/* * Parallel SCSI (SPI) transport specific attributes exported to sysfs. * * Copyright (c) 2003 Silicon Graphics, Inc. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define SPI_PRINTK(x, l, f, a...) printk(l "scsi(%d:%d:%d:%d): " f, (x)->host->host_no, (x)->channel, (x)->id, (x)->lun , ##a) static void transport_class_release(struct class_device *class_dev); #define SPI_NUM_ATTRS 10 /* increase this if you add attributes */ #define SPI_OTHER_ATTRS 1 /* Increase this if you add "always * on" attributes */ #define SPI_MAX_ECHO_BUFFER_SIZE 4096 /* Private data accessors (keep these out of the header file) */ #define spi_dv_pending(x) (((struct spi_transport_attrs *)&(x)->transport_data)->dv_pending) #define spi_dv_sem(x) (((struct spi_transport_attrs *)&(x)->transport_data)->dv_sem) struct spi_internal { struct scsi_transport_template t; struct spi_function_template *f; /* The actual attributes */ struct class_device_attribute private_attrs[SPI_NUM_ATTRS]; /* The array of null terminated pointers to attributes * needed by scsi_sysfs.c */ struct class_device_attribute *attrs[SPI_NUM_ATTRS + SPI_OTHER_ATTRS + 1]; }; #define to_spi_internal(tmpl) container_of(tmpl, struct spi_internal, t) static const char *const ppr_to_ns[] = { /* The PPR values 0-6 are reserved, fill them in when * the committee defines them */ NULL, /* 0x00 */ NULL, /* 0x01 */ NULL, /* 0x02 */ NULL, /* 0x03 */ NULL, /* 0x04 */ NULL, /* 0x05 */ NULL, /* 0x06 */ "3.125", /* 0x07 */ "6.25", /* 0x08 */ "12.5", /* 0x09 */ "25", /* 0x0a */ "30.3", /* 0x0b */ "50", /* 0x0c */ }; /* The PPR values at which you calculate the period in ns by multiplying * by 4 */ #define SPI_STATIC_PPR 0x0c struct class spi_transport_class = { .name = "spi_transport", .release = transport_class_release, }; static __init int spi_transport_init(void) { return class_register(&spi_transport_class); } static void __exit spi_transport_exit(void) { class_unregister(&spi_transport_class); } static int spi_setup_transport_attrs(struct scsi_device *sdev) { spi_period(sdev) = -1; /* illegal value */ spi_offset(sdev) = 0; /* async */ spi_width(sdev) = 0; /* narrow */ spi_iu(sdev) = 0; /* no IU */ spi_dt(sdev) = 0; /* ST */ spi_qas(sdev) = 0; spi_wr_flow(sdev) = 0; spi_rd_strm(sdev) = 0; spi_rti(sdev) = 0; spi_pcomp_en(sdev) = 0; spi_dv_pending(sdev) = 0; init_MUTEX(&spi_dv_sem(sdev)); return 0; } static void transport_class_release(struct class_device *class_dev) { struct scsi_device *sdev = transport_class_to_sdev(class_dev); put_device(&sdev->sdev_gendev); } #define spi_transport_show_function(field, format_string) \ \ static ssize_t \ show_spi_transport_##field(struct class_device *cdev, char *buf) \ { \ struct scsi_device *sdev = transport_class_to_sdev(cdev); \ struct spi_transport_attrs *tp; \ struct spi_internal *i = to_spi_internal(sdev->host->transportt); \ tp = (struct spi_transport_attrs *)&sdev->transport_data; \ if (i->f->get_##field) \ i->f->get_##field(sdev); \ return snprintf(buf, 20, format_string, tp->field); \ } #define spi_transport_store_function(field, format_string) \ static ssize_t \ store_spi_transport_##field(struct class_device *cdev, const char *buf, \ size_t count) \ { \ int val; \ struct scsi_device *sdev = transport_class_to_sdev(cdev); \ struct spi_internal *i = to_spi_internal(sdev->host->transportt); \ \ val = simple_strtoul(buf, NULL, 0); \ i->f->set_##field(sdev, val); \ return count; \ } #define spi_transport_rd_attr(field, format_string) \ spi_transport_show_function(field, format_string) \ spi_transport_store_function(field, format_string) \ static CLASS_DEVICE_ATTR(field, S_IRUGO | S_IWUSR, \ show_spi_transport_##field, \ store_spi_transport_##field); /* The Parallel SCSI Tranport Attributes: */ spi_transport_rd_attr(offset, "%d\n"); spi_transport_rd_attr(width, "%d\n"); spi_transport_rd_attr(iu, "%d\n"); spi_transport_rd_attr(dt, "%d\n"); spi_transport_rd_attr(qas, "%d\n"); spi_transport_rd_attr(wr_flow, "%d\n"); spi_transport_rd_attr(rd_strm, "%d\n"); spi_transport_rd_attr(rti, "%d\n"); spi_transport_rd_attr(pcomp_en, "%d\n"); static ssize_t store_spi_revalidate(struct class_device *cdev, const char *buf, size_t count) { struct scsi_device *sdev = transport_class_to_sdev(cdev); spi_dv_device(sdev); return count; } static CLASS_DEVICE_ATTR(revalidate, S_IWUSR, NULL, store_spi_revalidate); /* Translate the period into ns according to the current spec * for SDTR/PPR messages */ static ssize_t show_spi_transport_period(struct class_device *cdev, char *buf) { struct scsi_device *sdev = transport_class_to_sdev(cdev); struct spi_transport_attrs *tp; const char *str; struct spi_internal *i = to_spi_internal(sdev->host->transportt); tp = (struct spi_transport_attrs *)&sdev->transport_data; if (i->f->get_period) i->f->get_period(sdev); switch(tp->period) { case 0x07 ... SPI_STATIC_PPR: str = ppr_to_ns[tp->period]; if(!str) str = "reserved"; break; case (SPI_STATIC_PPR+1) ... 0xff: return sprintf(buf, "%d\n", tp->period * 4); default: str = "unknown"; } return sprintf(buf, "%s\n", str); } static ssize_t store_spi_transport_period(struct class_device *cdev, const char *buf, size_t count) { struct scsi_device *sdev = transport_class_to_sdev(cdev); struct spi_internal *i = to_spi_internal(sdev->host->transportt); int j, period = -1; for (j = 0; j < SPI_STATIC_PPR; j++) { int len; if(ppr_to_ns[j] == NULL) continue; len = strlen(ppr_to_ns[j]); if(strncmp(ppr_to_ns[j], buf, len) != 0) continue; if(buf[len] != '\n') continue; period = j; break; } if (period == -1) { int val = simple_strtoul(buf, NULL, 0); /* Should probably check limits here, but this * gets reasonably close to OK for most things */ period = val/4; } if (period > 0xff) period = 0xff; i->f->set_period(sdev, period); return count; } static CLASS_DEVICE_ATTR(period, S_IRUGO | S_IWUSR, show_spi_transport_period, store_spi_transport_period); #define DV_SET(x, y) \ if(i->f->set_##x) \ i->f->set_##x(sdev, y) #define DV_LOOPS 3 #define DV_TIMEOUT (10*HZ) #define DV_RETRIES 3 /* should only need at most * two cc/ua clears */ /* This is for read/write Domain Validation: If the device supports * an echo buffer, we do read/write tests to it */ static int spi_dv_device_echo_buffer(struct scsi_request *sreq, u8 *buffer, u8 *ptr, const int retries) { struct scsi_device *sdev = sreq->sr_device; int len = ptr - buffer; int j, k, r; unsigned int pattern = 0x0000ffff; const char spi_write_buffer[] = { WRITE_BUFFER, 0x0a, 0, 0, 0, 0, 0, len >> 8, len & 0xff, 0 }; const char spi_read_buffer[] = { READ_BUFFER, 0x0a, 0, 0, 0, 0, 0, len >> 8, len & 0xff, 0 }; /* set up the pattern buffer. Doesn't matter if we spill * slightly beyond since that's where the read buffer is */ for (j = 0; j < len; ) { /* fill the buffer with counting (test a) */ for ( ; j < min(len, 32); j++) buffer[j] = j; k = j; /* fill the buffer with alternating words of 0x0 and * 0xffff (test b) */ for ( ; j < min(len, k + 32); j += 2) { u16 *word = (u16 *)&buffer[j]; *word = (j & 0x02) ? 