUE); if (dev == NULL) { ahc_cmd_set_transaction_status(cmd, CAM_RESRC_UNAVAIL); ahc_linux_queue_cmd_complete(ahc, cmd); ahc_schedule_completeq(ahc); ahc_midlayer_entrypoint_unlock(ahc, &flags); printf("%s: aic7xxx_linux_queue - Unable to allocate device!\n", ahc_name(ahc)); return (0); } cmd->result = CAM_REQ_INPROG << 16; TAILQ_INSERT_TAIL(&dev->busyq, (struct ahc_cmd *)cmd, acmd_links.tqe); if ((dev->flags & AHC_DEV_ON_RUN_LIST) == 0) { TAILQ_INSERT_TAIL(&ahc->platform_data->device_runq, dev, links); dev->flags |= AHC_DEV_ON_RUN_LIST; ahc_linux_run_device_queues(ahc); } ahc_midlayer_entrypoint_unlock(ahc, &flags); return (0); } #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0) static int ahc_linux_slave_alloc(Scsi_Device *device) { struct ahc_softc *ahc; ahc = *((struct ahc_softc **)device->host->hostdata); if (bootverbose) printf("%s: Slave Alloc %d\n", ahc_name(ahc), device->id); return (0); } static int ahc_linux_slave_configure(Scsi_Device *device) { struct ahc_softc *ahc; struct ahc_linux_device *dev; u_long flags; ahc = *((struct ahc_softc **)device->host->hostdata); if (bootverbose) printf("%s: Slave Configure %d\n", ahc_name(ahc), device->id); ahc_midlayer_entrypoint_lock(ahc, &flags); /* * Since Linux has attached to the device, configure * it so we don't free and allocate the device * structure on every command. */ dev = ahc_linux_get_device(ahc, device->channel, device->id, device->lun, /*alloc*/TRUE); if (dev != NULL) { dev->flags &= ~AHC_DEV_UNCONFIGURED; dev->scsi_device = device; ahc_linux_device_queue_depth(ahc, dev); } ahc_midlayer_entrypoint_unlock(ahc, &flags); return (0); } static void ahc_linux_slave_destroy(Scsi_Device *device) { struct ahc_softc *ahc; struct ahc_linux_device *dev; u_long flags; ahc = *((struct ahc_softc **)device->host->hostdata); if (bootverbose) printf("%s: Slave Destroy %d\n", ahc_name(ahc), device->id); ahc_midlayer_entrypoint_lock(ahc, &flags); dev = ahc_linux_get_device(ahc, device->channel, device->id, device->lun, /*alloc*/FALSE); /* * Filter out "silly" deletions of real devices by only * deleting devices that have had slave_configure() * called on them. All other devices that have not * been configured will automatically be deleted by * the refcounting process. */ if (dev != NULL && (dev->flags & AHC_DEV_SLAVE_CONFIGURED) != 0) { dev->flags |= AHC_DEV_UNCONFIGURED; if (TAILQ_EMPTY(&dev->busyq) && dev->active == 0 && (dev->flags & AHC_DEV_TIMER_ACTIVE) == 0) ahc_linux_free_device(ahc, dev); } ahc_midlayer_entrypoint_unlock(ahc, &flags); } #else /* * Sets the queue depth for each SCSI device hanging * off the input host adapter. */ static void ahc_linux_select_queue_depth(struct Scsi_Host *host, Scsi_Device *scsi_devs) { Scsi_Device *device; Scsi_Device *ldev; struct ahc_softc *ahc; u_long flags; ahc = *((struct ahc_softc **)host->hostdata); ahc_lock(ahc, &flags); for (device = scsi_devs; device != NULL; device = device->next) { /* * Watch out for duplicate devices. This works around * some quirks in how the SCSI scanning code does its * device management. */ for (ldev = scsi_devs; ldev != device; ldev = ldev->next) { if (ldev->host == device->host && ldev->channel == device->channel && ldev->id == device->id && ldev->lun == device->lun) break; } /* Skip duplicate. */ if (ldev != device) continue; if (device->host == host) { struct ahc_linux_device *dev; /* * Since Linux has attached to the device, configure * it so we don't free and allocate the device * structure on every command. */ dev = ahc_linux_get_device(ahc, device->channel, device->id, device->lun, /*alloc*/TRUE); if (dev != NULL) { dev->flags &= ~AHC_DEV_UNCONFIGURED; dev->scsi_device = device; ahc_linux_device_queue_depth(ahc, dev); device->queue_depth = dev->openings + dev->active; if ((dev->flags & (AHC_DEV_Q_BASIC | AHC_DEV_Q_TAGGED)) == 0) { /* * We allow the OS to queue 2 untagged * transactions to us at any time even * though we can only execute them * serially on the controller/device. * This should remove some latency. */ device->queue_depth = 2; } } } } ahc_unlock(ahc, &flags); } #endif #if defined(__i386__) /* * Return the disk geometry for the given SCSI device. */ static int #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0) ahc_linux_biosparam(struct scsi_device *sdev, struct block_device *bdev, sector_t capacity, int geom[]) { uint8_t *bh; #else ahc_linux_biosparam(Disk *disk, kdev_t dev, int geom[]) { struct scsi_device *sdev = disk->device; u_long capacity = disk->capacity; struct buffer_head *bh; #endif int heads; int sectors; int cylinders; int ret; int extended; struct ahc_softc *ahc; u_int channel; ahc = *((struct ahc_softc **)sdev->host->hostdata); channel = sdev->channel; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0) bh = scsi_bios_ptable(bdev); #elif LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,17) bh = bread(MKDEV(MAJOR(dev), MINOR(dev) & ~0xf), 0, block_size(dev)); #else bh = bread(MKDEV(MAJOR(dev), MINOR(dev) & ~0xf), 0, 1024); #endif if (bh) { ret = scsi_partsize(bh, capacity, &geom[2], &geom[0], &geom[1]); #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0) kfree(bh); #else brelse(bh); #endif if (ret != -1) return (ret); } heads = 64; sectors = 32; cylinders = aic_sector_div(capacity, heads, sectors); if (aic7xxx_extended != 0) extended = 1; else if (channel == 0) extended = (ahc->flags & AHC_EXTENDED_TRANS_A) != 0; else extended = (ahc->flags & AHC_EXTENDED_TRANS_B) != 0; if (extended && cylinders >= 1024) { heads = 255; sectors = 63; cylinders = aic_sector_div(capacity, heads, sectors); } geom[0] = heads; geom[1] = sectors; geom[2] = cylinders; return (0); } #endif /* * Abort the current SCSI command(s). */ static int ahc_linux_abort(Scsi_Cmnd *cmd) { int error; error = ahc_linux_queue_recovery_cmd(cmd, SCB_ABORT); if (error != 0) printf("aic7xxx_abort returns 0x%x\n", error); return (error); } /* * Attempt to send a target reset message to the device that timed out. */ static int ahc_linux_dev_reset(Scsi_Cmnd *cmd) { int error; error = ahc_linux_queue_recovery_cmd(cmd, SCB_DEVICE_RESET); if (error != 0) printf("aic7xxx_dev_reset returns 0x%x\n", error); return (error); } /* * Reset the SCSI bus. */ static int ahc_linux_bus_reset(Scsi_Cmnd *cmd) { struct ahc_softc *ahc; u_long s; int found; ahc = *(struct ahc_softc **)cmd->device->host->hostdata; ahc_midlayer_entrypoint_lock(ahc, &s); found = ahc_reset_channel(ahc, cmd->device->channel + 'A', /*initiate reset*/TRUE); ahc_linux_run_complete_queue(ahc); ahc_midlayer_entrypoint_unlock(ahc, &s); if (bootverbose) printf("%s: SCSI bus reset delivered. " "%d SCBs aborted.\n", ahc_name(ahc), found); return SUCCESS; } Scsi_Host_Template aic7xxx_driver_template = { .module = THIS_MODULE, .name = "aic7xxx", .proc_info = ahc_linux_proc_info, .info = ahc_linux_info, .queuecommand = ahc_linux_queue, .eh_abort_handler = ahc_linux_abort, .eh_device_reset_handler = ahc_linux_dev_reset, .eh_bus_reset_handler = ahc_linux_bus_reset, #if defined(__i386__) .bios_param = ahc_linux_biosparam, #endif .can_queue = AHC_MAX_QUEUE, .this_id = -1, .cmd_per_lun = 2, .use_clustering = ENABLE_CLUSTERING, .slave_alloc = ahc_linux_slave_alloc, .slave_configure = ahc_linux_slave_configure, .slave_destroy = ahc_linux_slave_destroy, }; /**************************** Tasklet Handler *********************************/ /* * In 2.4.X and above, this routine is called from a tasklet, * so we must re-acquire our lock prior to executing this code. * In all prior kernels, ahc_schedule_runq() calls this routine * directly and ahc_schedule_runq() is called with our lock held. */ static void ahc_runq_tasklet(unsigned long data) { struct ahc_softc* ahc; struct ahc_linux_device *dev; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0) u_long flags; #endif ahc = (struct ahc_softc *)data; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0) ahc_lock(ahc, &flags); #endif while ((dev = ahc_linux_next_device_to_run(ahc)) != NULL) { TAILQ_REMOVE(&ahc->platform_data->device_runq, dev, links); dev->flags &= ~AHC_DEV_ON_RUN_LIST; ahc_linux_check_device_queue(ahc, dev); #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0) /* Yeild to our interrupt handler */ ahc_unlock(ahc, &flags); ahc_lock(ahc, &flags); #endif } #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0) ahc_unlock(ahc, &flags); #endif } /******************************** Macros **************************************/ #define BUILD_SCSIID(ahc, cmd) \ ((((cmd)->device->id << TID_SHIFT) & TID) \ | (((cmd)->device->channel == 0) ? (ahc)->our_id : (ahc)->our_id_b) \ | (((cmd)->device->channel == 0) ? 0 : TWIN_CHNLB)) /******************************** Bus DMA *************************************/ int ahc_dma_tag_create(struct ahc_softc *ahc, bus_dma_tag_t parent, bus_size_t alignment, bus_size_t boundary, bus_addr_t lowaddr, bus_addr_t highaddr, bus_dma_filter_t *filter, void *filterarg, bus_size_t maxsize, int nsegments, bus_size_t maxsegsz, int flags, bus_dma_tag_t *ret_tag) { bus_dma_tag_t dmat; dmat = malloc(sizeof(*dmat), M_DEVBUF, M_NOWAIT); if (dmat == NULL) return (ENOMEM); /* * Linux is very simplistic about DMA memory. For now don't * maintain all specification information. Once Linux supplies * better facilities for doing these operations, or the * needs of this particular driver change, we might need to do * more here. */ dmat->alignment = alignment; dmat->boundary = boundary; dmat->maxsize = maxsize; *ret_tag = dmat; return (0); } void ahc_dma_tag_destroy(struct ahc_softc *ahc, bus_dma_tag_t dmat) { free(dmat, M_DEVBUF); } int ahc_dmamem_alloc(struct ahc_softc *ahc, bus_dma_tag_t dmat, void** vaddr, int flags, bus_dmamap_t *mapp) { bus_dmamap_t map; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0) map = malloc(sizeof(*map), M_DEVBUF, M_NOWAIT); if (map == NULL) return (ENOMEM); /* * Although we can dma data above 4GB, our * "consistent" memory is below 4GB for * space efficiency reasons (only need a 4byte * address). For this reason, we have to reset * our dma mask when doing allocations. */ if (ahc->dev_softc != NULL) if (ahc_pci_set_dma_mask(ahc->dev_softc, 0xFFFFFFFF)) { printk(KERN_WARNING "aic7xxx: No suitable DMA available.\n"); return (ENODEV); } *vaddr = pci_alloc_consistent(ahc->dev_softc, dmat->maxsize, &map->bus_addr); if (ahc->dev_softc != NULL) if (ahc_pci_set_dma_mask(ahc->dev_softc, ahc->platform_data->hw_dma_mask)) { printk(KERN_WARNING "aic7xxx: No suitable DMA available.\n"); return (ENODEV); } #else /* LINUX_VERSION_CODE < KERNEL_VERSION(2,3,0) */ /* * At least in 2.2.14, malloc is a slab allocator so all * allocations are aligned. We assume for these kernel versions * that all allocations will be bellow 4Gig, physically contiguous, * and accessible via DMA by the controller. */ map = NULL; /* No additional information to store */ *vaddr = malloc(dmat->maxsize, M_DEVBUF, M_NOWAIT); #endif if (*vaddr == NULL) return (ENOMEM); *mapp = map; return(0); } void ahc_dmamem_free(struct ahc_softc *ahc, bus_dma_tag_t dmat, void* vaddr, bus_dmamap_t map) { #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0) pci_free_consistent(ahc->dev_softc, dmat->maxsize, vaddr, map->bus_addr); #else free(vaddr, M_DEVBUF); #endif } int ahc_dmamap_load(struct ahc_softc *ahc, bus_dma_tag_t dmat, bus_dmamap_t map, void *buf, bus_size_t buflen, bus_dmamap_callback_t *cb, void *cb_arg, int flags) { /* * Assume for now that this will only be used during * initialization and not for per-transaction buffer mapping. */ bus_dma_segment_t stack_sg; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0) stack_sg.ds_addr = map->bus_addr; #else #define VIRT_TO_BUS(a) (uint32_t)virt_to_bus((void *)(a)) stack_sg.ds_addr = VIRT_TO_BUS(buf); #endif stack_sg.ds_len = dmat->maxsize; cb(cb_arg, &stack_sg, /*nseg*/1, /*error*/0); return (0); } void ahc_dmamap_destroy(struct ahc_softc *ahc, bus_dma_tag_t dmat, bus_dmamap_t map) { /* * The map may is NULL in our < 2.3.X implementation. */ if (map != NULL) free(map, M_DEVBUF); } int ahc_dmamap_unload(struct ahc_softc *ahc, bus_dma_tag_t dmat, bus_dmamap_t map) { /* Nothing to do */ return (0); } /********************* Platform Dependent Functions ***************************/ /* * Compare "left hand" softc with "right hand" softc, returning: * < 0 - lahc has a lower priority than rahc * 0 - Softcs are equal * > 0 - lahc has a higher priority than rahc */ int ahc_softc_comp(struct ahc_softc *lahc, struct ahc_softc *rahc) { int value; int rvalue; int lvalue; /* * Under Linux, cards are ordered as follows: * 1) VLB/EISA BIOS enabled devices sorted by BIOS address. * 2) PCI devices with BIOS enabled sorted