/* * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family * of PCI-SCSI IO processors. * * Copyright (C) 1999-2001 Gerard Roudier * * This driver is derived from the Linux sym53c8xx driver. * Copyright (C) 1998-2000 Gerard Roudier * * The sym53c8xx driver is derived from the ncr53c8xx driver that had been * a port of the FreeBSD ncr driver to Linux-1.2.13. * * The original ncr driver has been written for 386bsd and FreeBSD by * Wolfgang Stanglmeier * Stefan Esser * Copyright (C) 1994 Wolfgang Stanglmeier * * Other major contributions: * * NVRAM detection and reading. * Copyright (C) 1997 Richard Waltham * *----------------------------------------------------------------------------- * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * Where this Software is combined with software released under the terms of * the GNU Public License ("GPL") and the terms of the GPL would require the * combined work to also be released under the terms of the GPL, the terms * and conditions of this License will apply in addition to those of the * GPL with the exception of any terms or conditions of this License that * conflict with, or are expressly prohibited by, the GPL. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #define SYM_GLUE_C #include #include #include #include #include #include #include #include #include #include #include "sym_glue.h" #include "sym_nvram.h" #define NAME53C "sym53c" #define NAME53C8XX "sym53c8xx" static int __devinit pci_get_base_address(struct pci_dev *pdev, int index, u_long *base) { u32 tmp; #define PCI_BAR_OFFSET(index) (PCI_BASE_ADDRESS_0 + (index<<2)) pci_read_config_dword(pdev, PCI_BAR_OFFSET(index), &tmp); *base = tmp; ++index; if ((tmp & 0x7) == PCI_BASE_ADDRESS_MEM_TYPE_64) { #if BITS_PER_LONG > 32 pci_read_config_dword(pdev, PCI_BAR_OFFSET(index), &tmp); *base |= (((u_long)tmp) << 32); #endif ++index; } return index; #undef PCI_BAR_OFFSET } /* This lock protects only the memory allocation/free. */ spinlock_t sym53c8xx_lock = SPIN_LOCK_UNLOCKED; static struct scsi_transport_template *sym2_transport_template = NULL; /* * Wrappers to the generic memory allocator. */ void *sym_calloc(int size, char *name) { unsigned long flags; void *m; spin_lock_irqsave(&sym53c8xx_lock, flags); m = sym_calloc_unlocked(size, name); spin_unlock_irqrestore(&sym53c8xx_lock, flags); return m; } void sym_mfree(void *m, int size, char *name) { unsigned long flags; spin_lock_irqsave(&sym53c8xx_lock, flags); sym_mfree_unlocked(m, size, name); spin_unlock_irqrestore(&sym53c8xx_lock, flags); } void *__sym_calloc_dma(m_pool_ident_t dev_dmat, int size, char *name) { unsigned long flags; void *m; spin_lock_irqsave(&sym53c8xx_lock, flags); m = __sym_calloc_dma_unlocked(dev_dmat, size, name); spin_unlock_irqrestore(&sym53c8xx_lock, flags); return m; } void __sym_mfree_dma(m_pool_ident_t dev_dmat, void *m, int size, char *name) { unsigned long flags; spin_lock_irqsave(&sym53c8xx_lock, flags); __sym_mfree_dma_unlocked(dev_dmat, m, size, name); spin_unlock_irqrestore(&sym53c8xx_lock, flags); } m_addr_t __vtobus(m_pool_ident_t dev_dmat, void *m) { unsigned long flags; m_addr_t b; spin_lock_irqsave(&sym53c8xx_lock, flags); b = __vtobus_unlocked(dev_dmat, m); spin_unlock_irqrestore(&sym53c8xx_lock, flags); return b; } /* * Driver host data structure. */ struct host_data { struct sym_hcb *ncb; }; /* * Used by the eh thread to wait for command completion. * It is allocated on the eh thread stack. */ struct sym_eh_wait { struct semaphore sem; struct timer_list timer; void (*old_done)(struct scsi_cmnd *); int to_do; int timed_out; }; /* * Driver private area in the SCSI command structure. */ struct sym_ucmd { /* Override the SCSI pointer structure */ SYM_QUEHEAD link_cmdq; /* Must stay at offset ZERO */ dma_addr_t data_mapping; u_char data_mapped; struct sym_eh_wait *eh_wait; }; #define SYM_UCMD_PTR(cmd) ((struct sym_ucmd *)(&(cmd)->SCp)) #define SYM_SCMD_PTR(ucmd) sym_que_entry(ucmd, struct scsi_cmnd, SCp) #define SYM_SOFTC_PTR(cmd) (((struct host_data *)cmd->device->host->hostdata)->ncb) static void __unmap_scsi_data(struct pci_dev *pdev, struct scsi_cmnd *cmd) { int dma_dir = cmd->sc_data_direction; switch(SYM_UCMD_PTR(cmd)->data_mapped) { case 2: pci_unmap_sg(pdev, cmd->buffer, cmd->use_sg, dma_dir); break; case 1: pci_unmap_single(pdev, SYM_UCMD_PTR(cmd)->data_mapping, cmd->request_bufflen, dma_dir); break; } SYM_UCMD_PTR(cmd)->data_mapped = 0; } static dma_addr_t __map_scsi_single_data(struct pci_dev *pdev, struct scsi_cmnd *cmd) { dma_addr_t mapping; int dma_dir = cmd->sc_data_direction; mapping = pci_map_single(pdev, cmd->request_buffer, cmd->request_bufflen, dma_dir); if (mapping) { SYM_UCMD_PTR(cmd)->data_mapped = 1; SYM_UCMD_PTR(cmd)->data_mapping = mapping; } return mapping; } static int __map_scsi_sg_data(struct pci_dev *pdev, struct scsi_cmnd *cmd) { int use_sg; int dma_dir = cmd->sc_data_direction; use_sg = pci_map_sg(pdev, cmd->buffer, cmd->use_sg, dma_dir); if (use_sg > 0) { SYM_UCMD_PTR(cmd)->data_mapped = 2; SYM_UCMD_PTR(cmd)->data_mapping = use_sg; } return use_sg; } static void __sync_scsi_data_for_cpu(struct pci_dev *pdev, struct scsi_cmnd *cmd) { int dma_dir = cmd->sc_data_direction; switch(SYM_UCMD_PTR(cmd)->data_mapped) { case 2: pci_dma_sync_sg_for_cpu(pdev, cmd->buffer, cmd->use_sg, dma_dir); break; case 1: pci_dma_sync_single_for_cpu(pdev, SYM_UCMD_PTR(cmd)->data_mapping, cmd->request_bufflen, dma_dir); break; } } static void __sync_scsi_data_for_device(struct pci_dev *pdev, struct scsi_cmnd *cmd) { int dma_dir = cmd->sc_data_direction; switch(SYM_UCMD_PTR(cmd)->data_mapped) { case 2: pci_dma_sync_sg_for_device(pdev, cmd->buffer, cmd->use_sg, dma_dir); break; case 1: pci_dma_sync_single_for_device(pdev, SYM_UCMD_PTR(cmd)->data_mapping, cmd->request_bufflen, dma_dir); break; } } #define unmap_scsi_data(np, cmd) \ __unmap_scsi_data(np->s.device, cmd) #define map_scsi_single_data(np, cmd) \ __map_scsi_single_data(np->s.device, cmd) #define map_scsi_sg_data(np, cmd) \ __map_scsi_sg_data(np->s.device, cmd) #define sync_scsi_data_for_cpu(np, cmd) \ __sync_scsi_data_for_cpu(np->s.device, cmd) #define sync_scsi_data_for_device(np, cmd) \ __sync_scsi_data_for_device(np->s.device, cmd) /* * Complete a pending CAM CCB. */ void sym_xpt_done(struct sym_hcb *np, struct scsi_cmnd *ccb) { sym_remque(&SYM_UCMD_PTR(ccb)->link_cmdq); unmap_scsi_data(np, ccb); ccb->scsi_done(ccb); } void sym_xpt_done2(struct sym_hcb *np, struct scsi_cmnd *ccb, int cam_status) { sym_set_cam_status(ccb, cam_status); sym_xpt_done(np, ccb); } /* * Print something that identifies the IO. */ void sym_print_addr(struct sym_ccb *cp) { struct scsi_cmnd *cmd = cp->cam_ccb; if (cmd) printf("%s:%d:%d:", sym_name(SYM_SOFTC_PTR(cmd)), cmd->device->id, cmd->device->lun); } /* * Tell the SCSI layer about a BUS RESET. */ void sym_xpt_async_bus_reset(struct sym_hcb *np) { printf_notice("%s: SCSI BUS has been reset.\n", sym_name(np)); np->s.settle_time = jiffies + sym_driver_setup.settle_delay * HZ; np->s.settle_time_valid = 1; if (sym_verbose >= 2) printf_info("%s: command processing suspended for %d seconds\n", sym_name(np), sym_driver_setup.settle_delay); } /* * Tell the SCSI layer about a BUS DEVICE RESET message sent. */ void sym_xpt_async_sent_bdr(struct sym_hcb *np, int target) { printf_notice("%s: TARGET %d has been reset.\n", sym_name(np), target); } /* * Tell the SCSI layer about the new transfer parameters. */ void sym_xpt_async_nego_wide(struct sym_hcb *np, int target) { if (sym_verbose < 3) return; sym_announce_transfer_rate(np, target); } /* * Choose the more appropriate CAM status if * the IO encountered an extended error. */ static int sym_xerr_cam_status(int cam_status, int x_status) { if (x_status) { if (x_status & XE_PARITY_ERR) cam_status = DID_PARITY; else if (x_status &(XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) cam_status = DID_ERROR; else if (x_status & XE_BAD_PHASE) cam_status = DID_ERROR; else cam_status = DID_ERROR; } return cam_status; } /* * Build CAM result for a failed or auto-sensed IO. */ void sym_set_cam_result_error(struct sym_hcb *np, struct sym_ccb *cp, int resid) { struct scsi_cmnd *csio = cp->cam_ccb; u_int cam_status, scsi_status, drv_status; drv_status = 0; cam_status = DID_OK; scsi_status = cp->ssss_status; if (cp->host_flags & HF_SENSE) { scsi_status = cp->sv_scsi_status; resid = cp->sv_resid; if (sym_verbose && cp->sv_xerr_status) sym_print_xerr(cp, cp->sv_xerr_status); if (cp->host_status == HS_COMPLETE && cp->ssss_status == S_GOOD && cp->xerr_status == 0) { cam_status = sym_xerr_cam_status(DID_OK, cp->sv_xerr_status); drv_status = DRIVER_SENSE; /* * Bounce back the sense data to user. */ bzero(&csio->sense_buffer, sizeof(csio->sense_buffer)); memcpy(csio->sense_buffer, cp->sns_bbuf, min(sizeof(csio->sense_buffer), (size_t)SYM_SNS_BBUF_LEN)); #if 0 /* * If the device reports a UNIT ATTENTION condition * due to a RESET condition, we should consider all * disconnect CCBs for this unit as aborted. */ if (1) { u_char *p; p = (u_char *) csio->sense_data; if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29) sym_clear_tasks(np, DID_ABORT, cp->target,cp->lun, -1); } #endif } else { /* * Error return from our internal request sense. This * is bad: we must clear the contingent allegiance * condition otherwise the device will always return * BUSY. Use a big stick. */ sym_reset_scsi_target(np, csio->device->id); cam_status = DID_ERROR; } } else if (cp->host_status == HS_COMPLETE) /* Bad SCSI status */ cam_status = DID_OK; else if (cp->host_status == HS_SEL_TIMEOUT) /* Selection timeout */ cam_status = DID_NO_CONNECT; else if (cp->host_status == HS_UNEXPECTED) /* Unexpected BUS FREE*/ cam_status = DID_ERROR; else { /* Extended error */ if (sym_verbose) { PRINT_ADDR(cp); printf ("COMMAND FAILED (%x %x %x).