0x0000 : 0xffff; } k = j; /* fill with crosstalk (alternating 0x5555 0xaaa) * (test c) */ for ( ; j < min(len, k + 32); j += 2) { u16 *word = (u16 *)&buffer[j]; *word = (j & 0x02) ? 0x5555 : 0xaaaa; } k = j; /* fill with shifting bits (test d) */ for ( ; j < min(len, k + 32); j += 4) { u32 *word = (unsigned int *)&buffer[j]; u32 roll = (pattern & 0x80000000) ? 1 : 0; *word = pattern; pattern = (pattern << 1) | roll; } /* don't bother with random data (test e) */ } for (r = 0; r < retries; r++) { sreq->sr_cmd_len = 0; /* wait_req to fill in */ sreq->sr_data_direction = DMA_TO_DEVICE; scsi_wait_req(sreq, spi_write_buffer, buffer, len, DV_TIMEOUT, DV_RETRIES); if(sreq->sr_result || !scsi_device_online(sdev)) { scsi_device_set_state(sdev, SDEV_QUIESCE); SPI_PRINTK(sdev, KERN_ERR, "Write Buffer failure %x\n", sreq->sr_result); return 0; } memset(ptr, 0, len); sreq->sr_cmd_len = 0; /* wait_req to fill in */ sreq->sr_data_direction = DMA_FROM_DEVICE; scsi_wait_req(sreq, spi_read_buffer, ptr, len, DV_TIMEOUT, DV_RETRIES); scsi_device_set_state(sdev, SDEV_QUIESCE); if (memcmp(buffer, ptr, len) != 0) return 0; } return 1; } /* This is for the simplest form of Domain Validation: a read test * on the inquiry data from the device */ static int spi_dv_device_compare_inquiry(struct scsi_request *sreq, u8 *buffer, u8 *ptr, const int retries) { int r; const int len = sreq->sr_device->inquiry_len; struct scsi_device *sdev = sreq->sr_device; const char spi_inquiry[] = { INQUIRY, 0, 0, 0, len, 0 }; for (r = 0; r < retries; r++) { sreq->sr_cmd_len = 0; /* wait_req to fill in */ sreq->sr_data_direction = DMA_FROM_DEVICE; memset(ptr, 0, len); scsi_wait_req(sreq, spi_inquiry, ptr, len, DV_TIMEOUT, DV_RETRIES); if(sreq->sr_result || !scsi_device_online(sdev)) { scsi_device_set_state(sdev, SDEV_QUIESCE); return 0; } /* If we don't have the inquiry data already, the * first read gets it */ if (ptr == buffer) { ptr += len; --r; continue; } if (memcmp(buffer, ptr, len) != 0) /* failure */ return 0; } return 1; } static int spi_dv_retrain(struct scsi_request *sreq, u8 *buffer, u8 *ptr, int (*compare_fn)(struct scsi_request *, u8 *, u8 *, int)) { struct spi_internal *i = to_spi_internal(sreq->sr_host->transportt); struct scsi_device *sdev = sreq->sr_device; int period = 0, prevperiod = 0; for (;;) { int newperiod; if (compare_fn(sreq, buffer, ptr, DV_LOOPS)) /* Successful DV */ break; /* OK, retrain, fallback */ if (i->f->get_period) i->f->get_period(sdev); newperiod = spi_period(sdev); period = newperiod > period ? newperiod : period; if (period < 0x0d) period++; else period += period >> 1; if (unlikely(period > 0xff || period == prevperiod)) { /* Total failure; set to async and return */ SPI_PRINTK(sdev, KERN_ERR, "Domain Validation Failure, dropping back to Asynchronous\n"); DV_SET(offset, 0); return 0; } SPI_PRINTK(sdev, KERN_ERR, "Domain Validation detected failure, dropping back\n"); DV_SET(period, period); prevperiod = period; } return 