by bus/slot/func. * 3) All remaining VLB/EISA devices sorted by ioport. * 4) All remaining PCI devices sorted by bus/slot/func. */ value = (lahc->flags & AHC_BIOS_ENABLED) - (rahc->flags & AHC_BIOS_ENABLED); if (value != 0) /* Controllers with BIOS enabled have a *higher* priority */ return (value); /* * Same BIOS setting, now sort based on bus type. * EISA and VL controllers sort together. EISA/VL * have higher priority than PCI. */ rvalue = (rahc->chip & AHC_BUS_MASK); if (rvalue == AHC_VL) rvalue = AHC_EISA; lvalue = (lahc->chip & AHC_BUS_MASK); if (lvalue == AHC_VL) lvalue = AHC_EISA; value = rvalue - lvalue; if (value != 0) return (value); /* Still equal. Sort by BIOS address, ioport, or bus/slot/func. */ switch (rvalue) { case AHC_PCI: { char primary_channel; if (aic7xxx_reverse_scan != 0) value = ahc_get_pci_bus(lahc->dev_softc) - ahc_get_pci_bus(rahc->dev_softc); else value = ahc_get_pci_bus(rahc->dev_softc) - ahc_get_pci_bus(lahc->dev_softc); if (value != 0) break; if (aic7xxx_reverse_scan != 0) value = ahc_get_pci_slot(lahc->dev_softc) - ahc_get_pci_slot(rahc->dev_softc); else value = ahc_get_pci_slot(rahc->dev_softc) - ahc_get_pci_slot(lahc->dev_softc); if (value != 0) break; /* * On multi-function devices, the user can choose * to have function 1 probed before function 0. * Give whichever channel is the primary channel * the highest priority. */ primary_channel = (lahc->flags & AHC_PRIMARY_CHANNEL) + 'A'; value = -1; if (lahc->channel == primary_channel) value = 1; break; } case AHC_EISA: if ((rahc->flags & AHC_BIOS_ENABLED) != 0) { value = rahc->platform_data->bios_address - lahc->platform_data->bios_address; } else { value = rahc->bsh.ioport - lahc->bsh.ioport; } break; default: panic("ahc_softc_sort: invalid bus type"); } return (value); } static void ahc_linux_setup_tag_info_global(char *p) { int tags, i, j; tags = simple_strtoul(p + 1, NULL, 0) & 0xff; printf("Setting Global Tags= %d\n", tags); for (i = 0; i < NUM_ELEMENTS(aic7xxx_tag_info); i++) { for (j = 0; j < AHC_NUM_TARGETS; j++) { aic7xxx_tag_info[i].tag_commands[j] = tags; } } } static void ahc_linux_setup_tag_info(u_long arg, int instance, int targ, int32_t value) { if ((instance >= 0) && (targ >= 0) && (instance < NUM_ELEMENTS(aic7xxx_tag_info)) && (targ < AHC_NUM_TARGETS)) { aic7xxx_tag_info[instance].tag_commands[targ] = value & 0xff; if (bootverbose) printf("tag_info[%d:%d] = %d\n", instance, targ, value); } } static void ahc_linux_setup_dv(u_long arg, int instance, int targ, int32_t value) { if ((instance >= 0) && (instance < NUM_ELEMENTS(aic7xxx_dv_settings))) { aic7xxx_dv_settings[instance] = value; if (bootverbose) printf("dv[%d] = %d\n", instance, value); } } /* * Handle Linux boot parameters. This routine allows for assigning a value * to a parameter with a ':' between the parameter and the value. * ie. aic7xxx=stpwlev:1,extended */ static int aic7xxx_setup(char *s) { int i, n; char *p; char *end; static struct { const char *name; uint32_t *flag; } options[] = { { "extended", &aic7xxx_extended }, { "no_reset", &aic7xxx_no_reset }, { "verbose", &aic7xxx_verbose }, { "allow_memio", &aic7xxx_allow_memio}, #ifdef AHC_DEBUG { "debug", &ahc_debug }, #endif { "reverse_scan", &aic7xxx_reverse_scan }, { "no_probe", &aic7xxx_probe_eisa_vl }, { "probe_eisa_vl", &aic7xxx_probe_eisa_vl }, { "periodic_otag", &aic7xxx_periodic_otag }, { "pci_parity", &aic7xxx_pci_parity }, { "seltime", &aic7xxx_seltime }, { "tag_info", NULL }, { "global_tag_depth", NULL }, { "dv", NULL } }; end = strchr(s, '\0'); /* * XXX ia64 gcc isn't smart enough to know that NUM_ELEMENTS * will never be 0 in this case. */ n = 0; while ((p = strsep(&s, ",.")) != NULL) { if (*p == '\0') continue; for (i = 0; i < NUM_ELEMENTS(options); i++) { n = strlen(options[i].name); if (strncmp(options[i].name, p, n) == 0) break; } if (i == NUM_ELEMENTS(options)) continue; if (strncmp(p, "global_tag_depth", n) == 0) { ahc_linux_setup_tag_info_global(p + n); } else if (strncmp(p, "tag_info", n) == 0) { s = aic_parse_brace_option("tag_info", p + n, end, 2, ahc_linux_setup_tag_info, 0); } else if (strncmp(p, "dv", n) == 0) { s = aic_parse_brace_option("dv", p + n, end, 1, ahc_linux_setup_dv, 0); } else if (p[n] == ':') { *(options[i].flag) = simple_strtoul(p + n + 1, NULL, 0); } else if (strncmp(p, "verbose", n) == 0) { *(options[i].flag) = 1; } else { *(options[i].flag) ^= 0xFFFFFFFF; } } return 1; } #if LINUX_VERSION_CODE > KERNEL_VERSION(2,3,0) __setup("aic7xxx=", aic7xxx_setup); #endif uint32_t aic7xxx_verbose; int ahc_linux_register_host(struct ahc_softc *ahc, Scsi_Host_Template *template) { char buf[80]; struct Scsi_Host *host; char *new_name; u_long s; u_int targ_offset; template->name = ahc->description; host = scsi_host_alloc(template, sizeof(struct ahc_softc *)); if (host == NULL) return (ENOMEM); *((struct ahc_softc **)host->hostdata) = ahc; ahc_lock(ahc, &s); #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0) scsi_assign_lock(host, &ahc->platform_data->spin_lock); #elif AHC_SCSI_HAS_HOST_LOCK != 0 host->lock = &ahc->platform_data->spin_lock; #endif ahc->platform_data->host = host; host->can_queue = AHC_MAX_QUEUE; host->cmd_per_lun = 2; /* XXX No way to communicate the ID for multiple channels */ host->this_id = ahc->our_id; host->irq = ahc->platform_data->irq; host->max_id = (ahc->features & AHC_WIDE) ? 16 : 8; host->max_lun = AHC_NUM_LUNS; host->max_channel = (ahc->features & AHC_TWIN) ? 1 : 0; host->sg_tablesize = AHC_NSEG; ahc_set_unit(ahc, ahc_linux_next_unit()); sprintf(buf, "scsi%d", host->host_no); new_name = malloc(strlen(buf) + 1, M_DEVBUF, M_NOWAIT); if (new_name != NULL) { strcpy(new_name, buf); ahc_set_name(ahc, new_name); } host->unique_id = ahc->unit; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,4) && \ LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0) scsi_set_pci_device(host, ahc->dev_softc); #endif ahc_linux_initialize_scsi_bus(ahc); ahc_unlock(ahc, &s); ahc->platform_data->dv_pid = kernel_thread(ahc_linux_dv_thread, ahc, 0); ahc_lock(ahc, &s); if (ahc->platform_data->dv_pid < 0) { printf("%s: Failed to create DV thread, error= %d\n", ahc_name(ahc), ahc->platform_data->dv_pid); return (-ahc->platform_data->dv_pid); } /* * Initially allocate *all* of our linux target objects * so that the DV thread will scan them all in parallel * just after driver initialization. Any device that * does not exist will have its target object destroyed * by the selection timeout handler. In the case of a * device that appears after the initial DV scan, async * negotiation will occur for the first command, and DV * will comence should that first command be successful. */ for (targ_offset = 0; targ_offset < host->max_id * (host->max_channel + 1); targ_offset++) { u_int channel; u_int target; channel = 0; target = targ_offset; if (target > 7 && (ahc->features & AHC_TWIN) != 0) { channel = 1; target &= 0x7; } /* * Skip our own ID. Some Compaq/HP storage devices * have enclosure management devices that respond to * single bit selection (i.e. selecting ourselves). * It is expected that either an external application * or a modified kernel will be used to probe this * ID if it is appropriate. To accommodate these * installations, ahc_linux_alloc_target() will allocate * for our ID if asked to do so. */ if ((channel == 0 && target == ahc->our_id) || (channel == 1 && target == ahc->our_id_b)) continue; ahc_linux_alloc_target(ahc, channel, target); } ahc_intr_enable(ahc, TRUE); ahc_linux_start_dv(ahc); ahc_unlock(ahc, &s); #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0) scsi_add_host(host, (ahc->dev_softc ? &ahc->dev_softc->dev : NULL)); /* XXX handle failure */ scsi_scan_host(host); #endif return (0); } uint64_t ahc_linux_get_memsize(void) { struct sysinfo si; si_meminfo(&si); return ((uint64_t)si.totalram << PAGE_SHIFT); } /* * Find the smallest available unit number to use * for a new device. We don't just use a static * count to handle the "repeated hot-(un)plug" * scenario. */ static int ahc_linux_next_unit(void) { struct ahc_softc *ahc; int unit; unit = 0; retry: TAILQ_FOREACH(ahc, &ahc_tailq, links) { if (ahc->unit == unit) { unit++; goto retry; } } return (unit); } /* * Place the SCSI bus into a known state by either resetting it, * or forcing transfer negotiations on the next command to any * target. */ void ahc_linux_initialize_scsi_bus(struct ahc_softc *ahc) { int i; int numtarg; i = 0; numtarg = 0; if (aic7xxx_no_reset != 0) ahc->flags &= ~(AHC_RESET_BUS_A|AHC_RESET_BUS_B); if ((ahc->flags & AHC_RESET_BUS_A) != 0) ahc_reset_channel(ahc, 'A', /*initiate_reset*/TRUE); else numtarg = (ahc->features & AHC_WIDE) ? 16 : 8; if ((ahc->features & AHC_TWIN) != 0) { if ((ahc->flags & AHC_RESET_BUS_B) != 0) { ahc_reset_channel(ahc, 'B', /*initiate_reset*/TRUE); } else { if (numtarg == 0) i = 8; numtarg += 8; } } /* * Force negotiation to async for all targets that * will not see an initial bus reset. */ for (; i < numtarg; i++) { struct ahc_devinfo devinfo; struct ahc_initiator_tinfo *tinfo; struct ahc_tmode_tstate *tstate; u_int our_id; u_int target_id; char channel; channel = 'A'; our_id = ahc->our_id; target_id = i; if (i > 7 && (ahc->features & AHC_TWIN) != 0) { channel = 'B'; our_id = ahc->our_id_b; target_id = i % 8; } tinfo = ahc_fetch_transinfo(ahc, channel, our_id, target_id, &tstate); ahc_compile_devinfo(&devinfo, our_id, target_id, CAM_LUN_WILDCARD, channel, ROLE_INITIATOR); ahc_update_neg_request(ahc, &devinfo, tstate, tinfo, AHC_NEG_ALWAYS); } /* Give the bus some time to recover */ if ((ahc->flags & (AHC_RESET_BUS_A|AHC_RESET_BUS_B)) != 0) { ahc_linux_freeze_simq(ahc); init_timer(&ahc->platform_data->reset_timer); ahc->platform_data->reset_timer.data = (u_long)ahc; ahc->platform_data->reset_timer.expires = jiffies + (AIC7XXX_RESET_DELAY * HZ)/1000; ahc->platform_data->reset_timer.function = ahc_linux_release_simq; add_timer(&ahc->platform_data->reset_timer); } } int ahc_platform_alloc(struct ahc_softc *ahc, void *platform_arg) { ahc->platform_data = malloc(sizeof(struct ahc_platform_data), M_DEVBUF, M_NOWAIT); if (ahc->platform_data == NULL) return (ENOMEM); memset(ahc->platform_data, 0, sizeof(struct ahc_platform_data)); TAILQ_INIT(&ahc->platform_data->completeq); TAILQ_INIT(&ahc->platform_data->device_runq); ahc->platform_data->irq = AHC_LINUX_NOIRQ; ahc->platform_data->hw_dma_mask = 0xFFFFFFFF; ahc_lockinit(ahc); ahc_done_lockinit(ahc); init_timer(&ahc->platform_data->completeq_timer); ahc->platform_data->completeq_timer.data = (u_long)ahc; ahc->platform_data->completeq_timer.function = (ahc_linux_callback_t *)ahc_linux_thread_run_complete_queue; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0) init_MUTEX_LOCKED(&ahc->platform_data->eh_sem); init_MUTEX_LOCKED(&ahc->platform_data->dv_sem); init_MUTEX_LOCKED(&ahc->platform_data->dv_cmd_sem); #else ahc->platform_data->eh_sem = MUTEX_LOCKED; ahc->platform_data->dv_sem = MUTEX_LOCKED; ahc->platform_data->dv_cmd_sem = MUTEX_LOCKED; #endif #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0) tasklet_init(&ahc->platform_data->runq_tasklet, ahc_runq_tasklet, (unsigned long)ahc); #endif ahc->seltime = (aic7xxx_seltime & 0x3) << 4; ahc->seltime_b = (aic7xxx_seltime & 0x3) << 4; if (aic7xxx_pci_parity == 0) ahc->flags |= AHC_DISABLE_PCI_PERR; return (0); } void ahc_platform_free(struct ahc_softc *ahc) { struct ahc_linux_target *targ; struct ahc_linux_device *dev; int i, j; if (ahc->platform_data != NULL) { del_timer_sync(&ahc->platform_data->completeq_timer); ahc_linux_kill_dv_thread(ahc); #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0) tasklet_kill(&ahc->platform_data->runq_tasklet); #endif if (ahc->platform_data->host != NULL) { #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0) scsi_remove_host(ahc->platform_data->host); #endif scsi_host_put(ahc->platform_data->host); } /* destroy all of the device and target objects */ for (i = 0; i < AHC_NUM_TARGETS; i++) { targ = ahc->platform_data->targets[i]; if (targ != NULL) { /* Keep target around through the loop. */ targ->refcount++; for (j = 0; j < AHC_NUM_LUNS; j++) { if (targ->devices[j] == NULL) continue; dev = targ->devices[j]; ahc_linux_free_device(ahc, dev); } /* * Forcibly free the target now that * all devices are gone. */ ahc_linux_free_target(ahc, targ); } } if (ahc->platform_data->irq != AHC_LINUX_NOIRQ) free_irq(ahc->platform_data->irq, ahc); if (ahc->tag == BUS_SPACE_PIO && ahc->bsh.ioport != 0) release_region(ahc->bsh.ioport, 256); if (ahc->tag == BUS_SPACE_MEMIO && ahc->bsh.maddr != NULL) { u_long base_addr; base_addr = (u_long)ahc->bsh.maddr; base_addr &= PAGE_MASK; iounmap((void *)base_addr); #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0) release_mem_region(ahc->platform_data->mem_busaddr, 0x1000); #endif } #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0) && \ LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0) /* * In 2.4 we detach from the scsi midlayer before the PCI * layer invokes our remove callback. No per-instance * detach is provided, so we must reach inside the PCI * subsystem's internals and detach our driver manually. */ if (ahc->dev_softc != NULL) ahc->dev_softc->driver = NULL; #endif free(ahc->platform_data, M_DEVBUF); } } void ahc_platform_freeze_devq(struct ahc_softc *ahc, struct scb *scb) { ahc_platform_abort_scbs(ahc, SCB_GET_TARGET(ahc, scb), SCB_GET_CHANNEL(ahc, scb), SCB_GET_LUN(scb), SCB_LIST_NULL, ROLE_UNKNOWN, CAM_REQUEUE_REQ); } void ahc_platform_set_tags(struct ahc_softc *ahc, struct ahc_devinfo *devinfo, ahc_queue_alg alg) { struct ahc_linux_device *dev; int was_queuing; int now_queuing; dev = ahc_linux_get_device(ahc, devinfo->channel - 'A', devinfo->target, devinfo->lun, /*alloc*/FALSE); if (dev == NULL) return; was_queuing = dev->flags & (AHC_DEV_Q_BASIC|AHC_DEV_Q_TAGGED); switch (alg) { default: case AHC_QUEUE_NONE: now_queuing = 0; break; case AHC_QUEUE_BASIC: now_queuing = AHC_DEV_Q_BASIC; break; case AHC_QUEUE_TAGGED: now_queuing = AHC_DEV_Q_TAGGED; break; } if ((dev->flags & AHC_DEV_FREEZE_TIL_EMPTY) == 0 && (was_queuing != now_queuing) && (dev->active != 0)) { dev->flags |= AHC_DEV_FREEZE_TIL_EMPTY; dev->qfrozen++; } dev->flags &= ~(AHC_DEV_Q_BASIC|AHC_DEV_Q_TAGGED|AHC_DEV_PERIODIC_OTAG); if (now_queuing) { u_int usertags; usertags = ahc_linux_user_tagdepth(ahc, devinfo); if (!was_queuing) { /* * Start out agressively and allow our * dynamic queue depth algorithm to take * care of the rest. */ dev->maxtags = usertags; dev->openings = dev->maxtags - dev->active; } if (dev->maxtags == 0) { /* * Queueing is disabled by the user. */ dev->openings = 1; } else if (alg == AHC_QUEUE_TAGGED) { dev->flags |= AHC_DEV_Q_TAGGED; if (aic7xxx_periodic_otag != 0) dev->flags |= AHC_DEV_PERIODIC_OTAG; } else dev->flags |= AHC_DEV_Q_BASIC; } else { /* We can only have one opening. */ dev->maxtags = 0; dev->openings = 1 - dev->active; } #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0) if (dev->scsi_device != NULL) { switch ((dev->flags & (AHC_DEV_Q_BASIC|AHC_DEV_Q_TAGGED))) { case AHC_DEV_Q_BASIC: scsi_adjust_queue_depth(dev->scsi_device, MSG_SIMPLE_TASK, dev->openings + dev->active); break; case AHC_DEV_Q_TAGGED: scsi_adjust_queue_depth(dev->scsi_device, MSG_ORDERED_TASK, dev->openings + dev->active); break; default: /* * We allow the OS to queue 2 untagged transactions to * us at any time even though we can only execute them * serially on the controller/device. This should * remove some latency. */ scsi_adjust_queue_depth(dev->scsi_device, /*NON-TAGGED*/0, /*queue depth*/2); break; } } #endif } int ahc_platform_abort_scbs(struct ahc_softc *ahc, int target, char channel, int lun, u_int tag, role_t role, uint32_t status) { int chan; int maxchan; int targ; int maxtarg; int clun; int maxlun; int count; if (tag != SCB_LIST_NULL) return (0); chan = 0; if (channel != ALL_CHANNELS) { chan = channel - 'A'; maxchan = chan + 1; } else { maxchan = (ahc->features & AHC_TWIN) ? 2 : 1; } targ = 0; if (target != CAM_TARGET_WILDCARD) { targ = target; maxtarg = targ + 1; } else { maxtarg = (ahc->features & AHC_WIDE) ? 16 : 8; } clun = 0; if (lun != CAM_LUN_WILDCARD) { clun = lun; maxlun = clun + 1; } else { maxlun = AHC_NUM_LUNS; } count = 0; for (; chan < maxchan; chan++) { for (; targ < maxtarg; targ++) { for (; clun < maxlun; clun++) { struct ahc_linux_device *dev; struct ahc_busyq *busyq; struct ahc_cmd *acmd; dev = ahc_linux_get_device(ahc, chan, targ, clun, /*alloc*/FALSE); if (dev == NULL) continue; busyq = &dev->busyq; while ((acmd = TAILQ_FIRST(busyq)) != NULL) { Scsi_Cmnd *cmd; cmd = &acmd_scsi_cmd(acmd); TAILQ_REMOVE(busyq, acmd, acmd_links.tqe); count++; cmd->result = status << 16; ahc_linux_queue_cmd_complete(ahc, cmd); } } } } return (count); } static void ahc_linux_thread_run_complete_queue(struct ahc_softc *ahc) { u_long flags; ahc_lock(ahc, &flags); del_timer(&ahc->platform_data->completeq_timer); ahc->platform_data->flags &= ~AHC_RUN_CMPLT_Q_TIMER; ahc_linux_run_complete_queue(ahc); ahc_unlock(ahc, &flags); } static void ahc_linux_start_dv(struct ahc_softc *ahc) { /* * Freeze the simq and signal ahc_linux_queue to not let any * more commands through. */ if ((ahc->platform_data->flags & AHC_DV_ACTIVE) == 0) { #ifdef AHC_DEBUG if (ahc_debug & AHC_SHOW_DV) printf("%s: Waking DV thread\n", ahc_name(ahc)); #endif ahc->platform_data->flags |= AHC_DV_ACTIVE; ahc_linux_freeze_simq(ahc); /* Wake up the DV kthread */ up(&ahc->platform_data->dv_sem); } } static void ahc_linux_kill_dv_thread(struct ahc_softc *ahc) { u_long s; ahc_lock(ahc, &s); if (ahc->platform_data->dv_pid != 0) { ahc->platform_data->flags |= AHC_DV_SHUTDOWN; ahc_unlock(ahc, &s); up(&ahc->platform_data->dv_sem); /* * Use the eh_sem as an indicator that the * dv thread is exiting. Note that the dv * thread must still return after performing * the up on our semaphore before it has * completely exited this module. Unfortunately, * there seems to be no easy way to wait for the * exit of a thread for which you are not the * parent (dv threads are parented by init). * Cross your fingers... */ down(&ahc->platform_data->eh_sem); /* * Mark the dv thread as already dead. This * avoids attempting to kill it a second time. * This is necessary because we must kill the * DV thread before calling ahc_free() in the * module shutdown case to avoid bogus locking * in the SCSI mid-layer, but we ahc_free() is * called without killing the DV thread in the * instance detach case, so ahc_platform_free() * calls us again to verify that the DV thread * is dead. */ ahc->platform_data->dv_pid = 0; } else { ahc_unlock(ahc, &s); } } static int ahc_linux_dv_thread(void *data) { struct ahc_softc *ahc; int target; u_long s; ahc = (struct ahc_softc *)data; #ifdef AHC_DEBUG if (ahc_debug & AHC_SHOW_DV) printf("Launching DV Thread\n"); #endif /* * Complete thread creation. */ lock_kernel(); #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0) /* * Don't care about any signals. */ siginitsetinv(¤t->blocked, 0); daemonize(); sprintf(current->comm, "ahc_dv_%d", ahc->unit); #else daemonize("ahc_dv_%d", ahc->unit); #endif unlock_kernel(); while (1) { /* * Use down_interruptible() rather than down() to * avoid inclusion in the load average. */ down_interruptible(&ahc->platform_data->dv_sem); /* Check to see if we've been signaled to exit */ ahc_lock(ahc, &s); if ((ahc->platform_data->flags & AHC_DV_SHUTDOWN) != 0) { ahc_unlock(ahc, &s); break; } ahc_unlock(ahc, &s); #ifdef AHC_DEBUG if (ahc_debug & AHC_SHOW_DV) printf("%s: Beginning Domain Validation\n", ahc_name(ahc)); #endif /* * Wait for any pending commands to drain before proceeding. */ ahc_lock(ahc, &s); while (LIST_FIRST(&ahc->pending_scbs) != NULL) { ahc->platform_data->flags |= AHC_DV_WAIT_SIMQ_EMPTY; ahc_unlock(ahc, &s); down_interruptible(&ahc->platform_data->dv_sem); ahc_lock(ahc, &s); } /* * Wait for the SIMQ to be released so that DV is the * only reason the queue is frozen. */ while (AHC_DV_SIMQ_FROZEN(ahc) == 0) { ahc->platform_data->flags |= AHC_DV_WAIT_SIMQ_RELEASE; ahc_unlock(ahc, &s); down_interruptible(&ahc->platform_data->dv_sem); ahc_lock(ahc, &s); } ahc_unlock(ahc, &s); for (target = 0; target < AHC_NUM_TARGETS; target++) ahc_linux_dv_target(ahc, target); ahc_lock(ahc, &s); ahc->platform_data->flags &= ~AHC_DV_ACTIVE; ahc_unlock(ahc, &s); /* * Release the SIMQ so that normal commands are * allowed to continue on the bus. */ ahc_linux_release_simq((u_long)ahc); } up(&ahc->platform_data->eh_sem); return (0); } #define AHC_LINUX_DV_INQ_SHORT_LEN 36 #define AHC_LINUX_DV_INQ_LEN 256 #define AHC_LINUX_DV_TIMEOUT (HZ / 4) #define AHC_SET_DV_STATE(ahc, targ, newstate) \ ahc_set_dv_state(ahc, targ, newstate, __LINE__) static __inline void ahc_set_dv_state(struct ahc_softc *ahc, struct ahc_linux_target *targ, ahc_dv_state newstate, u_int line) { ahc_dv_state oldstate; oldstate = targ->dv_state; #ifdef AHC_DEBUG if (ahc_debug & AHC_SHOW_DV) printf("%s:%d: Going from state %d to state %d\n", ahc_name(ahc), line, oldstate, newstate); #endif if (oldstate == newstate) targ->dv_state_retry++; else targ->dv_state_retry = 0; targ->dv_state = newstate; } static void ahc_linux_dv_target(struct ahc_softc *ahc, u_int target_offset) { struct ahc_devinfo devinfo; struct ahc_linux_target *targ; struct scsi_cmnd *cmd; struct scsi_device *scsi_dev; struct scsi_sense_data *sense; uint8_t *buffer; u_long s; u_int timeout; int echo_size; sense = NULL; buffer = NULL; echo_size = 0; ahc_lock(ahc, &s); targ = ahc->platform_data->targets[target_offset]; if (targ == NULL || (targ->flags & AHC_DV_REQUIRED) == 0) { ahc_unlock(ahc, &s); return; } ahc_compile_devinfo(&devinfo, targ->channel == 0 ? ahc->our_id : ahc->our_id_b, targ->target, /*lun*/0, targ->channel + 'A', ROLE_INITIATOR); #ifdef AHC_DEBUG if (ahc_debug & AHC_SHOW_DV) { ahc_print_devinfo(ahc, &devinfo); printf("Performing DV\n"); } #endif ahc_unlock(ahc, &s); cmd = malloc(sizeof(struct scsi_cmnd), M_DEVBUF, M_WAITOK); scsi_dev = malloc(sizeof(struct scsi_device), M_DEVBUF, M_WAITOK); scsi_dev->host = ahc->platform_data->host; scsi_dev->id = devinfo.target; scsi_dev->lun = devinfo.lun; scsi_dev->channel = devinfo.channel - 'A'; ahc->platform_data->dv_scsi_dev = scsi_dev; AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_INQ_SHORT_ASYNC); while (targ->dv_state != AHC_DV_STATE_EXIT) { timeout = AHC_LINUX_DV_TIMEOUT; switch (targ->dv_state) { case AHC_DV_STATE_INQ_SHORT_ASYNC: case AHC_DV_STATE_INQ_ASYNC: case AHC_DV_STATE_INQ_ASYNC_VERIFY: /* * Set things to async narrow to reduce the * chance that the INQ will fail. */ ahc_lock(ahc, &s); ahc_set_syncrate(ahc, &devinfo, NULL, 0, 0, 0, AHC_TRANS_GOAL, /*paused*/FALSE); ahc_set_width(ahc, &devinfo, MSG_EXT_WDTR_BUS_8_BIT, AHC_TRANS_GOAL, /*paused*/FALSE); ahc_unlock(ahc, &s); timeout = 10 * HZ; targ->flags &= ~AHC_INQ_VALID; /* FALLTHROUGH */ case AHC_DV_STATE_INQ_VERIFY: { u_int inq_len; if (targ->dv_state == AHC_DV_STATE_INQ_SHORT_ASYNC) inq_len = AHC_LINUX_DV_INQ_SHORT_LEN; else inq_len = targ->inq_data->additional_length + 5; ahc_linux_dv_inq(ahc, cmd, &devinfo, targ, inq_len); break; } case AHC_DV_STATE_TUR: case AHC_DV_STATE_BUSY: timeout = 5 * HZ; ahc_linux_dv_tur(ahc, cmd, &devinfo); break; case AHC_DV_STATE_REBD: ahc_linux_dv_rebd(ahc, cmd, &devinfo, targ); break; case AHC_DV_STATE_WEB: ahc_linux_dv_web(ahc, cmd, &devinfo, targ); break; case AHC_DV_STATE_REB: ahc_linux_dv_reb(ahc, cmd, &devinfo, targ); break; case AHC_DV_STATE_SU: ahc_linux_dv_su(ahc, cmd, &devinfo, targ); timeout = 50 * HZ; break; default: ahc_print_devinfo(ahc, &devinfo); printf("Unknown DV state %d\n", targ->dv_state); goto out; } /* Queue the command and wait for it to complete */ /* Abuse eh_timeout in the scsi_cmnd struct for our purposes */ init_timer(&cmd->eh_timeout); #ifdef AHC_DEBUG if ((ahc_debug & AHC_SHOW_MESSAGES) != 0) /* * All of the printfs during negotiation * really slow down the negotiation. * Add a bit of time just to be safe. */ timeout += HZ; #endif scsi_add_timer(cmd, timeout, ahc_linux_dv_timeout); /* * In 2.5.X, it is assumed that all calls from the * "midlayer" (which we are emulating) will have the * ahc host lock held. For other kernels, the * io_request_lock must be held. */ #if AHC_SCSI_HAS_HOST_LOCK != 0 ahc_lock(ahc, &s); #else spin_lock_irqsave(&io_request_lock, s); #endif ahc_linux_queue(cmd, ahc_linux_dv_complete); #if AHC_SCSI_HAS_HOST_LOCK != 0 ahc_unlock(ahc, &s); #else spin_unlock_irqrestore(&io_request_lock, s); #endif down_interruptible(&ahc->platform_data->dv_cmd_sem); /* * Wait for the SIMQ to be released so that DV is the * only reason the queue is frozen. */ ahc_lock(ahc, &s); while (AHC_DV_SIMQ_FROZEN(ahc) == 0) { ahc->platform_data->flags |= AHC_DV_WAIT_SIMQ_RELEASE; ahc_unlock(ahc, &s); down_interruptible(&ahc->platform_data->dv_sem); ahc_lock(ahc, &s); } ahc_unlock(ahc, &s); ahc_linux_dv_transition(ahc, cmd, &devinfo, targ); } out: if ((targ->flags & AHC_INQ_VALID) != 0 && ahc_linux_get_device(ahc, devinfo.channel - 'A', devinfo.target, devinfo.lun, /*alloc*/FALSE) == NULL) { /* * The DV state machine failed to configure this device. * This is normal if DV is disabled. Since we have inquiry * data, filter it and use the "optimistic" negotiation * parameters found in the inquiry string. */ ahc_linux_filter_inquiry(ahc, &devinfo); if ((targ->flags & (AHC_BASIC_DV|AHC_ENHANCED_DV)) != 0) { ahc_print_devinfo(ahc, &devinfo); printf("DV failed to configure device. " "Please file a bug report against " "this driver.