\n", cp->host_status, cp->ssss_status, cp->xerr_status); } /* * Set the most appropriate value for CAM status. */ cam_status = sym_xerr_cam_status(DID_ERROR, cp->xerr_status); } csio->resid = resid; csio->result = (drv_status << 24) + (cam_status << 16) + scsi_status; } /* * Called on successfull INQUIRY response. */ void sym_sniff_inquiry(struct sym_hcb *np, struct scsi_cmnd *cmd, int resid) { int retv; if (!cmd || cmd->use_sg) return; sync_scsi_data_for_cpu(np, cmd); retv = __sym_sniff_inquiry(np, cmd->device->id, cmd->device->lun, (u_char *) cmd->request_buffer, cmd->request_bufflen - resid); sync_scsi_data_for_device(np, cmd); if (retv < 0) return; else if (retv) sym_update_trans_settings(np, &np->target[cmd->device->id]); } /* * Build the scatter/gather array for an I/O. */ static int sym_scatter_no_sglist(struct sym_hcb *np, struct sym_ccb *cp, struct scsi_cmnd *cmd) { struct sym_tblmove *data = &cp->phys.data[SYM_CONF_MAX_SG-1]; int segment; cp->data_len = cmd->request_bufflen; if (cmd->request_bufflen) { dma_addr_t baddr = map_scsi_single_data(np, cmd); if (baddr) { sym_build_sge(np, data, baddr, cmd->request_bufflen); segment = 1; } else { segment = -2; } } else { segment = 0; } return segment; } static int sym_scatter(struct sym_hcb *np, struct sym_ccb *cp, struct scsi_cmnd *cmd) { int segment; int use_sg = (int) cmd->use_sg; cp->data_len = 0; if (!use_sg) segment = sym_scatter_no_sglist(np, cp, cmd); else if ((use_sg = map_scsi_sg_data(np, cmd)) > 0) { struct scatterlist *scatter = (struct scatterlist *)cmd->buffer; struct sym_tblmove *data; if (use_sg > SYM_CONF_MAX_SG) { unmap_scsi_data(np, cmd); return -1; } data = &cp->phys.data[SYM_CONF_MAX_SG - use_sg]; for (segment = 0; segment < use_sg; segment++) { dma_addr_t baddr = sg_dma_address(&scatter[segment]); unsigned int len = sg_dma_len(&scatter[segment]); sym_build_sge(np, &data[segment], baddr, len); cp->data_len += len; } } else { segment = -2; } return segment; } /* * Queue a SCSI command. */ static int sym_queue_command(struct sym_hcb *np, struct scsi_cmnd *ccb) { /* struct scsi_device *device = ccb->device; */ struct sym_tcb *tp; struct sym_lcb *lp; struct sym_ccb *cp; int order; /* * Minimal checkings, so that we will not * go outside our tables. */ if (ccb->device->id == np->myaddr || ccb->device->id >= SYM_CONF_MAX_TARGET || ccb->device->lun >= SYM_CONF_MAX_LUN) { sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE); return 0; } /* * Retreive the target descriptor. */ tp = &np->target[ccb->device->id]; /* * Complete the 1st INQUIRY command with error * condition if the device is flagged NOSCAN * at BOOT in the NVRAM. This may speed up * the boot and maintain coherency with BIOS * device numbering. Clearing the flag allows * user to rescan skipped devices later. * We also return error for devices not flagged * for SCAN LUNS in the NVRAM since some mono-lun * devices behave badly when asked for some non * zero LUN. Btw, this is an absolute hack.:-) */ if (ccb->cmnd[0] == 0x12 || ccb->cmnd[0] == 0x0) { if ((tp->usrflags & SYM_SCAN_BOOT_DISABLED) || ((tp->usrflags & SYM_SCAN_LUNS_DISABLED) && ccb->device->lun != 0)) { tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED; sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE); return 0; } } /* * Select tagged/untagged. */ lp = sym_lp(np, tp, ccb->device->lun); order = (lp && lp->s.reqtags) ? M_SIMPLE_TAG : 0; /* * Queue the SCSI IO. */ cp = sym_get_ccb(np, ccb->device->id, ccb->device->lun, order); if (!cp) return 1; /* Means resource shortage */ sym_queue_scsiio(np, ccb, cp); return 0; } /* * Setup buffers and pointers that address the CDB. */ static inline int sym_setup_cdb(struct sym_hcb *np, struct scsi_cmnd *ccb, struct sym_ccb *cp) { u32 cmd_ba; int cmd_len; /* * CDB is 16 bytes max. */ if (ccb->cmd_len > sizeof(cp->cdb_buf)) { sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID); return -1; } memcpy(cp->cdb_buf, ccb->cmnd, ccb->cmd_len); cmd_ba = CCB_BA (cp, cdb_buf[0]); cmd_len = ccb->cmd_len; cp->phys.cmd.addr = cpu_to_scr(cmd_ba); cp->phys.cmd.size = cpu_to_scr(cmd_len); return 0; } /* * Setup pointers that address the data and start the I/O. */ int sym_setup_data_and_start(struct sym_hcb *np, struct scsi_cmnd *csio, struct sym_ccb *cp) { int dir; struct sym_tcb *tp = &np->target[cp->target]; struct sym_lcb *lp = sym_lp(np, tp, cp->lun); /* * Build the CDB. */ if (sym_setup_cdb(np, csio, cp)) goto out_abort; /* * No direction means no data. */ dir = csio->sc_data_direction; if (dir != DMA_NONE) { cp->segments = sym_scatter(np, cp, csio); if (cp->segments < 0) { if (cp->segments == -2) sym_set_cam_status(csio, CAM_RESRC_UNAVAIL); else sym_set_cam_status(csio, CAM_REQ_TOO_BIG); goto out_abort; } } else { cp->data_len = 0; cp->segments = 0; } /* * Set data pointers. */ sym_setup_data_pointers(np, cp, dir); /* * When `#ifed 1', the code below makes the driver * panic on the first attempt to write to a SCSI device. * It is the first test we want to do after a driver * change that does not seem obviously safe. :) */ #if 0 switch (cp->cdb_buf[0]) { case 0x0A: case 0x2A: case 0xAA: panic("XXXXXXXXXXXXX WRITE NOT YET ALLOWED XXXXXXXXXXXXXX\n"); MDELAY(10000); break; default: break; } #endif /* * activate this job. */ if (lp) sym_start_next_ccbs(np, lp, 2); else sym_put_start_queue(np, cp); return 0; out_abort: sym_free_ccb(np, cp); sym_xpt_done(np, csio); return 0; } /* * timer daemon. * * Misused to keep the driver running when * interrupts are not configured correctly. */ static void sym_timer(struct sym_hcb *np) { unsigned long thistime = jiffies; /* * Restart the timer. */ np->s.timer.expires = thistime + SYM_CONF_TIMER_INTERVAL; add_timer(&np->s.timer); /* * If we are resetting the ncr, wait for settle_time before * clearing it. Then command processing will be resumed. */ if (np->s.settle_time_valid) { if (time_before_eq(np->s.settle_time, thistime)) { if (sym_verbose >= 2 ) printk("%s: command processing resumed\n", sym_name(np)); np->s.settle_time_valid = 0; } return; } /* * Nothing to do for now, but that may come. */ if (np->s.lasttime + 4*HZ < thistime) { np->s.lasttime = thistime; } #ifdef SYM_CONF_PCIQ_MAY_MISS_COMPLETIONS /* * Some way-broken PCI bridges may lead to * completions being lost when the clearing * of the INTFLY flag by the CPU occurs * concurrently with the chip raising this flag. * If this ever happen, lost completions will * be reaped here. */ sym_wakeup_done(np); #endif } /* * PCI BUS error handler. */ void sym_log_bus_error(struct sym_hcb *np) { u_short pci_sts; pci_read_config_word(np->s.device, PCI_STATUS, &pci_sts); if (pci_sts & 0xf900) { pci_write_config_word(np->s.device, PCI_STATUS, pci_sts); printf("%s: PCI STATUS = 0x%04x\n", sym_name(np), pci_sts & 0xf900); } } /* * Requeue awaiting commands. */ static void sym_requeue_awaiting_cmds(struct sym_hcb *np) { struct scsi_cmnd *cmd; struct sym_ucmd *ucp = SYM_UCMD_PTR(cmd); SYM_QUEHEAD tmp_cmdq; int sts; sym_que_move(&np->s.wait_cmdq, &tmp_cmdq); while ((ucp = (struct sym_ucmd *) sym_remque_head(&tmp_cmdq)) != 0) { sym_insque_tail(&ucp->link_cmdq, &np->s.busy_cmdq); cmd = SYM_SCMD_PTR(ucp); sts = sym_queue_command(np, cmd); if (sts) { sym_remque(&ucp->link_cmdq); sym_insque_head(&ucp->link_cmdq, &np->s.wait_cmdq); } } } /* * queuecommand method. Entered with the host adapter lock held and * interrupts disabled. */ static int sym53c8xx_queue_command(struct scsi_cmnd *cmd, void (*done)(struct scsi_cmnd *)) { struct sym_hcb *np = SYM_SOFTC_PTR(cmd); struct sym_ucmd *ucp = SYM_UCMD_PTR(cmd); int sts = 0; cmd->scsi_done = done; cmd->host_scribble = NULL; memset(ucp, 0, sizeof(*ucp)); /* * Shorten our settle_time if needed for * this command not to time out. */ if (np->s.settle_time_valid && cmd->timeout_per_command) { unsigned long tlimit = jiffies + cmd->timeout_per_command; tlimit -= SYM_CONF_TIMER_INTERVAL*2; if (time_after(np->s.settle_time, tlimit)) { np->s.settle_time = tlimit; } } if (np->s.settle_time_valid || !sym_que_empty(&np->s.wait_cmdq)) { sym_insque_tail(&ucp->link_cmdq, &np->s.wait_cmdq); goto out; } sym_insque_tail(&ucp->link_cmdq, &np->s.busy_cmdq); sts = sym_queue_command(np, cmd); if (sts) { sym_remque(&ucp->link_cmdq); sym_insque_tail(&ucp->link_cmdq, &np->s.wait_cmdq); } out: return 0; } /* * Linux entry point of the interrupt handler. */ static irqreturn_t sym53c8xx_intr(int irq, void *dev_id, struct pt_regs * regs) { unsigned long flags; struct sym_hcb *np = (struct sym_hcb *)dev_id; if (DEBUG_FLAGS & DEBUG_TINY) printf_debug ("["); spin_lock_irqsave(np->s.host->host_lock, flags); sym_interrupt(np); /* * push queue walk-through to tasklet */ if (!sym_que_empty(&np->s.wait_cmdq) && !np->s.settle_time_valid) sym_requeue_awaiting_cmds(np); spin_unlock_irqrestore(np->s.host->host_lock, flags); if (DEBUG_FLAGS & DEBUG_TINY) printf_debug ("]\n"); return IRQ_HANDLED; } /* * Linux entry point of the timer handler */ static void sym53c8xx_timer(unsigned long npref) { struct sym_hcb *np = (struct sym_hcb *)npref; unsigned long flags; spin_lock_irqsave(np->s.host->host_lock, flags); sym_timer(np); if (!sym_que_empty(&np->s.wait_cmdq) && !np->s.settle_time_valid) sym_requeue_awaiting_cmds(np); spin_unlock_irqrestore(np->s.host->host_lock, flags); } /* * What the eh thread wants us to perform. */ #define SYM_EH_ABORT 0 #define SYM_EH_DEVICE_RESET 1 #define SYM_EH_BUS_RESET 2 #define SYM_EH_HOST_RESET 3 /* * What we will do regarding the involved SCSI command. */ #define SYM_EH_DO_IGNORE 0 #define SYM_EH_DO_COMPLETE 1 #define SYM_EH_DO_WAIT 2 /* * Our general completion handler. */ static void __sym_eh_done(struct scsi_cmnd *cmd, int timed_out) { struct sym_eh_wait *ep = SYM_UCMD_PTR(cmd)->eh_wait; if (!ep) return; /* Try to avoid a race here (not 100% safe) */ if (!timed_out) { ep->timed_out = 0; if (ep->to_do == SYM_EH_DO_WAIT && !del_timer(&ep->timer)) return; } /* Revert everything */ SYM_UCMD_PTR(cmd)->eh_wait = 0; cmd->scsi_done = ep->old_done; /* Wake up the eh thread if it wants to sleep */ if (ep->to_do == SYM_EH_DO_WAIT) up(&ep->sem); } /* * scsi_done() alias when error recovery is in progress. */ static void sym_eh_done(struct scsi_cmnd *cmd) { __sym_eh_done(cmd, 0); } /* * Some timeout handler to avoid waiting too long. */ static void sym_eh_timeout(u_long p) { __sym_eh_done((struct scsi_cmnd *)p, 1); } /* * Generic method for our eh processing. * The 'op' argument tells what we have to do. */ static int sym_eh_handler(int op, char *opname, struct scsi_cmnd *cmd) { struct sym_hcb *np = SYM_SOFTC_PTR(cmd); SYM_QUEHEAD *qp; int to_do = SYM_EH_DO_IGNORE; int sts = -1; struct sym_eh_wait eh, *ep = &eh; char devname[20]; sprintf(devname, "%s:%d:%d", sym_name(np), cmd->device->id, cmd->device->lun); printf_warning("%s: %s operation started.\n", devname, opname); #if 0 /* This one should be the result of some race, thus to ignore */ if (cmd->serial_number != cmd->serial_number_at_timeout) goto prepare; #endif /* This one is not queued to the core driver -> to complete here */ FOR_EACH_QUEUED_ELEMENT(&np->s.wait_cmdq, qp) { if (SYM_SCMD_PTR(qp) == cmd) { to_do = SYM_EH_DO_COMPLETE; goto prepare; } } /* This one is queued in some place -> to wait for completion */ FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { struct sym_ccb *cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); if (cp->cam_ccb == cmd) { to_do = SYM_EH_DO_WAIT; goto prepare; } } prepare: /* Prepare stuff to either ignore, complete or wait for completion */ switch(to_do) { default: case SYM_EH_DO_IGNORE: break; case SYM_EH_DO_WAIT: init_MUTEX_LOCKED(&ep->sem); /* fall through */ case SYM_EH_DO_COMPLETE: ep->old_done = cmd->scsi_done; cmd->scsi_done = sym_eh_done; SYM_UCMD_PTR(cmd)->eh_wait = ep; } /* Try to proceed the operation we have been asked for */ sts = -1; switch(op) { case SYM_EH_ABORT: sts = sym_abort_scsiio(np, cmd, 1); break; case SYM_EH_DEVICE_RESET: sts = sym_reset_scsi_target(np, cmd->device->id); break; case SYM_EH_BUS_RESET: sym_reset_scsi_bus(np, 1); sts = 0; break; case SYM_EH_HOST_RESET: sym_reset_scsi_bus(np, 0); sym_start_up (np, 1); sts = 0; break; default: break; } /* On error, restore everything and cross fingers :) */ if (sts) { SYM_UCMD_PTR(cmd)->eh_wait = 0; cmd->scsi_done = ep->old_done; to_do = SYM_EH_DO_IGNORE; } ep->to_do = to_do; /* Complete the command with locks held as required by the driver */ if (to_do == SYM_EH_DO_COMPLETE) sym_xpt_done2(np, cmd, CAM_REQ_ABORTED); /* Wait for completion with locks released, as required by kernel */ if (to_do == SYM_EH_DO_WAIT) { init_timer(&ep->timer); ep->timer.expires = jiffies + (5*HZ); ep->timer.function = sym_eh_timeout; ep->timer.data = (u_long)cmd; ep->timed_out = 1; /* Be pessimistic for once :) */ add_timer(&ep->timer); spin_unlock_irq(np->s.host->host_lock); down(&ep->sem); spin_lock_irq(np->s.host->host_lock); if (ep->timed_out) sts = -2; } printf_warning("%s: %s operation %s.\n", devname, opname, sts==0?"complete":sts==-2?"timed-out":"failed"); return sts? SCSI_FAILED : SCSI_SUCCESS; } /* * Error handlers called from the eh thread (one thread per HBA). */ static int sym53c8xx_eh_abort_handler(struct scsi_cmnd *cmd) { return sym_eh_handler(SYM_EH_ABORT, "ABORT", cmd); } static int sym53c8xx_eh_device_reset_handler(struct scsi_cmnd *cmd) { return sym_eh_handler(SYM_EH_DEVICE_RESET, "DEVICE RESET", cmd); } static int sym53c8xx_eh_bus_reset_handler(struct scsi_cmnd *cmd) { return sym_eh_handler(SYM_EH_BUS_RESET, "BUS RESET", cmd); } static int sym53c8xx_eh_host_reset_handler(struct scsi_cmnd *cmd) { return sym_eh_handler(SYM_EH_HOST_RESET, "HOST RESET", cmd); } /* * Tune device queuing depth, according to various limits. */ static void sym_tune_dev_queuing(struct sym_hcb *np, int target, int lun, u_short reqtags) { struct sym_tcb *tp = &np->target[target]; struct sym_lcb *lp = sym_lp(np, tp, lun); u_short oldtags; if (!lp) return; oldtags = lp->s.reqtags; if (reqtags > lp->s.scdev_depth) reqtags = lp->s.scdev_depth; lp->started_limit = reqtags ? reqtags : 2; lp->started_max = 1; lp->s.reqtags = reqtags; if (reqtags != oldtags) { printf_info("%s:%d:%d: " "tagged command queuing %s, command queue depth %d.