1; } static int spi_dv_device_get_echo_buffer(struct scsi_request *sreq, u8 *buffer) { int l; /* first off do a test unit ready. This can error out * because of reservations or some other reason. If it * fails, the device won't let us write to the echo buffer * so just return failure */ const char spi_test_unit_ready[] = { TEST_UNIT_READY, 0, 0, 0, 0, 0 }; const char spi_read_buffer_descriptor[] = { READ_BUFFER, 0x0b, 0, 0, 0, 0, 0, 0, 4, 0 }; sreq->sr_cmd_len = 0; sreq->sr_data_direction = DMA_NONE; /* We send a set of three TURs to clear any outstanding * unit attention conditions if they exist (Otherwise the * buffer tests won't be happy). If the TUR still fails * (reservation conflict, device not ready, etc) just * skip the write tests */ for (l = 0; ; l++) { scsi_wait_req(sreq, spi_test_unit_ready, NULL, 0, DV_TIMEOUT, DV_RETRIES); if(sreq->sr_result) { if(l >= 3) return 0; } else { /* TUR succeeded */ break; } } sreq->sr_cmd_len = 0; sreq->sr_data_direction = DMA_FROM_DEVICE; scsi_wait_req(sreq, spi_read_buffer_descriptor, buffer, 4, DV_TIMEOUT, DV_RETRIES); if (sreq->sr_result) /* Device has no echo buffer */ return 0; return buffer[3] + ((buffer[2] & 0x1f) << 8); } static void spi_dv_device_internal(struct scsi_request *sreq, u8 *buffer) { struct spi_internal *i = to_spi_internal(sreq->sr_host->transportt); struct scsi_device *sdev = sreq->sr_device; int len = sdev->inquiry_len; /* first set us up for narrow async */ DV_SET(offset, 0); DV_SET(width, 0); if (!spi_dv_device_compare_inquiry(sreq, buffer, buffer, DV_LOOPS)) { SPI_PRINTK(sdev, KERN_ERR, "Domain Validation Initial Inquiry Failed\n"); /* FIXME: should probably offline the device here? */ return; } /* test width */ if (i->f->set_width && sdev->wdtr) { i->f->set_width(sdev, 1); if (!spi_dv_device_compare_inquiry(sreq, buffer, buffer + len, DV_LOOPS)) { SPI_PRINTK(sdev, KERN_ERR, "Wide Transfers Fail\n"); i->f->set_width(sdev, 0); } } if (!i->f->set_period) return; /* device can't handle synchronous */ if(!sdev->ppr && !sdev->sdtr) return; /* now set up to the maximum */ DV_SET(offset, 255); DV_SET(period, 1); if (!spi_dv_retrain(sreq, buffer, buffer + len, spi_dv_device_compare_inquiry)) return; /* OK, now we have our initial speed set by the read only inquiry * test, now try an echo buffer test (if the device allows it) */ if ((len = spi_dv_device_get_echo_buffer(sreq, buffer)) == 0) { SPI_PRINTK(sdev, KERN_INFO, "Domain Validation skipping write tests\n"); return; } if (len > SPI_MAX_ECHO_BUFFER_SIZE) { SPI_PRINTK(sdev, KERN_WARNING, "Echo buffer size %d is too big, trimming to %d\n", len, SPI_MAX_ECHO_BUFFER_SIZE); len = SPI_MAX_ECHO_BUFFER_SIZE; } spi_dv_retrain(sreq, buffer, buffer + len, spi_dv_device_echo_buffer); } /** spi_dv_device - Do Domain Validation on the device * @sdev: scsi device to validate * * Performs the domain validation on the given device in the * current execution thread. Since DV operations may sleep, * the current thread must have user context. Also no SCSI * related locks that would deadlock I/O issued by the DV may * be held. */ void spi_dv_device(struct scsi_device *sdev) { struct scsi_request *sreq = scsi_allocate_request(sdev, GFP_KERNEL); u8 *buffer; const int len = SPI_MAX_ECHO_BUFFER_SIZE*2; if (unlikely(!sreq)) return; if (unlikely(scsi_device_get(sdev))) goto