\n"); } } if (cmd != NULL) free(cmd, M_DEVBUF); if (ahc->platform_data->dv_scsi_dev != NULL) { free(ahc->platform_data->dv_scsi_dev, M_DEVBUF); ahc->platform_data->dv_scsi_dev = NULL; } ahc_lock(ahc, &s); if (targ->dv_buffer != NULL) { free(targ->dv_buffer, M_DEVBUF); targ->dv_buffer = NULL; } if (targ->dv_buffer1 != NULL) { free(targ->dv_buffer1, M_DEVBUF); targ->dv_buffer1 = NULL; } targ->flags &= ~AHC_DV_REQUIRED; if (targ->refcount == 0) ahc_linux_free_target(ahc, targ); ahc_unlock(ahc, &s); } static void ahc_linux_dv_transition(struct ahc_softc *ahc, struct scsi_cmnd *cmd, struct ahc_devinfo *devinfo, struct ahc_linux_target *targ) { u_int32_t status; status = aic_error_action(cmd, targ->inq_data, ahc_cmd_get_transaction_status(cmd), ahc_cmd_get_scsi_status(cmd)); #ifdef AHC_DEBUG if (ahc_debug & AHC_SHOW_DV) { ahc_print_devinfo(ahc, devinfo); printf("Entering ahc_linux_dv_transition, state= %d, " "status= 0x%x, cmd->result= 0x%x\n", targ->dv_state, status, cmd->result); } #endif switch (targ->dv_state) { case AHC_DV_STATE_INQ_SHORT_ASYNC: case AHC_DV_STATE_INQ_ASYNC: switch (status & SS_MASK) { case SS_NOP: { AHC_SET_DV_STATE(ahc, targ, targ->dv_state+1); break; } case SS_INQ_REFRESH: AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_INQ_SHORT_ASYNC); break; case SS_TUR: case SS_RETRY: AHC_SET_DV_STATE(ahc, targ, targ->dv_state); if (ahc_cmd_get_transaction_status(cmd) == CAM_REQUEUE_REQ) targ->dv_state_retry--; if ((status & SS_ERRMASK) == EBUSY) AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_BUSY); if (targ->dv_state_retry < 10) break; /* FALLTHROUGH */ default: AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT); #ifdef AHC_DEBUG if (ahc_debug & AHC_SHOW_DV) { ahc_print_devinfo(ahc, devinfo); printf("Failed DV inquiry, skipping\n"); } #endif break; } break; case AHC_DV_STATE_INQ_ASYNC_VERIFY: switch (status & SS_MASK) { case SS_NOP: { u_int xportflags; u_int spi3data; if (memcmp(targ->inq_data, targ->dv_buffer, AHC_LINUX_DV_INQ_LEN) != 0) { /* * Inquiry data must have changed. * Try from the top again. */ AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_INQ_SHORT_ASYNC); break; } AHC_SET_DV_STATE(ahc, targ, targ->dv_state+1); targ->flags |= AHC_INQ_VALID; if (ahc_linux_user_dv_setting(ahc) == 0) break; xportflags = targ->inq_data->flags; if ((xportflags & (SID_Sync|SID_WBus16)) == 0) break; spi3data = targ->inq_data->spi3data; switch (spi3data & SID_SPI_CLOCK_DT_ST) { default: case SID_SPI_CLOCK_ST: /* Assume only basic DV is supported. */ targ->flags |= AHC_BASIC_DV; break; case SID_SPI_CLOCK_DT: case SID_SPI_CLOCK_DT_ST: targ->flags |= AHC_ENHANCED_DV; break; } break; } case SS_INQ_REFRESH: AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_INQ_SHORT_ASYNC); break; case SS_TUR: case SS_RETRY: AHC_SET_DV_STATE(ahc, targ, targ->dv_state); if (ahc_cmd_get_transaction_status(cmd) == CAM_REQUEUE_REQ) targ->dv_state_retry--; if ((status & SS_ERRMASK) == EBUSY) AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_BUSY); if (targ->dv_state_retry < 10) break; /* FALLTHROUGH */ default: AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT); #ifdef AHC_DEBUG if (ahc_debug & AHC_SHOW_DV) { ahc_print_devinfo(ahc, devinfo); printf("Failed DV inquiry, skipping\n"); } #endif break; } break; case AHC_DV_STATE_INQ_VERIFY: switch (status & SS_MASK) { case SS_NOP: { if (memcmp(targ->inq_data, targ->dv_buffer, AHC_LINUX_DV_INQ_LEN) == 0) { AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT); break; } #ifdef AHC_DEBUG if (ahc_debug & AHC_SHOW_DV) { int i; ahc_print_devinfo(ahc, devinfo); printf("Inquiry buffer mismatch:"); for (i = 0; i < AHC_LINUX_DV_INQ_LEN; i++) { if ((i & 0xF) == 0) printf("\n "); printf("0x%x:0x0%x ", ((uint8_t *)targ->inq_data)[i], targ->dv_buffer[i]); } printf("\n"); } #endif if (ahc_linux_fallback(ahc, devinfo) != 0) { AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT); break; } /* * Do not count "falling back" * against our retries. */ targ->dv_state_retry = 0; AHC_SET_DV_STATE(ahc, targ, targ->dv_state); break; } case SS_INQ_REFRESH: AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_INQ_SHORT_ASYNC); break; case SS_TUR: case SS_RETRY: AHC_SET_DV_STATE(ahc, targ, targ->dv_state); if (ahc_cmd_get_transaction_status(cmd) == CAM_REQUEUE_REQ) { targ->dv_state_retry--; } else if ((status & SSQ_FALLBACK) != 0) { if (ahc_linux_fallback(ahc, devinfo) != 0) { AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT); break; } /* * Do not count "falling back" * against our retries. */ targ->dv_state_retry = 0; } else if ((status & SS_ERRMASK) == EBUSY) AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_BUSY); if (targ->dv_state_retry < 10) break; /* FALLTHROUGH */ default: AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT); #ifdef AHC_DEBUG if (ahc_debug & AHC_SHOW_DV) { ahc_print_devinfo(ahc, devinfo); printf("Failed DV inquiry, skipping\n"); } #endif break; } break; case AHC_DV_STATE_TUR: switch (status & SS_MASK) { case SS_NOP: if ((targ->flags & AHC_BASIC_DV) != 0) { ahc_linux_filter_inquiry(ahc, devinfo); AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_INQ_VERIFY); } else if ((targ->flags & AHC_ENHANCED_DV) != 0) { AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_REBD); } else { AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT); } break; case SS_RETRY: case SS_TUR: if ((status & SS_ERRMASK) == EBUSY) { AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_BUSY); break; } AHC_SET_DV_STATE(ahc, targ, targ->dv_state); if (ahc_cmd_get_transaction_status(cmd) == CAM_REQUEUE_REQ) { targ->dv_state_retry--; } else if ((status & SSQ_FALLBACK) != 0) { if (ahc_linux_fallback(ahc, devinfo) != 0) { AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT); break; } /* * Do not count "falling back" * against our retries. */ targ->dv_state_retry = 0; } if (targ->dv_state_retry >= 10) { #ifdef AHC_DEBUG if (ahc_debug & AHC_SHOW_DV) { ahc_print_devinfo(ahc, devinfo); printf("DV TUR reties exhausted\n"); } #endif AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT); break; } if (status & SSQ_DELAY) scsi_sleep(1 * HZ); break; case SS_START: AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_SU); break; case SS_INQ_REFRESH: AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_INQ_SHORT_ASYNC); break; default: AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT); break; } break; case AHC_DV_STATE_REBD: switch (status & SS_MASK) { case SS_NOP: { uint32_t echo_size; AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_WEB); echo_size = scsi_3btoul(&targ->dv_buffer[1]); echo_size &= 0x1FFF; #ifdef AHC_DEBUG if (ahc_debug & AHC_SHOW_DV) { ahc_print_devinfo(ahc, devinfo); printf("Echo buffer size= %d\n", echo_size); } #endif if (echo_size == 0) { AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT); break; } /* Generate the buffer pattern */ targ->dv_echo_size = echo_size; ahc_linux_generate_dv_pattern(targ); /* * Setup initial negotiation values. */ ahc_linux_filter_inquiry(ahc, devinfo); break; } case SS_INQ_REFRESH: AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_INQ_SHORT_ASYNC); break; case SS_RETRY: AHC_SET_DV_STATE(ahc, targ, targ->dv_state); if (ahc_cmd_get_transaction_status(cmd) == CAM_REQUEUE_REQ) targ->dv_state_retry--; if (targ->dv_state_retry <= 10) break; #ifdef AHC_DEBUG if (ahc_debug & AHC_SHOW_DV) { ahc_print_devinfo(ahc, devinfo); printf("DV REBD reties exhausted\n"); } #endif /* FALLTHROUGH */ case SS_FATAL: default: /* * Setup initial negotiation values * and try level 1 DV. */ ahc_linux_filter_inquiry(ahc, devinfo); AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_INQ_VERIFY); targ->dv_echo_size = 0; break; } break; case AHC_DV_STATE_WEB: switch (status & SS_MASK) { case SS_NOP: AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_REB); break; case SS_INQ_REFRESH: AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_INQ_SHORT_ASYNC); break; case SS_RETRY: AHC_SET_DV_STATE(ahc, targ, targ->dv_state); if (ahc_cmd_get_transaction_status(cmd) == CAM_REQUEUE_REQ) { targ->dv_state_retry--; } else if ((status & SSQ_FALLBACK) != 0) { if (ahc_linux_fallback(ahc, devinfo) != 0) { AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT); break; } /* * Do not count "falling back" * against our retries. */ targ->dv_state_retry = 0; } if (targ->dv_state_retry <= 10) break; /* FALLTHROUGH */ #ifdef AHC_DEBUG if (ahc_debug & AHC_SHOW_DV) { ahc_print_devinfo(ahc, devinfo); printf("DV WEB reties exhausted\n"); } #endif default: AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT); break; } break; case AHC_DV_STATE_REB: switch (status & SS_MASK) { case SS_NOP: if (memcmp(targ->dv_buffer, targ->dv_buffer1, targ->dv_echo_size) != 0) { if (ahc_linux_fallback(ahc, devinfo) != 0) AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT); else AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_WEB); break; } if (targ->dv_buffer != NULL) { free(targ->dv_buffer, M_DEVBUF); targ->dv_buffer = NULL; } if (targ->dv_buffer1 != NULL) { free(targ->dv_buffer1, M_DEVBUF); targ->dv_buffer1 = NULL; } AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT); break; case SS_INQ_REFRESH: AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_INQ_SHORT_ASYNC); break; case SS_RETRY: AHC_SET_DV_STATE(ahc, targ, targ->dv_state); if (ahc_cmd_get_transaction_status(cmd) == CAM_REQUEUE_REQ) { targ->dv_state_retry--; } else if ((status & SSQ_FALLBACK) != 0) { if (ahc_linux_fallback(ahc, devinfo) != 0) { AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT); break; } AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_WEB); } if (targ->dv_state_retry <= 10) { if ((status & (SSQ_DELAY_RANDOM|SSQ_DELAY))!= 0) scsi_sleep(ahc->our_id*HZ/10); break; } #ifdef AHC_DEBUG if (ahc_debug & AHC_SHOW_DV) { ahc_print_devinfo(ahc, devinfo); printf("DV REB reties exhausted\n"); } #endif /* FALLTHROUGH */ default: AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT); break; } break; case AHC_DV_STATE_SU: switch (status & SS_MASK) { case SS_NOP: case SS_INQ_REFRESH: AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_INQ_SHORT_ASYNC); break; default: AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT); break; } break; case AHC_DV_STATE_BUSY: switch (status & SS_MASK) { case SS_NOP: case SS_INQ_REFRESH: AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_INQ_SHORT_ASYNC); break; case SS_TUR: case SS_RETRY: AHC_SET_DV_STATE(ahc, targ, targ->dv_state); if (ahc_cmd_get_transaction_status(cmd) == CAM_REQUEUE_REQ) { targ->dv_state_retry--; } else if (targ->dv_state_retry < 60) { if ((status & SSQ_DELAY) != 0) scsi_sleep(1 * HZ); } else { #ifdef AHC_DEBUG if (ahc_debug & AHC_SHOW_DV) { ahc_print_devinfo(ahc, devinfo); printf("DV BUSY reties exhausted\n"); } #endif AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT); } break; default: AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT); break; } break; default: printf("%s: Invalid DV completion state %d\n", ahc_name(ahc), targ->dv_state); AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT); break; } } static void ahc_linux_dv_fill_cmd(struct ahc_softc *ahc, struct scsi_cmnd *cmd, struct ahc_devinfo *devinfo) { memset(cmd, 0, sizeof(struct scsi_cmnd)); cmd->device = ahc->platform_data->dv_scsi_dev; cmd->scsi_done = ahc_linux_dv_complete; } /* * Synthesize an inquiry command. On the return trip, it'll be * sniffed and the device transfer settings set for us. */ static void ahc_linux_dv_inq(struct ahc_softc *ahc, struct scsi_cmnd *cmd, struct ahc_devinfo *devinfo, struct ahc_linux_target *targ, u_int request_length) { #ifdef AHC_DEBUG if (ahc_debug & AHC_SHOW_DV) { ahc_print_devinfo(ahc, devinfo); printf("Sending INQ\n"); } #endif if (targ->inq_data == NULL) targ->inq_data = malloc(AHC_LINUX_DV_INQ_LEN, M_DEVBUF, M_WAITOK); if (targ->dv_state > AHC_DV_STATE_INQ_ASYNC) { if (targ->dv_buffer != NULL) free(targ->dv_buffer, M_DEVBUF); targ->dv_buffer = malloc(AHC_LINUX_DV_INQ_LEN, M_DEVBUF, M_WAITOK); } ahc_linux_dv_fill_cmd(ahc, cmd, devinfo); cmd->sc_data_direction = SCSI_DATA_READ; cmd->cmd_len = 6; cmd->cmnd[0] = INQUIRY; cmd->cmnd[4] = request_length; cmd->request_bufflen = request_length; if (targ->dv_state > AHC_DV_STATE_INQ_ASYNC) cmd->request_buffer = targ->dv_buffer; else cmd->request_buffer = targ->inq_data; memset(cmd->request_buffer, 0, AHC_LINUX_DV_INQ_LEN); } static void ahc_linux_dv_tur(struct ahc_softc *ahc, struct scsi_cmnd *cmd, struct