\n", sym_name(np), target, lun, lp->s.reqtags ? "enabled" : "disabled", lp->started_limit); } } #ifdef SYM_LINUX_BOOT_COMMAND_LINE_SUPPORT /* * Linux select queue depths function */ #define DEF_DEPTH (sym_driver_setup.max_tag) #define ALL_TARGETS -2 #define NO_TARGET -1 #define ALL_LUNS -2 #define NO_LUN -1 static int device_queue_depth(struct sym_hcb *np, int target, int lun) { int c, h, t, u, v; char *p = sym_driver_setup.tag_ctrl; char *ep; h = -1; t = NO_TARGET; u = NO_LUN; while ((c = *p++) != 0) { v = simple_strtoul(p, &ep, 0); switch(c) { case '/': ++h; t = ALL_TARGETS; u = ALL_LUNS; break; case 't': if (t != target) t = (target == v) ? v : NO_TARGET; u = ALL_LUNS; break; case 'u': if (u != lun) u = (lun == v) ? v : NO_LUN; break; case 'q': if (h == np->s.unit && (t == ALL_TARGETS || t == target) && (u == ALL_LUNS || u == lun)) return v; break; case '-': t = ALL_TARGETS; u = ALL_LUNS; break; default: break; } p = ep; } return DEF_DEPTH; } #else #define device_queue_depth(np, t, l) (sym_driver_setup.max_tag) #endif /* SYM_LINUX_BOOT_COMMAND_LINE_SUPPORT */ /* * Linux entry point for device queue sizing. */ static int sym53c8xx_slave_configure(struct scsi_device *device) { struct Scsi_Host *host = device->host; struct sym_hcb *np; struct sym_tcb *tp; struct sym_lcb *lp; int reqtags, depth_to_use; np = ((struct host_data *) host->hostdata)->ncb; tp = &np->target[device->id]; /* * Get user settings for transfer parameters. */ tp->inq_byte7_valid = (INQ7_SYNC|INQ7_WIDE16); sym_update_trans_settings(np, tp); /* * Allocate the LCB if not yet. * If it fail, we may well be in the sh*t. :) */ lp = sym_alloc_lcb(np, device->id, device->lun); if (!lp) return -ENOMEM; /* * Get user flags. */ lp->curr_flags = lp->user_flags; /* * Select queue depth from driver setup. * Donnot use more than configured by user. * Use at least 2. * Donnot use more than our maximum. */ reqtags = device_queue_depth(np, device->id, device->lun); if (reqtags > tp->usrtags) reqtags = tp->usrtags; if (!device->tagged_supported) reqtags = 0; #if 1 /* Avoid to locally queue commands for no good reasons */ if (reqtags > SYM_CONF_MAX_TAG) reqtags = SYM_CONF_MAX_TAG; depth_to_use = (reqtags ? reqtags : 2); #else depth_to_use = (reqtags ? SYM_CONF_MAX_TAG : 2); #endif scsi_adjust_queue_depth(device, (device->tagged_supported ? MSG_SIMPLE_TAG : 0), depth_to_use); lp->s.scdev_depth = depth_to_use; sym_tune_dev_queuing(np, device->id, device->lun, reqtags); spi_dv_device(device); return 0; } /* * Linux entry point for info() function */ static const char *sym53c8xx_info (struct Scsi_Host *host) { return sym_driver_name(); } #ifdef SYM_LINUX_PROC_INFO_SUPPORT /* * Proc file system stuff * * A read operation returns adapter information. * A write operation is a control command. * The string is parsed in the driver code and the command is passed * to the sym_usercmd() function. */ #ifdef SYM_LINUX_USER_COMMAND_SUPPORT struct sym_usrcmd { u_long target; u_long lun; u_long data; u_long cmd; }; #define UC_SETSYNC 10 #define UC_SETTAGS 11 #define UC_SETDEBUG 12 #define UC_SETWIDE 14 #define UC_SETFLAG 15 #define UC_SETVERBOSE 17 #define UC_RESETDEV 18 #define UC_CLEARDEV 19 static void sym_exec_user_command (struct sym_hcb *np, struct sym_usrcmd *uc) { struct sym_tcb *tp; int t, l; switch (uc->cmd) { case 0: return; #ifdef SYM_LINUX_DEBUG_CONTROL_SUPPORT case UC_SETDEBUG: sym_debug_flags = uc->data; break; #endif case UC_SETVERBOSE: np->verbose = uc->data; break; default: /* * We assume that other commands apply to targets. * This should always be the case and avoid the below * 4 lines to be repeated 6 times. */ for (t = 0; t < SYM_CONF_MAX_TARGET; t++) { if (!((uc->target >> t) & 1)) continue; tp = &np->target[t]; switch (uc->cmd) { case UC_SETSYNC: if (!uc->data || uc->data >= 255) { tp->tinfo.goal.options = 0; tp->tinfo.goal.offset = 0; break; } if (uc->data <= 9 && np->minsync_dt) { if (uc->data < np->minsync_dt) uc->data = np->minsync_dt; tp->tinfo.goal.options = PPR_OPT_DT; tp->tinfo.goal.width = 1; tp->tinfo.goal.period = uc->data; tp->tinfo.goal.offset = np->maxoffs_dt; } else { if (uc->data < np->minsync) uc->data = np->minsync; tp->tinfo.goal.options = 0; tp->tinfo.goal.period = uc->data; tp->tinfo.goal.offset = np->maxoffs; } break; case UC_SETWIDE: tp->tinfo.goal.width = uc->data ? 1 : 0; break; case UC_SETTAGS: for (l = 0; l < SYM_CONF_MAX_LUN; l++) sym_tune_dev_queuing(np, t,l, uc->data); break; case UC_RESETDEV: tp->to_reset = 1; np->istat_sem = SEM; OUTB (nc_istat, SIGP|SEM); break; case UC_CLEARDEV: for (l = 0; l < SYM_CONF_MAX_LUN; l++) { struct sym_lcb *lp = sym_lp(np, tp, l); if (lp) lp->to_clear = 1; } np->istat_sem = SEM; OUTB (nc_istat, SIGP|SEM); break; case UC_SETFLAG: tp->usrflags = uc->data; break; } } break; } } #define digit_to_bin(c) ((c) - '0') static int skip_spaces(char *ptr, int len) { int cnt, c; for (cnt = len; cnt > 0 && (c = *ptr++) && isspace(c); cnt--); return (len - cnt); } static int get_int_arg(char *ptr, int len, u_long *pv) { int cnt, c; u_long v; for (v = 0, cnt = len; cnt > 0 && (c = *ptr++) && isdigit(c); cnt--) { v = (v * 10) + digit_to_bin(c); } if (pv) *pv = v; return (len - cnt); } static int is_keyword(char *ptr, int len, char *verb) { int verb_len = strlen(verb); if (len >= verb_len && !memcmp(verb, ptr, verb_len)) return verb_len; else return 0; } #define SKIP_SPACES(min_spaces) \ if ((arg_len = skip_spaces(ptr, len)) < (min_spaces)) \ return -EINVAL; \ ptr += arg_len; len -= arg_len; #define GET_INT_ARG(v) \ if (!