out_free_req; buffer = kmalloc(len, GFP_KERNEL); if (unlikely(!buffer)) goto out_put; memset(buffer, 0, len); if (unlikely(scsi_device_quiesce(sdev))) goto out_free; spi_dv_pending(sdev) = 1; down(&spi_dv_sem(sdev)); SPI_PRINTK(sdev, KERN_INFO, "Beginning Domain Validation\n"); spi_dv_device_internal(sreq, buffer); SPI_PRINTK(sdev, KERN_INFO, "Ending Domain Validation\n"); up(&spi_dv_sem(sdev)); spi_dv_pending(sdev) = 0; scsi_device_resume(sdev); out_free: kfree(buffer); out_put: scsi_device_put(sdev); out_free_req: scsi_release_request(sreq); } EXPORT_SYMBOL(spi_dv_device); struct work_queue_wrapper { struct work_struct work; struct scsi_device *sdev; }; static void spi_dv_device_work_wrapper(void *data) { struct work_queue_wrapper *wqw = (struct work_queue_wrapper *)data; struct scsi_device *sdev = wqw->sdev; kfree(wqw); spi_dv_device(sdev); spi_dv_pending(sdev) = 0; scsi_device_put(sdev); } /** * spi_schedule_dv_device - schedule domain validation to occur on the device * @sdev: The device to validate * * Identical to spi_dv_device() above, except that the DV will be * scheduled to occur in a workqueue later. All memory allocations * are atomic, so may be called from any context including those holding * SCSI locks. */ void spi_schedule_dv_device(struct scsi_device *sdev) { struct work_queue_wrapper *wqw = kmalloc(sizeof(struct work_queue_wrapper), GFP_ATOMIC); if (unlikely(!wqw)) return; if (unlikely(spi_dv_pending(sdev))) { kfree(wqw); return; } /* Set pending early (dv_device doesn't check it, only sets it) */ spi_dv_pending(sdev) = 1; if (unlikely(scsi_device_get(sdev))) { kfree(wqw); spi_dv_pending(sdev) = 0; return; } INIT_WORK(&wqw->work, spi_dv_device_work_wrapper, wqw); wqw->sdev = sdev; schedule_work(&wqw->work); } EXPORT_SYMBOL(spi_schedule_dv_device); #define SETUP_ATTRIBUTE(field) \ i->private_attrs[count] = class_device_attr_##field; \ if (!i->f->set_##field) { \ i->private_attrs[count].attr.mode = S_IRUGO; \ i->private_attrs[count].store = NULL; \ } \ i->attrs[count] = &i->private_attrs[count]; \ if (i->f->show_##field) \ count++ struct scsi_transport_template * spi_attach_transport(struct spi_function_template *ft) { struct spi_internal *i = kmalloc(sizeof(struct spi_internal), GFP_KERNEL); int count = 0; if (unlikely(!i)) return NULL; memset(i, 0, sizeof(struct spi_internal)); i->t.attrs = &i->attrs[0]; i->t.class = &spi_transport_class; i->t.setup = &spi_setup_transport_attrs; i->t.size = sizeof(struct spi_transport_attrs); i->f = ft; SETUP_ATTRIBUTE(period); SETUP_ATTRIBUTE(offset); SETUP_ATTRIBUTE(width); SETUP_ATTRIBUTE(iu); SETUP_ATTRIBUTE(dt); SETUP_ATTRIBUTE(qas); SETUP_ATTRIBUTE(wr_flow); SETUP_ATTRIBUTE(rd_strm); SETUP_ATTRIBUTE(rti); SETUP_ATTRIBUTE(pcomp_en); /* if you add an attribute but forget to increase SPI_NUM_ATTRS * this bug will trigger */ BUG_ON(count > SPI_NUM_ATTRS); i->attrs[count++] = &class_device_attr_revalidate; i->attrs[count] = NULL; return &i->t; } EXPORT_SYMBOL(spi_attach_transport); void spi_release_transport(struct scsi_transport_template *t) { struct spi_internal *i = to_spi_internal(t); kfree(i); } EXPORT_SYMBOL(spi_release_transport); MODULE_AUTHOR("Martin Hicks"); MODULE_DESCRIPTION("SPI Transport Attributes"); MODULE_LICENSE("GPL"); module_init(spi_transport_init); module_exit(spi_transport_exit);