ahc_devinfo *devinfo) { #ifdef AHC_DEBUG if (ahc_debug & AHC_SHOW_DV) { ahc_print_devinfo(ahc, devinfo); printf("Sending TUR\n"); } #endif /* Do a TUR to clear out any non-fatal transitional state */ ahc_linux_dv_fill_cmd(ahc, cmd, devinfo); cmd->sc_data_direction = SCSI_DATA_NONE; cmd->cmd_len = 6; cmd->cmnd[0] = TEST_UNIT_READY; } #define AHC_REBD_LEN 4 static void ahc_linux_dv_rebd(struct ahc_softc *ahc, struct scsi_cmnd *cmd, struct ahc_devinfo *devinfo, struct ahc_linux_target *targ) { #ifdef AHC_DEBUG if (ahc_debug & AHC_SHOW_DV) { ahc_print_devinfo(ahc, devinfo); printf("Sending REBD\n"); } #endif if (targ->dv_buffer != NULL) free(targ->dv_buffer, M_DEVBUF); targ->dv_buffer = malloc(AHC_REBD_LEN, M_DEVBUF, M_WAITOK); ahc_linux_dv_fill_cmd(ahc, cmd, devinfo); cmd->sc_data_direction = SCSI_DATA_READ; cmd->cmd_len = 10; cmd->cmnd[0] = READ_BUFFER; cmd->cmnd[1] = 0x0b; scsi_ulto3b(AHC_REBD_LEN, &cmd->cmnd[6]); cmd->request_bufflen = AHC_REBD_LEN; cmd->underflow = cmd->request_bufflen; cmd->request_buffer = targ->dv_buffer; } static void ahc_linux_dv_web(struct ahc_softc *ahc, struct scsi_cmnd *cmd, struct ahc_devinfo *devinfo, struct ahc_linux_target *targ) { #ifdef AHC_DEBUG if (ahc_debug & AHC_SHOW_DV) { ahc_print_devinfo(ahc, devinfo); printf("Sending WEB\n"); } #endif ahc_linux_dv_fill_cmd(ahc, cmd, devinfo); cmd->sc_data_direction = SCSI_DATA_WRITE; cmd->cmd_len = 10; cmd->cmnd[0] = WRITE_BUFFER; cmd->cmnd[1] = 0x0a; scsi_ulto3b(targ->dv_echo_size, &cmd->cmnd[6]); cmd->request_bufflen = targ->dv_echo_size; cmd->underflow = cmd->request_bufflen; cmd->request_buffer = targ->dv_buffer; } static void ahc_linux_dv_reb(struct ahc_softc *ahc, struct scsi_cmnd *cmd, struct ahc_devinfo *devinfo, struct ahc_linux_target *targ) { #ifdef AHC_DEBUG if (ahc_debug & AHC_SHOW_DV) { ahc_print_devinfo(ahc, devinfo); printf("Sending REB\n"); } #endif ahc_linux_dv_fill_cmd(ahc, cmd, devinfo); cmd->sc_data_direction = SCSI_DATA_READ; cmd->cmd_len = 10; cmd->cmnd[0] = READ_BUFFER; cmd->cmnd[1] = 0x0a; scsi_ulto3b(targ->dv_echo_size, &cmd->cmnd[6]); cmd->request_bufflen = targ->dv_echo_size; cmd->underflow = cmd->request_bufflen; cmd->request_buffer = targ->dv_buffer1; } static void ahc_linux_dv_su(struct ahc_softc *ahc, struct scsi_cmnd *cmd, struct ahc_devinfo *devinfo, struct ahc_linux_target *targ) { u_int le; le = SID_IS_REMOVABLE(targ->inq_data) ? SSS_LOEJ : 0; #ifdef AHC_DEBUG if (ahc_debug & AHC_SHOW_DV) { ahc_print_devinfo(ahc, devinfo); printf("Sending SU\n"); } #endif ahc_linux_dv_fill_cmd(ahc, cmd, devinfo); cmd->sc_data_direction = SCSI_DATA_NONE; cmd->cmd_len = 6; cmd->cmnd[0] = START_STOP_UNIT; cmd->cmnd[4] = le | SSS_START; } static int ahc_linux_fallback(struct ahc_softc *ahc, struct ahc_devinfo *devinfo) { struct ahc_linux_target *targ; struct ahc_initiator_tinfo *tinfo; struct ahc_transinfo *goal; struct ahc_tmode_tstate *tstate; struct ahc_syncrate *syncrate; u_long s; u_int width; u_int period; u_int offset; u_int ppr_options; u_int cur_speed; u_int wide_speed; u_int narrow_speed; u_int fallback_speed; #ifdef AHC_DEBUG if (ahc_debug & AHC_SHOW_DV) { ahc_print_devinfo(ahc, devinfo); printf("Trying to fallback\n"); } #endif ahc_lock(ahc, &s); targ = ahc->platform_data->targets[devinfo->target_offset]; tinfo = ahc_fetch_transinfo(ahc, devinfo->channel, devinfo->our_scsiid, devinfo->target, &tstate); goal = &tinfo->goal; width = goal->width; period = goal->period; offset = goal->offset; ppr_options = goal->ppr_options; if (offset == 0) period = AHC_ASYNC_XFER_PERIOD; if (targ->dv_next_narrow_period == 0) targ->dv_next_narrow_period = MAX(period, AHC_SYNCRATE_ULTRA2); if (targ->dv_next_wide_period == 0) targ->dv_next_wide_period = period; if (targ->dv_max_width == 0) targ->dv_max_width = width; if (targ->dv_max_ppr_options == 0) targ->dv_max_ppr_options = ppr_options; if (targ->dv_last_ppr_options == 0) targ->dv_last_ppr_options = ppr_options; cur_speed = aic_calc_speed(width, period, offset, AHC_SYNCRATE_MIN); wide_speed = aic_calc_speed(MSG_EXT_WDTR_BUS_16_BIT, targ->dv_next_wide_period, MAX_OFFSET, AHC_SYNCRATE_MIN); narrow_speed = aic_calc_speed(MSG_EXT_WDTR_BUS_8_BIT, targ->dv_next_narrow_period, MAX_OFFSET, AHC_SYNCRATE_MIN); fallback_speed = aic_calc_speed(width, period+1, offset, AHC_SYNCRATE_MIN); #ifdef AHC_DEBUG if (ahc_debug & AHC_SHOW_DV) { printf("cur_speed= %d, wide_speed= %d, narrow_speed= %d, " "fallback_speed= %d\n", cur_speed, wide_speed, narrow_speed, fallback_speed); } #endif if (cur_speed > 160000) { /* * Paced/DT/IU_REQ only transfer speeds. All we * can do is fallback in terms of syncrate. */ period++; } else if (cur_speed > 80000) { if ((ppr_options & MSG_EXT_PPR_IU_REQ) != 0) { /* * Try without IU_REQ as it may be confusing * an expander. */ ppr_options &= ~MSG_EXT_PPR_IU_REQ; } else { /* * Paced/DT only transfer speeds. All we * can do is fallback in terms of syncrate. */ period++; ppr_options = targ->dv_max_ppr_options; } } else if (cur_speed > 3300) { /* * In this range we the following * options ordered from highest to * lowest desireability: * * o Wide/DT * o Wide/non-DT * o Narrow at a potentally higher sync rate. * * All modes are tested with and without IU_REQ * set since using IUs may confuse an expander. */ if ((ppr_options & MSG_EXT_PPR_IU_REQ) != 0) { ppr_options &= ~MSG_EXT_PPR_IU_REQ; } else if ((ppr_options & MSG_EXT_PPR_DT_REQ) != 0) { /* * Try going non-DT. */ ppr_options = targ->dv_max_ppr_options; ppr_options &= ~MSG_EXT_PPR_DT_REQ; } else if (targ->dv_last_ppr_options != 0) { /* * Try without QAS or any other PPR options. * We may need a non-PPR message to work with * an expander. We look at the "last PPR options" * so we will perform this fallback even if the * target responded to our PPR negotiation with * no option bits set. */ ppr_options = 0; } else if (width == MSG_EXT_WDTR_BUS_16_BIT) { /* * If the next narrow speed is greater than * the next wide speed, fallback to narrow. * Otherwise fallback to the next DT/Wide setting. * The narrow async speed will always be smaller * than the wide async speed, so handle this case * specifically. */ ppr_options = targ->dv_max_ppr_options; if (narrow_speed > fallback_speed || period >= AHC_ASYNC_XFER_PERIOD) { targ->dv_next_wide_period = period+1; width = MSG_EXT_WDTR_BUS_8_BIT; period = targ->dv_next_narrow_period; } else { period++; } } else if ((ahc->features & AHC_WIDE) != 0 && targ->dv_max_width != 0 && wide_speed >= fallback_speed && (targ->dv_next_wide_period <= AHC_ASYNC_XFER_PERIOD || period >= AHC_ASYNC_XFER_PERIOD)) { /* * We are narrow. Try falling back * to the next wide speed with * all supported ppr options set. */ targ->dv_next_narrow_period = period+1; width = MSG_EXT_WDTR_BUS_16_BIT; period = targ->dv_next_wide_period; ppr_options = targ->dv_max_ppr_options; } else { /* Only narrow fallback is allowed. */ period++; ppr_options = targ->dv_max_ppr_options; } } else { ahc_unlock(ahc, &s); return (-1); } offset = MAX_OFFSET; syncrate = ahc_find_syncrate(ahc, &period, &ppr_options, AHC_SYNCRATE_DT); ahc_set_width(ahc, devinfo, width, AHC_TRANS_GOAL, FALSE); if (period == 0) { period = 0; offset = 0; ppr_options = 0; if (width == MSG_EXT_WDTR_BUS_8_BIT) targ->dv_next_narrow_period = AHC_ASYNC_XFER_PERIOD; else targ->dv_next_wide_period = AHC_ASYNC_XFER_PERIOD; } ahc_set_syncrate(ahc, devinfo, syncrate, period, offset, ppr_options, AHC_TRANS_GOAL, FALSE); targ->dv_last_ppr_options = ppr_options; ahc_unlock(ahc, &s); return (0); } static void ahc_linux_dv_timeout(struct scsi_cmnd *cmd) { struct ahc_softc *ahc; struct scb *scb; u_long flags; ahc = *((struct ahc_softc **)cmd->device->host->hostdata); ahc_lock(ahc, &flags); #ifdef AHC_DEBUG if (ahc_debug & AHC_SHOW_DV) { printf("%s: Timeout while doing DV command %x.\n", ahc_name(ahc), cmd->cmnd[0]); ahc_dump_card_state(ahc); } #endif /* * Guard against "done race". No action is * required if we just completed. */ if ((scb = (struct scb *)cmd->host_scribble) == NULL) { ahc_unlock(ahc, &flags); return; } /* * Command has not completed. Mark this * SCB as having failing status prior to * resetting the bus, so we get the correct * error code. */ if ((scb->flags & SCB_SENSE) != 0) ahc_set_transaction_status(scb, CAM_AUTOSENSE_FAIL); else ahc_set_transaction_status(scb, CAM_CMD_TIMEOUT); ahc_reset_channel(ahc, cmd->device->channel + 'A', /*initiate*/TRUE); /* * Add a minimal bus settle delay for devices that are slow to * respond after bus resets. */ ahc_linux_freeze_simq(ahc); init_timer(&ahc->platform_data->reset_timer); ahc->platform_data->reset_timer.data = (u_long)ahc; ahc->platform_data->reset_timer.expires = jiffies + HZ / 2; ahc->platform_data->reset_timer.function = (ahc_linux_callback_t *)ahc_linux_release_simq; add_timer(&ahc->platform_data->reset_timer); if (ahc_linux_next_device_to_run(ahc) != NULL) ahc_schedule_runq(ahc); ahc_linux_run_complete_queue(ahc); ahc_unlock(ahc, &flags); } static void ahc_linux_dv_complete(struct scsi_cmnd *cmd) { struct ahc_softc *ahc; ahc = *((struct ahc_softc **)cmd->device->host->hostdata); /* Delete the DV timer before it goes off! */ scsi_delete_timer(cmd); #ifdef AHC_DEBUG if (ahc_debug & AHC_SHOW_DV) printf("%s:%d:%d: Command completed, status= 0x%x\n", ahc_name(ahc), cmd->device->channel, cmd->device->id, cmd->result); #endif /* Wake up the state machine */ up(&ahc->platform_data->dv_cmd_sem); } static void ahc_linux_generate_dv_pattern(struct ahc_linux_target *targ) { uint16_t b; u_int i; u_int j; if (targ->dv_buffer != NULL) free(targ->dv_buffer, M_DEVBUF); targ->dv_buffer = malloc(targ->dv_echo_size, M_DEVBUF, M_WAITOK); if (targ->dv_buffer1 != NULL) free(targ->dv_buffer1, M_DEVBUF); targ->dv_buffer1 = malloc(targ->dv_echo_size, M_DEVBUF, M_WAITOK); i = 0; b = 0x0001; for (j = 0 ; i < targ->dv_echo_size; j++) { if (j < 32) { /* * 32bytes of sequential numbers. */ targ->dv_buffer[i++] = j & 0xff; } else if (j < 48) { /* * 32bytes of repeating 0x0000, 0xffff. */ targ->dv_buffer[i++] = (j & 0x02) ? 0xff : 0x00; } else if (j < 64) { /* * 32bytes of repeating 0x5555, 0xaaaa. */ targ->dv_buffer[i++] = (j & 0x02) ? 0xaa : 0x55; } else { /* * Remaining buffer is filled with a repeating * patter of: * * 0xffff * ~0x0001 << shifted once in each loop. */ if (j & 0x02) { if (j & 0x01) { targ->dv_buffer[i++] = ~(b >> 8) & 0xff; b <<= 1; if (b == 0x0000) b = 0x0001; } else { targ->dv_buffer[i++] = (~b & 0xff); } } else { targ->dv_buffer[i++] = 0xff; } } } } static u_int ahc_linux_user_tagdepth(struct ahc_softc *ahc, struct ahc_devinfo *devinfo) { static int warned_user; u_int tags; tags = 0; if ((ahc->user_discenable & devinfo->target_mask) != 0) { if (ahc->unit >= NUM_ELEMENTS(aic7xxx_tag_info)) { if (warned_user == 0) { printf(KERN_WARNING "aic7xxx: WARNING: Insufficient tag_info instances\n" "aic7xxx: for installed controllers. Using defaults\n" "aic7xxx: Please update the aic7xxx_tag_info array in\n" "aic7xxx: the aic7xxx_osm..c source file.\n"); warned_user++; } tags = AHC_MAX_QUEUE; } else { adapter_tag_info_t *tag_info; tag_info = &aic7xxx_tag_info[ahc->unit]; tags = tag_info->tag_commands[devinfo->target_offset]; if (tags > AHC_MAX_QUEUE) tags = AHC_MAX_QUEUE; } } return (tags); } static u_int ahc_linux_user_dv_setting(struct ahc_softc *ahc) { static int warned_user; int dv; if (ahc->unit >= NUM_ELEMENTS(aic7xxx_dv_settings)) { if (warned_user == 0) { printf(KERN_WARNING "aic7xxx: WARNING: Insufficient dv settings instances\n" "aic7xxx: for installed controllers. Using defaults\n" "aic7xxx: Please update the aic7xxx_dv_settings array\n" "aic7xxx: in the aic7xxx_osm.c source file.\n"); warned_user++; } dv = -1; } else { dv = aic7xxx_dv_settings[ahc->unit]; } if (dv < 0) { u_long s; /* * Apply the default. */ /* * XXX - Enable DV on non-U160 controllers once it * has been tested there. */ ahc_lock(ahc, &s); dv = (ahc->features & AHC_DT); if (ahc->seep_config != 0 && ahc->seep_config->signature >= CFSIGNATURE2) dv = (ahc->seep_config->adapter_control & CFENABLEDV); ahc_unlock(ahc, &s); } return (dv); } /* * Determines the queue depth for a given device. */ static void ahc_linux_device_queue_depth(struct ahc_softc *ahc, struct ahc_linux_device *dev) { struct ahc_devinfo devinfo; u_int tags; ahc_compile_devinfo(&devinfo, dev->target->channel == 0 ? ahc->our_id : ahc->our_id_b, dev->target->target, dev->lun, dev->target->channel == 0 ? 'A' : 'B', ROLE_INITIATOR); tags = ahc_linux_user_tagdepth(ahc, &devinfo); if (tags != 0 && dev->scsi_device != NULL && dev->scsi_device->tagged_supported != 0) { ahc_set_tags(ahc, &devinfo, AHC_QUEUE_TAGGED); ahc_print_devinfo(ahc, &devinfo); printf("Tagged Queuing enabled. Depth %d\n", tags); } else { ahc_set_tags(ahc, &devinfo, AHC_QUEUE_NONE); } } static void ahc_linux_run_device_queue(struct ahc_softc *ahc, struct ahc_linux_device *dev) { struct ahc_cmd *acmd; struct scsi_cmnd *cmd; struct scb *scb; struct hardware_scb *hscb; struct ahc_initiator_tinfo *tinfo; struct ahc_tmode_tstate *tstate; uint16_t mask; if ((dev->flags & AHC_DEV_ON_RUN_LIST) != 0) panic("running device on run list"); while ((acmd = TAILQ_FIRST(&dev->busyq)) != NULL && dev->openings > 0 && dev->qfrozen == 0) { /* * Schedule us to run later. The only reason we are not * running is because the whole controller Q is frozen. */ if (ahc->platform_data->qfrozen != 0 && AHC_DV_SIMQ_FROZEN(ahc) == 0) { TAILQ_INSERT_TAIL(&ahc->platform_data->device_runq, dev, links); dev->flags |= AHC_DEV_ON_RUN_LIST; return; } /* * Get an scb to use. */ if ((scb = ahc_get_scb(ahc)) == NULL) { TAILQ_INSERT_TAIL(&ahc->platform_data->device_runq, dev, links); dev->flags |= AHC_DEV_ON_RUN_LIST; ahc->flags |= AHC_RESOURCE_SHORTAGE; return; } TAILQ_REMOVE(&dev->busyq, acmd, acmd_links.tqe); cmd = &acmd_scsi_cmd(acmd); scb->io_ctx = cmd; scb->platform_data->dev = dev; hscb = scb->hscb; cmd->host_scribble = (char *)scb; /* * Fill out basics of the HSCB. */ hscb->control = 0; hscb->scsiid = BUILD_SCSIID(ahc, cmd); hscb->lun = cmd->device->lun; mask = SCB_GET_TARGET_MASK(ahc, scb); tinfo = ahc_fetch_transinfo(ahc, SCB_GET_CHANNEL(ahc, scb), SCB_GET_OUR_ID(scb), SCB_GET_TARGET(ahc, scb), &tstate); hscb->scsirate = tinfo->scsirate; hscb->scsioffset = tinfo->curr.offset; if ((tstate->ultraenb & mask) != 0) hscb->control |= ULTRAENB; if ((ahc->user_discenable & mask) != 0) hscb->control |= DISCENB; if (AHC_DV_CMD(cmd) != 0) scb->flags |= SCB_SILENT; if ((tstate->auto_negotiate & mask) != 0) { scb->flags |= SCB_AUTO_NEGOTIATE; scb->hscb->control |= MK_MESSAGE; } if ((dev->flags & (AHC_DEV_Q_TAGGED|AHC_DEV_Q_BASIC)) != 0) { #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0) int msg_bytes; uint8_t tag_msgs[2]; msg_bytes = scsi_populate_tag_msg(cmd, tag_msgs); if (msg_bytes && tag_msgs[0] != MSG_SIMPLE_TASK) { hscb->control |= tag_msgs[0]; if (tag_msgs[0] == MSG_ORDERED_TASK) dev->commands_since_idle_or_otag = 0; } else #endif if (dev->commands_since_idle_or_otag == AHC_OTAG_THRESH && (dev->flags & AHC_DEV_Q_TAGGED) != 0) { hscb->control |= MSG_ORDERED_TASK; dev->commands_since_idle_or_otag = 0; } else { hscb->control |= MSG_SIMPLE_TASK; } } hscb->cdb_len = cmd->cmd_len; if (hscb->cdb_len <= 12) { memcpy(hscb->shared_data.cdb, cmd->cmnd, hscb->cdb_len); } else { memcpy(hscb->cdb32, cmd->cmnd, hscb->cdb_len); scb->flags |= SCB_CDB32_PTR; } scb->platform_data->xfer_len = 0; ahc_set_residual(scb, 0); ahc_set_sense_residual(scb, 0); scb->sg_count = 0; if (cmd->use_sg != 0) { struct ahc_dma_seg *sg; struct scatterlist *cur_seg; struct scatterlist *end_seg; int nseg; cur_seg = (struct scatterlist *)cmd->request_buffer; nseg = pci_map_sg(ahc->dev_softc, cur_seg, cmd->use_sg, scsi_to_pci_dma_dir(cmd->sc_data_direction)); end_seg = cur_seg + nseg; /* Copy the segments into the SG list. */ sg = scb->sg_list; /* * The sg_count may be larger than nseg if * a transfer crosses a 32bit page. */ while (cur_seg < end_seg) { bus_addr_t addr; bus_size_t len; int consumed; addr = sg_dma_address(cur_seg); len = sg_dma_len(cur_seg); consumed = ahc_linux_map_seg(ahc, scb, sg, addr, len); sg += consumed; scb->sg_count += consumed; cur_seg++; } sg--; sg->len |= ahc_htole32(AHC_DMA_LAST_SEG); /* * Reset the sg list pointer. */ scb->hscb->sgptr = ahc_htole32(scb->sg_list_phys | SG_FULL_RESID); /* * Copy the first SG into the "current" * data pointer area. */ scb->hscb->dataptr = scb->sg_list->addr; scb->hscb->datacnt = scb->sg_list->len; } else if (cmd->request_bufflen != 0) { struct ahc_dma_seg *sg; bus_addr_t addr; sg = scb->sg_list; addr = pci_map_single(ahc->dev_softc, cmd->request_buffer, cmd->request_bufflen, scsi_to_pci_dma_dir(cmd->sc_data_direction)); scb->platform_data->buf_busaddr = addr; scb->sg_count = ahc_linux_map_seg(ahc, scb, sg, addr, cmd->request_bufflen); sg->len |= ahc_htole32(AHC_DMA_LAST_SEG); /* * Reset the sg list pointer. */ scb->hscb->sgptr = ahc_htole32(scb->sg_list_phys | SG_FULL_RESID); /* * Copy the first SG into the "current" * data pointer area. */ scb->hscb->dataptr = sg->addr; scb->hscb->datacnt = sg->len; } else { scb->hscb->sgptr = ahc_htole32(SG_LIST_NULL); scb->hscb->dataptr = 0; scb->hscb->datacnt = 0; scb->sg_count = 0; } ahc_sync_sglist(ahc, scb, BUS_DMASYNC_PREWRITE); LIST_INSERT_HEAD(&ahc->pending_scbs, scb, pending_links); dev->openings--; dev->active++; dev->commands_issued++; if ((dev->flags & AHC_DEV_PERIODIC_OTAG) != 0) dev->commands_since_idle_or_otag++; /* * We only allow one untagged transaction * per target in the initiator role unless * we are storing a full busy target *lun* * table in SCB space. */ if ((scb->hscb->control & (TARGET_SCB|TAG_ENB)) == 0 && (ahc->features & AHC_SCB_BTT) == 0) { struct scb_tailq *untagged_q; int target_offset; target_offset = SCB_GET_TARGET_OFFSET(ahc, scb); untagged_q = &(ahc->untagged_queues[target_offset]); TAILQ_INSERT_TAIL(untagged_q, scb, links.tqe); scb->flags |= SCB_UNTAGGEDQ; if (TAILQ_FIRST(untagged_q) != scb) continue; } scb->flags |= SCB_ACTIVE; ahc_queue_scb(ahc, scb); } } /* * SCSI controller interrupt handler. */ irqreturn_t ahc_linux_isr(int irq, void *dev_id, struct pt_regs * regs) { struct ahc_softc *ahc; u_long flags; int ours; ahc = (struct ahc_softc *) dev_id; ahc_lock(ahc, &flags); ours = ahc_intr(ahc); if (ahc_linux_next_device_to_run(ahc) != NULL) ahc_schedule_runq(ahc); ahc_linux_run_complete_queue(ahc); ahc_unlock(ahc, &flags); return IRQ_RETVAL(ours); } void ahc_platform_flushwork(struct ahc_softc *ahc) { while (ahc_linux_run_complete_queue(ahc) != NULL) ; } static struct ahc_linux_target* ahc_linux_alloc_target(struct ahc_softc *ahc, u_int channel, u_int target) { struct ahc_linux_target *targ; u_int target_offset; target_offset = target; if (channel != 0) target_offset += 8; targ = malloc(sizeof(*targ), M_DEVBUG, M_NOWAIT); if (targ == NULL) return (NULL); memset(targ, 0, sizeof(*targ)); targ->channel = channel; targ->target = target; targ->ahc = ahc; targ->flags = AHC_DV_REQUIRED; ahc->platform_data->targets[target_offset] = targ; return (targ); } static void ahc_linux_free_target(struct ahc_softc *ahc, struct ahc_linux_target *targ) { struct ahc_devinfo devinfo; struct ahc_initiator_tinfo *tinfo; struct ahc_tmode_tstate *tstate; u_int our_id; u_int target_offset; char channel; /* * Force a negotiation to async/narrow on any * future command to this device unless a bus * reset occurs between now and that command. */ channel = 'A' + targ->channel; our_id = ahc->our_id; target_offset = targ->target; if (targ->channel != 0) { target_offset += 8; our_id = ahc->our_id_b; } tinfo = ahc_fetch_transinfo(ahc, channel, our_id, targ->target, &tstate); ahc_compile_devinfo(&devinfo, our_id, targ->target, CAM_LUN_WILDCARD, channel, ROLE_INITIATOR); ahc_set_syncrate(ahc, &devinfo, NULL, 0, 0, 0, AHC_TRANS_GOAL, /*paused*/FALSE); ahc_set_width(ahc, &devinfo, MSG_EXT_WDTR_BUS_8_BIT, AHC_TRANS_GOAL, /*paused*/FALSE); ahc_update_neg_request(ahc, &devinfo, tstate, tinfo, AHC_NEG_ALWAYS); ahc->platform_data->targets[target_offset] = NULL; if (targ->inq_data != NULL) free(targ->inq_data, M_DEVBUF); if (targ->dv_buffer != NULL) free(targ->dv_buffer, M_DEVBUF); if (targ->dv_buffer1 != NULL) free(targ->dv_buffer1, M_DEVBUF); free(targ, M_DEVBUF); } static struct ahc_linux_device* ahc_linux_alloc_device(struct ahc_softc *ahc, struct ahc_linux_target *targ, u_int lun) { struct ahc_linux_device *dev; dev = malloc(sizeof(*dev), M_DEVBUG, M_NOWAIT); if (dev == NULL) return (NULL); memset(dev, 0, sizeof(*dev)); init_timer(&dev->timer); TAILQ_INIT(&dev->busyq); dev->flags = AHC_DEV_UNCONFIGURED; dev->lun = lun; dev->target = targ; /* * We start out life using untagged * transactions of which we allow one. */ dev->openings = 1; /* * Set maxtags to 0. This will be changed if we * later determine that we are dealing with * a tagged queuing capable device. */ dev->maxtags = 0; targ->refcount++; targ->devices[lun] = dev; return (dev); } static void ahc_linux_free_device(struct ahc_softc *ahc, struct ahc_linux_device *dev) { struct ahc_linux_target *targ; del_timer_sync(&dev->timer); targ = dev->target; targ->devices[dev->lun] = NULL; free(dev, M_DEVBUF); targ->refcount--; if (targ->refcount == 0 && (targ->flags & AHC_DV_REQUIRED) == 0) ahc_linux_free_target(ahc, targ); } void ahc_send_async(struct ahc_softc *ahc, char channel, u_int target, u_int lun, ac_code code, void *arg) { switch (code) { case AC_TRANSFER_NEG: { char buf[80]; struct ahc_linux_target *targ; struct info_str info; struct ahc_initiator_tinfo *tinfo; struct ahc_tmode_tstate *tstate; int target_offset; info.buffer = buf; info.length = sizeof(buf); info.offset = 0; info.pos = 0; tinfo = ahc_fetch_transinfo(ahc, channel, channel == 'A' ? ahc->our_id : ahc->our_id_b, target, &tstate); /* * Don't bother reporting results while * negotiations are still pending. */ if (tinfo->curr.period != tinfo->goal.period || tinfo->curr.width != tinfo->goal.width || tinfo->curr.offset != tinfo->goal.offset || tinfo->curr.ppr_options != tinfo->goal.ppr_options) if (bootverbose == 0) break; /* * Don't bother reporting results that * are identical to those last reported. */ target_offset = target; if (channel == 'B') target_offset += 8; targ = ahc->platform_data->targets[target_offset]; if (targ == NULL) break; if (tinfo->curr.period == targ->last_tinfo.period && tinfo->curr.width == targ->last_tinfo.width && tinfo->curr.offset == targ->last_tinfo.offset && tinfo->curr.ppr_options == targ->last_tinfo.ppr_options) if (bootverbose == 0) break; targ->last_tinfo.period = tinfo->curr.period; targ->last_tinfo.width = tinfo->curr.width; targ->last_tinfo.offset = tinfo->curr.offset; targ->last_tinfo.ppr_options = tinfo->curr.ppr_options; printf("(%s:%c:", ahc_name(ahc), channel); if (target == CAM_TARGET_WILDCARD) printf("*): "); else printf("%d): ", target); ahc_format_transinfo(&info, &tinfo->curr); if (info.pos < info.length) *info.buffer = '\0'; else buf[info.length - 1] = '\0'; printf("%s", buf); break; } case AC_SENT_BDR: { #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0) WARN_ON(lun != CAM_LUN_WILDCARD); scsi_report_device_reset(ahc->platform_data->host, channel - 'A', target); #elif LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0) Scsi_Device *scsi_dev; /* * Find the SCSI device associated with this * request and indicate that a UA is expected. */ for (scsi_dev = ahc->platform_data->host->host_queue; scsi_dev != NULL; scsi_dev = scsi_dev->next) { if (channel - 'A' == scsi_dev->channel && target == scsi_dev->id && (lun == CAM_LUN_WILDCARD || lun == scsi_dev->lun)) { scsi_dev->was_reset = 1; scsi_dev->expecting_cc_ua = 1; } } #endif break; } case AC_BUS_RESET: #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0) if (ahc->platform_data->host != NULL) { scsi_report_bus_reset(ahc->platform_data->host, channel - 'A'); } #endif break; default: panic("ahc_send_async: Unexpected async event"); } } /* * Calls the higher level scsi done function and frees the scb. */ void ahc_done(struct ahc_softc *ahc, struct scb *scb) { Scsi_Cmnd *cmd; struct ahc_linux_device *dev; LIST_REMOVE(scb, pending_links); if ((scb->flags & SCB_UNTAGGEDQ) != 0) { struct scb_tailq *untagged_q; int target_offset; target_offset = SCB_GET_TARGET_OFFSET(ahc, scb); untagged_q = &(ahc->untagged_queues[target_offset]); TAILQ_REMOVE(untagged_q, scb, links.tqe); ahc_run_untagged_queue(ahc, untagged_q); } if ((scb->flags & SCB_ACTIVE) == 0) { printf("SCB %d done'd twice\n", scb->hscb->tag); ahc_dump_card_state(ahc); panic("Stopping for safety"); } cmd = scb->io_ctx; dev = scb->platform_data->dev; dev->active--; dev->openings++; if ((cmd->result & (CAM_DEV_QFRZN << 16)) != 0) { cmd->result &= ~(CAM_DEV_QFRZN << 16); dev->qfrozen--; } ahc_linux_unmap_scb(ahc, scb); /* * Guard against stale sense data. * The Linux mid-layer assumes that sense * was retrieved anytime the first byte of * the sense buffer looks "sane". */ cmd->sense_buffer[0] = 0; if (ahc_get_transaction_status(scb) == CAM_REQ_INPROG) { uint32_t amount_xferred; amount_xferred = ahc_get_transfer_length(scb) - ahc_get_residual(scb); if ((scb->flags & SCB_TRANSMISSION_ERROR) != 0) { #ifdef AHC_DEBUG if ((ahc_debug & AHC_SHOW_MISC) != 0) { ahc_print_path(ahc, scb); printf("Set CAM_UNCOR_PARITY\n"); } #endif ahc_set_transaction_status(scb, CAM_UNCOR_PARITY); #ifdef AHC_REPORT_UNDERFLOWS /* * This code is disabled by default as some * clients of the SCSI system do not properly * initialize the underflow parameter. This * results in spurious termination of commands * that complete as expected (e.g. underflow is * allowed as command can return variable amounts * of data. */ } else if (amount_xferred < scb->io_ctx->underflow) { u_int i; ahc_print_path(ahc, scb); printf("CDB:"); for (i = 0; i < scb->io_ctx->cmd_len; i++) printf(" 0x%x", scb->io_ctx->cmnd[i]); printf("\n"); ahc_print_path(ahc, scb); printf("Saw underflow (%ld of %ld bytes). " "Treated as error\n", ahc_get_residual(scb), ahc_get_transfer_length(scb)); ahc_set_transaction_status(scb, CAM_DATA_RUN_ERR); #endif } else { ahc_set_transaction_status(scb, CAM_REQ_CMP); } } else if (ahc_get_transaction_status(scb) == CAM_SCSI_STATUS_ERROR) { ahc_linux_handle_scsi_status(ahc, dev, scb); } else if (ahc_get_transaction_status(scb) == CAM_SEL_TIMEOUT) { dev->flags |= AHC_DEV_UNCONFIGURED; if (AHC_DV_CMD(cmd) == FALSE) dev->target->flags &= ~AHC_DV_REQUIRED; } /* * Start DV for devices that require it assuming the first command * sent does not result in a selection timeout. */ if (ahc_get_transaction_status(scb) != CAM_SEL_TIMEOUT && (dev->target->flags & AHC_DV_REQUIRED) != 0) ahc_linux_start_dv(ahc); if (dev->openings == 1 && ahc_get_transaction_status(scb) == CAM_REQ_CMP && ahc_get_scsi_status(scb) != SCSI_STATUS_QUEUE_FULL) dev->tag_success_count++; /* * Some devices deal with temporary internal resource * shortages by returning queue full. When the queue * full occurrs, we throttle back. Slowly try to get * back to our previous queue depth. */ if ((dev->openings + dev->active) < dev->maxtags && dev->tag_success_count > AHC_TAG_SUCCESS_INTERVAL) { dev->tag_success_count = 0; dev->openings++; } if (dev->active == 0) dev->commands_since_idle_or_otag = 0; if (TAILQ_EMPTY(&dev->busyq)) { if ((dev->flags & AHC_DEV_UNCONFIGURED) != 0 && dev->active == 0 && (dev->flags & AHC_DEV_TIMER_ACTIVE) == 0) ahc_linux_free_device(ahc, dev); } else if ((dev->flags & AHC_DEV_ON_RUN_LIST) == 0) { TAILQ_INSERT_TAIL(&ahc->platform_data->device_runq, dev, links); dev->flags |= AHC_DEV_ON_RUN_LIST; } if ((scb->flags & SCB_RECOVERY_SCB) != 0) { printf("Recovery SCB completes\n"); if (ahc_get_transaction_status(scb) == CAM_BDR_SENT || ahc_get_transaction_status(scb) == CAM_REQ_ABORTED) ahc_set_transaction_status(scb, CAM_CMD_TIMEOUT); if ((ahc->platform_data->flags & AHC_UP_EH_SEMAPHORE) != 0) { ahc->platform_data->flags &= ~AHC_UP_EH_SEMAPHORE; up(&ahc->platform_data->eh_sem); } } ahc_free_scb(ahc, scb); ahc_linux_queue_cmd_complete(ahc, cmd); if ((ahc->platform_data->flags & AHC_DV_WAIT_SIMQ_EMPTY) != 0 && LIST_FIRST(&ahc->pending_scbs) == NULL) { ahc->platform_data->flags &= ~AHC_DV_WAIT_SIMQ_EMPTY; up(&ahc->platform_data->dv_sem); } } static void ahc_linux_handle_scsi_status(struct ahc_softc *ahc, struct ahc_linux_device *dev, struct scb *scb) { struct ahc_devinfo devinfo; ahc_compile_devinfo(&devinfo, ahc->our_id, dev->target->target, dev->lun, dev->target->channel == 0 ? 'A' : 'B', ROLE_INITIATOR); /* * We don't currently trust the mid-layer to * properly deal with queue full or busy. So, * when one occurs, we tell the mid-layer to * unconditionally requeue the command to us * so that we can retry it ourselves. We also * implement our own throttling mechanism so * we don't clobber the device with too many * commands. */ switch (ahc_get_scsi_status(scb)) { default: break; case SCSI_STATUS_CHECK_COND: case SCSI_STATUS_CMD_TERMINATED: { Scsi_Cmnd *cmd; /* * Copy sense information to the OS's cmd * structure if it is available. */ cmd = scb->io_ctx; if (scb->flags & SCB_SENSE) { u_int sense_size; sense_size = MIN(sizeof(struct scsi_sense_data) - ahc_get_sense_residual(scb), sizeof(cmd->sense_buffer)); memcpy(cmd->sense_buffer, ahc_get_sense_buf(ahc, scb), sense_size); if (sense_size < sizeof(cmd->sense_buffer)) memset(&cmd->sense_buffer[sense_size], 0, sizeof(cmd->sense_buffer) - sense_size); cmd->result |= (DRIVER_SENSE << 24); #ifdef AHC_DEBUG if (ahc_debug & AHC_SHOW_SENSE) { int i; printf("Copied %d bytes of sense data:", sense_size); for (i = 0; i < sense_size; i++) { if ((i & 0xF) == 0) printf("\n"); printf("0x%x ", cmd->sense_buffer[i]); } printf("\n"); } #endif } break; } case SCSI_STATUS_QUEUE_FULL: { /* * By the time the core driver has returned this * command, all other commands that were queued * to us but not the device have been returned. * This ensures that dev->active is equal to * the number of commands actually queued to * the device. */ dev->tag_success_count = 0; if (dev->active != 0) { /* * Drop our opening count to the number * of commands currently outstanding. */ dev->openings = 0; /* ahc_print_path(ahc, scb); printf("Dropping tag count to %d\n", dev->active); */ if (dev->active == dev->tags_on_last_queuefull) { dev->last_queuefull_same_count++; /* * If we repeatedly see a queue full * at the same queue depth, this * device has a fixed number of tag * slots. Lock in this tag depth * so we stop seeing queue fulls from * this device. */ if (dev->last_queuefull_same_count == AHC_LOCK_TAGS_COUNT) { dev->maxtags = dev->active; ahc_print_path(ahc, scb); printf("Locking max tag count at %d\n", dev->active); } } else { dev->tags_on_last_queuefull = dev->active; dev->last_queuefull_same_count = 0; } ahc_set_transaction_status(scb, CAM_REQUEUE_REQ); ahc_set_scsi_status(scb, SCSI_STATUS_OK); ahc_platform_set_tags(ahc, &devinfo, (dev->flags & AHC_DEV_Q_BASIC) ? AHC_QUEUE_BASIC : AHC_QUEUE_TAGGED); break; } /* * Drop down to a single opening, and treat this * as if the target returned BUSY SCSI status. */ dev->openings = 1; ahc_set_scsi_status(scb, SCSI_STATUS_BUSY); ahc_platform_set_tags(ahc, &devinfo, (dev->flags & AHC_DEV_Q_BASIC) ? AHC_QUEUE_BASIC : AHC_QUEUE_TAGGED); /* FALLTHROUGH */ } case SCSI_STATUS_BUSY: { /* * Set a short timer to defer sending commands for * a bit since Linux will not delay in this case. */ if ((dev->flags & AHC_DEV_TIMER_ACTIVE) != 0) { printf("%s:%c:%d: Device Timer still active during " "busy processing\n", ahc_name(ahc), dev->target->channel, dev->target->target); break; } dev->flags |= AHC_DEV_TIMER_ACTIVE; dev->qfrozen++; init_timer(&dev->timer); dev->timer.data = (u_long)dev; dev->timer.expires = jiffies + (HZ/2); dev->timer.function = ahc_linux_dev_timed_unfreeze; add_timer(&dev->timer); break; } } } static void ahc_linux_queue_cmd_complete(struct ahc_softc *ahc, Scsi_Cmnd *cmd) { /* * Typically, the complete queue has very few entries * queued to it before the queue is emptied by * ahc_linux_run_complete_queue, so sorting the entries * by generation number should be inexpensive. * We perform the sort so that commands that complete * with an error are retuned in the order origionally * queued to the controller so that any subsequent retries * are performed in order. The underlying ahc routines do * not guarantee the order that aborted commands will be * returned to us. */ struct ahc_completeq *completeq; struct ahc_cmd *list_cmd; struct ahc_cmd *acmd; /* * Map CAM error codes into Linux Error codes. We * avoid the conversion so that the DV code has the * full error information available when making * state change decisions. */ if (AHC_DV_CMD(cmd) == FALSE) { u_int new_status; switch (ahc_cmd_get_transaction_status(cmd)) { case CAM_REQ_INPROG: case CAM_REQ_CMP: case CAM_SCSI_STATUS_ERROR: new_status = DID_OK; break; case CAM_REQ_ABORTED: new_status = DID_ABORT; break; case CAM_BUSY: new_status = DID_BUS_BUSY; break; case CAM_REQ_INVALID: case CAM_PATH_INVALID: new_status = DID_BAD_TARGET; break; case CAM_SEL_TIMEOUT: new_status = DID_NO_CONNECT; break; case CAM_SCSI_BUS_RESET: case CAM_BDR_SENT: new_status = DID_RESET; break; case CAM_UNCOR_PARITY: new_status = DID_PARITY; break; case CAM_CMD_TIMEOUT: new_status = DID_TIME_OUT; break; case CAM_UA_ABORT: case CAM_REQ_CMP_ERR: case CAM_AUTOSENSE_FAIL: case CAM_NO_HBA: case CAM_DATA_RUN_ERR: case CAM_UNEXP_BUSFREE: case CAM_SEQUENCE_FAIL: case CAM_CCB_LEN_ERR: case CAM_PROVIDE_FAIL: case CAM_REQ_TERMIO: case CAM_UNREC_HBA_ERROR: case CAM_REQ_TOO_BIG: new_status = DID_ERROR; break; case CAM_REQUEUE_REQ: /* * If we want the request requeued, make sure there * are sufficent retries. In the old scsi error code, * we used to be able to specify a result code that * bypassed the retry count. Now we must use this * hack. We also "fake" a check condition with * a sense code of ABORTED COMMAND. This seems to * evoke a retry even if this command is being sent * via the eh thread. Ick! Ick! Ick! */ if (cmd->retries > 0) cmd->retries--; new_status = DID_OK; ahc_cmd_set_scsi_status(cmd, SCSI_STATUS_CHECK_COND); cmd->result |= (DRIVER_SENSE << 24); memset(cmd->sense_buffer, 0, sizeof(cmd->sense_buffer)); cmd->sense_buffer[0] = SSD_ERRCODE_VALID | SSD_CURRENT_ERROR; cmd->sense_buffer[2] = SSD_KEY_ABORTED_COMMAND; break; default: /* We should never get here */ new_status = DID_ERROR; break; } ahc_cmd_set_transaction_status(cmd, new_status); } completeq = &ahc->platform_data->completeq; list_cmd = TAILQ_FIRST(completeq); acmd = (struct ahc_cmd *)cmd; while (list_cmd != NULL && acmd_scsi_cmd(list_cmd).serial_number < acmd_scsi_cmd(acmd).serial_number) list_cmd = TAILQ_NEXT(list_cmd, acmd_links.tqe); if (list_cmd != NULL) TAILQ_INSERT_BEFORE(list_cmd, acmd, acmd_links.tqe); else TAILQ_INSERT_TAIL(completeq, acmd, acmd_links.tqe); } static void ahc_linux_filter_inquiry(struct ahc_softc *ahc, struct ahc_devinfo *devinfo) { struct scsi_inquiry_data *sid; struct ahc_initiator_tinfo *tinfo; struct ahc_transinfo *user; struct ahc_transinfo *goal; struct ahc_transinfo *curr; struct ahc_tmode_tstate *tstate; struct ahc_syncrate *syncrate; struct ahc_linux_device *dev; u_int maxsync; u_int width; u_int period; u_int offset; u_int ppr_options; u_int trans_version; u_int prot_version; /* * Determine if this lun actually exists. If so, * hold on to its corresponding device structure. * If not, make sure we release the device and * don't bother processing the rest of this inquiry * command. */ dev = ahc_linux_get_device(ahc, devinfo->channel - 'A', devinfo->target, devinfo->lun, /*alloc*/TRUE); sid = (struct scsi_inquiry_data *)dev->target->inq_data; if (SID_QUAL(sid) == SID_QUAL_LU_CONNECTED) { dev->flags &= ~AHC_DEV_UNCONFIGURED; } else { dev->flags |= AHC_DEV_UNCONFIGURED; return; } /* * Update our notion of this device's transfer * negotiation capabilities. */ tinfo = ahc_fetch_transinfo(ahc, devinfo->channel, devinfo->our_scsiid, devinfo->target, &tstate); user = &tinfo->user; goal = &tinfo->goal; curr = &tinfo->curr; width = user->width; period = user->period; offset = user->offset; ppr_options = user->ppr_options; trans_version = user->transport_version; prot_version = MIN(user->protocol_version, SID_ANSI_REV(sid)); /* * Only attempt SPI3/4 once we've verified that * the device claims to support SPI3/4 features. */ if (prot_version < SCSI_REV_2) trans_version = SID_ANSI_REV(sid); else trans_version = SCSI_REV_2; if ((sid->flags & SID_WBus16) == 0) width = MSG_EXT_WDTR_BUS_8_BIT; if ((sid->flags & SID_Sync) == 0) { period = 0; offset = 0; ppr_options = 0; } if ((sid->spi3data & SID_SPI_QAS) == 0) ppr_options &= ~MSG_EXT_PPR_QAS_REQ; if ((sid->spi3data & SID_SPI_CLOCK_DT) == 0) ppr_options &= MSG_EXT_PPR_QAS_REQ; if ((sid->spi3data & SID_SPI_IUS) == 0) ppr_options &= (MSG_EXT_PPR_DT_REQ | MSG_EXT_PPR_QAS_REQ); if (prot_version > SCSI_REV_2 && ppr_options != 0) trans_version = user->transport_version; ahc_validate_width(ahc, /*tinfo limit*/NULL, &width, ROLE_UNKNOWN); if ((ahc->features & AHC_ULTRA2) != 0) maxsync = AHC_SYNCRATE_DT; else if ((ahc->features & AHC_ULTRA) != 0) maxsync = AHC_SYNCRATE_ULTRA; else maxsync = AHC_SYNCRATE_FAST; syncrate = ahc_find_syncrate(ahc, &period, &ppr_options, maxsync); ahc_validate_offset(ahc, /*tinfo limit*/NULL, syncrate, &offset, width, ROLE_UNKNOWN); if (offset == 0 || period == 0) { period = 0; offset = 0; ppr_options = 0; } /* Apply our filtered user settings. */ curr->transport_version = trans_version; curr->protocol_version = prot_version; ahc_set_width(ahc, devinfo, width, AHC_TRANS_GOAL, /*paused*/FALSE); ahc_set_syncrate(ahc, devinfo, syncrate, period, offset, ppr_options, AHC_TRANS_GOAL, /*paused*/FALSE); } static void ahc_linux_sem_timeout(u_long arg) { struct ahc_softc *ahc; u_long s; ahc = (struct ahc_softc *)arg; ahc_lock(ahc, &s); if ((ahc->platform_data->flags & AHC_UP_EH_SEMAPHORE) != 0) { ahc->platform_data->flags &= ~AHC_UP_EH_SEMAPHORE; up(&ahc->platform_data->eh_sem); } ahc_unlock(ahc, &s); } static void ahc_linux_freeze_simq(struct ahc_softc *ahc) { ahc->platform_data->qfrozen++; if (ahc->platform_data->qfrozen == 1) { scsi_block_requests(ahc->platform_data->host); /* XXX What about Twin channels? */ ahc_platform_abort_scbs(ahc, CAM_TARGET_WILDCARD, ALL_CHANNELS, CAM_LUN_WILDCARD, SCB_LIST_NULL, ROLE_INITIATOR, CAM_REQUEUE_REQ); } } static void ahc_linux_release_simq(u_long arg) { struct ahc_softc *ahc; u_long s; int unblock_reqs; ahc = (struct ahc_softc *)arg; unblock_reqs = 0; ahc_lock(ahc, &s); if (ahc->platform_data->qfrozen > 0) ahc->platform_data->qfrozen--; if (ahc->platform_data->qfrozen == 0) unblock_reqs = 1; if (AHC_DV_SIMQ_FROZEN(ahc) && ((ahc->platform_data->flags & AHC_DV_WAIT_SIMQ_RELEASE) != 0)) { ahc->platform_data->flags &= ~AHC_DV_WAIT_SIMQ_RELEASE; up(&ahc->platform_data->dv_sem); } ahc_schedule_runq(ahc); ahc_unlock(ahc, &s); /* * There is still a race here. The mid-layer * should keep its own freeze count and use * a bottom half handler to run the queues * so we can unblock with our own lock held. */ if (unblock_reqs) scsi_unblock_requests(ahc->platform_data->host); } static void ahc_linux_dev_timed_unfreeze(u_long arg) { struct ahc_linux_device *dev; struct ahc_softc *ahc; u_long s; dev = (struct ahc_linux_device *)arg; ahc = dev->target->ahc; ahc_lock(ahc, &s); dev->flags &= ~AHC_DEV_TIMER_ACTIVE; if (dev->qfrozen > 0) dev->qfrozen--; if (dev->qfrozen == 0 && (dev->flags & AHC_DEV_ON_RUN_LIST) == 0) ahc_linux_run_device_queue(ahc, dev); if (TAILQ_EMPTY(&dev->busyq) && dev->active == 0) ahc_linux_free_device(ahc, dev); ahc_unlock(ahc, &s); } static int ahc_linux_queue_recovery_cmd(Scsi_Cmnd *cmd, scb_flag flag) { struct ahc_softc *ahc; struct ahc_cmd *acmd; struct ahc_cmd *list_acmd; struct ahc_linux_device *dev; struct scb *pending_scb; u_long s; u_int saved_scbptr; u_int active_scb_index; u_int last_phase; u_int saved_scsiid; u_int cdb_byte; int retval; int was_paused; int paused; int wait; int disconnected; pending_scb = NULL; paused = FALSE; wait = FALSE; ahc = *(struct ahc_softc **)cmd->device->host->hostdata; acmd = (struct ahc_cmd *)cmd; printf("%s:%d:%d:%d: Attempting to queue a%s message\n", ahc_name(ahc), cmd->device->channel, cmd->device->id, cmd->device->lun, flag == SCB_ABORT ? "n ABORT" : " TARGET RESET"); printf("CDB:"); for (cdb_byte = 0; cdb_byte < cmd->cmd_len; cdb_byte++) printf(" 0x%x", cmd->cmnd[cdb_byte]); printf("\n"); /* * In all versions of Linux, we have to work around * a major flaw in how the mid-layer is locked down * if we are to sleep successfully in our error handler * while allowing our interrupt handler to run. Since * the midlayer acquires either the io_request_lock or * our lock prior to calling us, we must use the * spin_unlock_irq() method for unlocking our lock. * This will force interrupts to be enabled on the * current CPU. Since the EH thread should not have * been running with CPU interrupts disabled other than * by acquiring either the io_request_lock or our own * lock, this *should* be safe. */ ahc_midlayer_entrypoint_lock(ahc, &s); /* * First determine if we currently own this command. * Start by searching the device queue. If not found * there, check the pending_scb list. If not found * at all, and the system wanted us to just abort the * command, return success. */ dev = ahc_linux_get_device(ahc, cmd->device->channel, cmd->device->id, cmd->device->lun, /*alloc*/FALSE); if (dev == NULL) { /* * No target device for this command exists, * so we must not still own the command. */ printf("%s:%d:%d:%d: Is not an active device\n", ahc_name(ahc), cmd->device->channel, cmd->device->id, cmd->device->lun); retval = SUCCESS; goto no_cmd; } TAILQ_FOREACH(list_acmd, &dev->busyq, acmd_links.tqe) { if (list_acmd == acmd) break; } if (list_acmd != NULL) { printf("%s:%d:%d:%d: Command found on device queue\n", ahc_name(ahc), cmd->device->channel, cmd->device->id, cmd->device->lun); if (flag == SCB_ABORT) { TAILQ_REMOVE(&dev->busyq, list_acmd, acmd_links.tqe); cmd->result = DID_ABORT << 16; ahc_linux_queue_cmd_complete(ahc, cmd); retval = SUCCESS; goto done; } } if ((dev->flags & (AHC_DEV_Q_BASIC|AHC_DEV_Q_TAGGED)) == 0 && ahc_search_untagged_queues(ahc, cmd, cmd->device->id, cmd->device->channel + 'A', cmd->device->lun, CAM_REQ_ABORTED, SEARCH_COMPLETE) != 0) { printf("%s:%d:%d:%d: Command found on untagged queue\n", ahc_name(ahc), cmd->device->channel, cmd->device->id, cmd->device->lun); retval = SUCCESS; goto done; } /* * See if we can find a matching cmd in the pending list. */ LIST_FOREACH(pending_scb, &ahc->pending_scbs, pending_links) { if (pending_scb->io_ctx == cmd) break; } if (pending_scb == NULL && flag == SCB_DEVICE_RESET) { /* Any SCB for this device will do for a target reset */ LIST_FOREACH(pending_scb, &ahc->pending_scbs, pending_links) { if (ahc_match_scb(ahc, pending_scb, cmd->device->id, cmd->device->channel + 'A', CAM_LUN_WILDCARD, SCB_LIST_NULL, ROLE_INITIATOR) == 0) break; } } if (pending_scb == NULL) { printf("%s:%d:%d:%d: Command not found\n", ahc_name(ahc), cmd->device->channel, cmd->device->id, cmd->device->lun); goto no_cmd; } if ((pending_scb->flags & SCB_RECOVERY_SCB) != 0) { /* * We can't queue two recovery actions using the same SCB */ retval = FAILED; goto done; } /* * Ensure that the card doesn't do anything * behind our back and that we didn't "just" miss * an interrupt that would affect this cmd. */ was_paused = ahc_is_paused(ahc); ahc_pause_and_flushwork(ahc); paused = TRUE; if ((pending_scb->flags & SCB_ACTIVE) == 0) { printf("%s:%d:%d:%d: Command already completed\n", ahc_name(ahc), cmd->device->channel, cmd->device->id, cmd->device->lun); goto no_cmd; } printf("%s: At time of recovery, card was %spaused\n", ahc_name(ahc), was_paused ? "" : "not "); ahc_dump_card_state(ahc); disconnected = TRUE; if (flag == SCB_ABORT) { if (ahc_search_qinfifo(ahc, cmd->device->id, cmd->device->channel + 'A', cmd->device->lun, pending_scb->hscb->tag, ROLE_INITIATOR, CAM_REQ_ABORTED, SEARCH_COMPLETE) > 0) { printf("%s:%d:%d:%d: Cmd aborted from QINFIFO\n", ahc_name(ahc), cmd->device->channel, cmd->device->id, cmd->device->lun); retval = SUCCESS; goto done; } } else if (ahc_search_qinfifo(ahc, cmd->device->id, cmd->device->channel + 'A', cmd->device->lun, pending_scb->hscb->tag, ROLE_INITIATOR, /*status*/0, SEARCH_COUNT) > 0) { disconnected = FALSE; } if (disconnected && (ahc_inb(ahc, SEQ_FLAGS) & NOT_IDENTIFIED) == 0) { struct scb *bus_scb; bus_scb = ahc_lookup_scb(ahc, ahc_inb(ahc, SCB_TAG)); if (bus_scb == pending_scb) disconnected = FALSE; else if (flag != SCB_ABORT && ahc_inb(ahc, SAVED_SCSIID) == pending_scb->hscb->scsiid && ahc_inb(ahc, SAVED_LUN) == SCB_GET_LUN(pending_scb)) disconnected = FALSE; } /* * At this point, pending_scb is the scb associated with the * passed in command. That command is currently active on the * bus, is in the disconnected state, or we're hoping to find * a command for the same target active on the bus to abuse to * send a BDR. Queue the appropriate message based on which of * these states we are in. */ last_phase = ahc_inb(ahc, LASTPHASE); saved_scbptr = ahc_inb(ahc, SCBPTR); active_scb_index = ahc_inb(ahc, SCB_TAG); saved_scsiid = ahc_inb(ahc, SAVED_SCSIID); if (last_phase != P_BUSFREE && (pending_scb->hscb->tag == active_scb_index || (flag == SCB_DEVICE_RESET && SCSIID_TARGET(ahc, saved_scsiid) == cmd->device->id))) { /* * We're active on the bus, so assert ATN * and hope that the target responds. */ pending_scb = ahc_lookup_scb(ahc, active_scb_index); pending_scb->flags |= SCB_RECOVERY_SCB|flag; ahc_outb(ahc, MSG_OUT, HOST_MSG); ahc_outb(ahc, SCSISIGO, last_phase|ATNO); printf("%s:%d:%d:%d: Device is active, asserting ATN\n", ahc_name(ahc), cmd->device->channel, cmd->device->id, cmd->device->lun); wait = TRUE; } else if (disconnected) { /* * Actually re-queue this SCB in an attempt * to select the device before it reconnects. * In either case (selection or reselection), * we will now issue the approprate message * to the timed-out device. * * Set the MK_MESSAGE control bit indicating * that we desire to send a message. We * also set the disconnected flag since * in the paging case there is no guarantee * that our SCB control byte matches the * version on the card. We don't want the * sequencer to abort the command thinking * an unsolicited reselection occurred. */ pending_scb->hscb->control |= MK_MESSAGE|DISCONNECTED; pending_scb->flags |= SCB_RECOVERY_SCB|flag; /* * Remove any cached copy of this SCB in the * disconnected list in preparation for the * queuing of our abort SCB. We use the * same element in the SCB, SCB_NEXT, for * both the qinfifo and the disconnected list. */ ahc_search_disc_list(ahc, cmd->device->id, cmd->device->channel + 'A', cmd->device->lun, pending_scb->hscb->tag, /*stop_on_first*/TRUE, /*remove*/TRUE, /*save_state*/FALSE); /* * In the non-paging case, the sequencer will * never re-reference the in-core SCB. * To make sure we are notified during * reslection, set the MK_MESSAGE flag in * the card's copy of the SCB. */ if ((ahc->flags & AHC_PAGESCBS) == 0) { ahc_outb(ahc, SCBPTR, pending_scb->hscb->tag); ahc_outb(ahc, SCB_CONTROL, ahc_inb(ahc, SCB_CONTROL)|MK_MESSAGE); } /* * Clear out any entries in the QINFIFO first * so we are the next SCB for this target * to run. */ ahc_search_qinfifo(ahc, cmd->device->id, cmd->device->channel + 'A', cmd->device->lun, SCB_LIST_NULL, ROLE_INITIATOR, CAM_REQUEUE_REQ, SEARCH_COMPLETE); ahc_qinfifo_requeue_tail(ahc, pending_scb); ahc_outb(ahc, SCBPTR, saved_scbptr); ahc_print_path(ahc, pending_scb); printf("Device is disconnected, re-queuing SCB\n"); wait = TRUE; } else { printf("%s:%d:%d:%d: Unable to deliver message\n", ahc_name(ahc), cmd->device->channel, cmd->device->id, cmd->device->lun); retval = FAILED; goto done; } no_cmd: /* * Our assumption is that if we don't have the command, no * recovery action was required, so we return success. Again, * the semantics of the mid-layer recovery engine are not * well defined, so this may change in time. */ retval = SUCCESS; done: if (paused) ahc_unpause(ahc); if (wait) { struct timer_list timer; int ret; ahc->platform_data->flags |= AHC_UP_EH_SEMAPHORE; spin_unlock_irq(&ahc->platform_data->spin_lock); init_timer(&timer); timer.data = (u_long)ahc; timer.expires = jiffies + (5 * HZ); timer.function = ahc_linux_sem_timeout; add_timer(&timer); printf("Recovery code sleeping\n"); down(&ahc->platform_data->eh_sem); printf("Recovery code awake\n"); ret = del_timer_sync(&timer); if (ret == 0) { printf("Timer Expired\n"); retval = FAILED; } spin_lock_irq(&ahc->platform_data->spin_lock); } ahc_schedule_runq(ahc); ahc_linux_run_complete_queue(ahc); ahc_midlayer_entrypoint_unlock(ahc, &s); return (retval); } void ahc_platform_dump_card_state(struct ahc_softc *ahc) { struct ahc_linux_device *dev; int channel; int maxchannel; int target; int maxtarget; int lun; int i; maxchannel = (ahc->features & AHC_TWIN) ? 1 : 0; maxtarget = (ahc->features & AHC_WIDE) ? 15 : 7; for (channel = 0; channel <= maxchannel; channel++) { for (target = 0; target <=maxtarget; target++) { for (lun = 0; lun < AHC_NUM_LUNS; lun++) { struct ahc_cmd *acmd; dev = ahc_linux_get_device(ahc, channel, target, lun, /*alloc*/FALSE); if (dev == NULL) continue; printf("DevQ(%d:%d:%d): ", channel, target, lun); i = 0; TAILQ_FOREACH(acmd, &dev->busyq, acmd_links.tqe) { if (i++ > AHC_SCB_MAX) break; } printf("%d waiting\n", i); } } } } static int __init ahc_linux_init(void) { #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0) return (ahc_linux_detect(&aic7xxx_driver_template) ? 0 : -ENODEV); #else scsi_register_module(MODULE_SCSI_HA, &aic7xxx_driver_template); if (aic7xxx_driver_template.present == 0) { scsi_unregister_module(MODULE_SCSI_HA, &aic7xxx_driver_template); return (-ENODEV); } return (0); #endif } static void __exit ahc_linux_exit(void) { struct ahc_softc *ahc; u_long l; /* * Shutdown DV threads before going into the SCSI mid-layer. * This avoids situations where the mid-layer locks the entire * kernel so that waiting for our DV threads to exit leads * to deadlock. */ ahc_list_lock(&l); TAILQ_FOREACH(ahc, &ahc_tailq, links) { ahc_linux_kill_dv_thread(ahc); } ahc_list_unlock(&l); #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0) /* * In 2.4 we have to unregister from the PCI core _after_ * unregistering from the scsi midlayer to avoid dangling * references. */ scsi_unregister_module(MODULE_SCSI_HA, &aic7xxx_driver_template); #endif #ifdef CONFIG_PCI ahc_linux_pci_exit(); #endif #ifdef CONFIG_EISA ahc_linux_eisa_exit(); #endif } module_init(ahc_linux_init); module_exit(ahc_linux_exit);