(arg_len = get_int_arg(ptr, len, &(v)))) \ return -EINVAL; \ ptr += arg_len; len -= arg_len; /* * Parse a control command */ static int sym_user_command(struct sym_hcb *np, char *buffer, int length) { char *ptr = buffer; int len = length; struct sym_usrcmd cmd, *uc = &cmd; int arg_len; u_long target; bzero(uc, sizeof(*uc)); if (len > 0 && ptr[len-1] == '\n') --len; if ((arg_len = is_keyword(ptr, len, "setsync")) != 0) uc->cmd = UC_SETSYNC; else if ((arg_len = is_keyword(ptr, len, "settags")) != 0) uc->cmd = UC_SETTAGS; else if ((arg_len = is_keyword(ptr, len, "setverbose")) != 0) uc->cmd = UC_SETVERBOSE; else if ((arg_len = is_keyword(ptr, len, "setwide")) != 0) uc->cmd = UC_SETWIDE; #ifdef SYM_LINUX_DEBUG_CONTROL_SUPPORT else if ((arg_len = is_keyword(ptr, len, "setdebug")) != 0) uc->cmd = UC_SETDEBUG; #endif else if ((arg_len = is_keyword(ptr, len, "setflag")) != 0) uc->cmd = UC_SETFLAG; else if ((arg_len = is_keyword(ptr, len, "resetdev")) != 0) uc->cmd = UC_RESETDEV; else if ((arg_len = is_keyword(ptr, len, "cleardev")) != 0) uc->cmd = UC_CLEARDEV; else arg_len = 0; #ifdef DEBUG_PROC_INFO printk("sym_user_command: arg_len=%d, cmd=%ld\n", arg_len, uc->cmd); #endif if (!arg_len) return -EINVAL; ptr += arg_len; len -= arg_len; switch(uc->cmd) { case UC_SETSYNC: case UC_SETTAGS: case UC_SETWIDE: case UC_SETFLAG: case UC_RESETDEV: case UC_CLEARDEV: SKIP_SPACES(1); if ((arg_len = is_keyword(ptr, len, "all")) != 0) { ptr += arg_len; len -= arg_len; uc->target = ~0; } else { GET_INT_ARG(target); uc->target = (1<cmd) { case UC_SETVERBOSE: case UC_SETSYNC: case UC_SETTAGS: case UC_SETWIDE: SKIP_SPACES(1); GET_INT_ARG(uc->data); #ifdef DEBUG_PROC_INFO printk("sym_user_command: data=%ld\n", uc->data); #endif break; #ifdef SYM_LINUX_DEBUG_CONTROL_SUPPORT case UC_SETDEBUG: while (len > 0) { SKIP_SPACES(1); if ((arg_len = is_keyword(ptr, len, "alloc"))) uc->data |= DEBUG_ALLOC; else if ((arg_len = is_keyword(ptr, len, "phase"))) uc->data |= DEBUG_PHASE; else if ((arg_len = is_keyword(ptr, len, "queue"))) uc->data |= DEBUG_QUEUE; else if ((arg_len = is_keyword(ptr, len, "result"))) uc->data |= DEBUG_RESULT; else if ((arg_len = is_keyword(ptr, len, "scatter"))) uc->data |= DEBUG_SCATTER; else if ((arg_len = is_keyword(ptr, len, "script"))) uc->data |= DEBUG_SCRIPT; else if ((arg_len = is_keyword(ptr, len, "tiny"))) uc->data |= DEBUG_TINY; else if ((arg_len = is_keyword(ptr, len, "timing"))) uc->data |= DEBUG_TIMING; else if ((arg_len = is_keyword(ptr, len, "nego"))) uc->data |= DEBUG_NEGO; else if ((arg_len = is_keyword(ptr, len, "tags"))) uc->data |= DEBUG_TAGS; else if ((arg_len = is_keyword(ptr, len, "pointer"))) uc->data |= DEBUG_POINTER; else return -EINVAL; ptr += arg_len; len -= arg_len; } #ifdef DEBUG_PROC_INFO printk("sym_user_command: data=%ld\n", uc->data); #endif break; #endif /* SYM_LINUX_DEBUG_CONTROL_SUPPORT */ case UC_SETFLAG: while (len > 0) { SKIP_SPACES(1); if ((arg_len = is_keyword(ptr, len, "no_disc"))) uc->data &= ~SYM_DISC_ENABLED; else return -EINVAL; ptr += arg_len; len -= arg_len; } break; default: break; } if (len) return -EINVAL; else { unsigned long flags; spin_lock_irqsave(np->s.host->host_lock, flags); sym_exec_user_command (np, uc); spin_unlock_irqrestore(np->s.host->host_lock, flags); } return length; } #endif /* SYM_LINUX_USER_COMMAND_SUPPORT */ #ifdef SYM_LINUX_USER_INFO_SUPPORT /* * Informations through the proc file system. */ struct info_str { char *buffer; int length; int offset; int pos; }; static void copy_mem_info(struct info_str *info, char *data, int len) { if (info->pos + len > info->length) len = info->length - info->pos; if (info->pos + len < info->offset) { info->pos += len; return; } if (info->pos < info->offset) { data += (info->offset - info->pos); len -= (info->offset - info->pos); } if (len > 0) { memcpy(info->buffer + info->pos, data, len); info->pos += len; } } static int copy_info(struct info_str *info, char *fmt, ...) { va_list args; char buf[81]; int len; va_start(args, fmt); len = vsprintf(buf, fmt, args); va_end(args); copy_mem_info(info, buf, len); return len; } /* * Copy formatted information into the input buffer. */ static int sym_host_info(struct sym_hcb *np, char *ptr, off_t offset, int len) { struct info_str info; info.buffer = ptr; info.length = len; info.offset = offset; info.pos = 0; copy_info(&info, "Chip " NAME53C "%s, device id 0x%x, " "revision id 0x%x\n", np->s.chip_name, np->device_id, np->revision_id); copy_info(&info, "At PCI address %s, " #ifdef __sparc__ "IRQ %s\n", #else "IRQ %d\n", #endif pci_name(np->s.device), #ifdef __sparc__ __irq_itoa(np->s.irq)); #else (int) np->s.irq); #endif copy_info(&info, "Min. period factor %d, %s SCSI BUS%s\n", (int) (np->minsync_dt ? np->minsync_dt : np->minsync), np->maxwide ? "Wide" : "Narrow", np->minsync_dt ? ", DT capable" : ""); copy_info(&info, "Max. started commands %d, " "max. commands per LUN %d\n", SYM_CONF_MAX_START, SYM_CONF_MAX_TAG); return info.pos > info.offset? info.pos - info.offset : 0; } #endif /* SYM_LINUX_USER_INFO_SUPPORT */ /* * Entry point of the scsi proc fs of the driver. * - func = 0 means read (returns adapter infos) * - func = 1 means write (not yet merget from sym53c8xx) */ static int sym53c8xx_proc_info(struct Scsi_Host *host, char *buffer, char **start, off_t offset, int length, int func) { struct host_data *host_data; struct sym_hcb *np = 0; int retv; host_data = (struct host_data *) host->hostdata; np = host_data->ncb; if (!np) return -EINVAL; if (func) { #ifdef SYM_LINUX_USER_COMMAND_SUPPORT retv = sym_user_command(np, buffer, length); #else retv = -EINVAL; #endif } else { if (start) *start = buffer; #ifdef SYM_LINUX_USER_INFO_SUPPORT retv = sym_host_info(np, buffer, offset, length); #else retv = -EINVAL; #endif } return retv; } #endif /* SYM_LINUX_PROC_INFO_SUPPORT */ /* * Free controller resources. */ static void sym_free_resources(struct sym_hcb *np) { /* * Free O/S specific resources. */ if (np->s.irq) free_irq(np->s.irq, np); #ifndef SYM_CONF_IOMAPPED if (np->s.mmio_va) iounmap(np->s.mmio_va); #endif if (np->s.ram_va) iounmap(np->s.ram_va); /* * Free O/S independent resources. */ sym_hcb_free(np); sym_mfree_dma(np, sizeof(*np), "HCB"); } /* * Ask/tell the system about DMA addressing. */ static int sym_setup_bus_dma_mask(struct sym_hcb *np) { #if SYM_CONF_DMA_ADDRESSING_MODE == 0 if (pci_set_dma_mask(np->s.device, 0xffffffffUL)) goto out_err32; #else #if SYM_CONF_DMA_ADDRESSING_MODE == 1 #define PciDmaMask 0xffffffffffULL #elif SYM_CONF_DMA_ADDRESSING_MODE == 2 #define PciDmaMask 0xffffffffffffffffULL #endif if (np->features & FE_DAC) { if (!pci_set_dma_mask(np->s.device, PciDmaMask)) { np->use_dac = 1; printf_info("%s: using 64 bit DMA addressing\n", sym_name(np)); } else { if (pci_set_dma_mask(np->s.device, 0xffffffffUL)) goto out_err32; } } #undef PciDmaMask #endif return 0; out_err32: printf_warning("%s: 32 BIT DMA ADDRESSING NOT SUPPORTED\n", sym_name(np)); return -1; } /* * Host attach and initialisations. * * Allocate host data and ncb structure. * Remap MMIO region. * Do chip initialization. * If all is OK, install interrupt handling and * start the timer daemon. */ static struct Scsi_Host * __devinit sym_attach(struct scsi_host_template *tpnt, int unit, struct sym_device *dev) { struct host_data *host_data; struct sym_hcb *np = NULL; struct Scsi_Host *instance = NULL; unsigned long flags; struct sym_fw *fw; printk(KERN_INFO "sym%d: <%s> rev 0x%x at pci %s " #ifdef __sparc__ "irq %s\n", #else "irq %d\n", #endif unit, dev->chip.name, dev->chip.revision_id, pci_name(dev->pdev), #ifdef __sparc__ __irq_itoa(dev->s.irq)); #else dev->s.irq); #endif /* * Get the firmware for this chip. */ fw = sym_find_firmware(&dev->chip); if (!fw) goto attach_failed; /* * Allocate host_data structure */ instance = scsi_host_alloc(tpnt, sizeof(*host_data)); if (!instance) goto attach_failed; host_data = (struct host_data *) instance->hostdata; /* * Allocate immediately the host control block, * since we are only expecting to succeed. :) * We keep track in the HCB of all the resources that * are to be released on error. */ np = __sym_calloc_dma(dev->pdev, sizeof(*np), "HCB"); if (!np) goto attach_failed; np->s.device = dev->pdev; np->bus_dmat = dev->pdev; /* Result in 1 DMA pool per HBA */ host_data->ncb = np; np->s.host = instance; pci_set_drvdata(dev->pdev, np); /* * Copy some useful infos to the HCB. */ np->hcb_ba = vtobus(np); np->verbose = sym_driver_setup.verbose; np->s.device = dev->pdev; np->s.unit = unit; np->device_id = dev->chip.device_id; np->revision_id = dev->chip.revision_id; np->features = dev->chip.features; np->clock_divn = dev->chip.nr_divisor; np->maxoffs = dev->chip.offset_max; np->maxburst = dev->chip.burst_max; np->myaddr = dev->host_id; /* * Edit its name. */ strlcpy(np->s.chip_name, dev->chip.name, sizeof(np->s.chip_name)); sprintf(np->s.inst_name, "sym%d", np->s.unit); /* * Ask/tell the system about DMA addressing. */ if (sym_setup_bus_dma_mask(np)) goto attach_failed; /* * Try to map the controller chip to * virtual and physical memory. */ np->mmio_ba = (u32)dev->s.base; np->s.io_ws = (np->features & FE_IO256)? 256 : 128; #ifndef SYM_CONF_IOMAPPED np->s.mmio_va = ioremap(dev->s.base_c, np->s.io_ws); if (!np->s.mmio_va) { printf_err("%s: can't map PCI MMIO region\n", sym_name(np)); goto attach_failed; } else if (sym_verbose > 1) printf_info("%s: using memory mapped IO\n", sym_name(np)); #endif /* !defined SYM_CONF_IOMAPPED */ np->s.io_port = dev->s.io_port; /* * Map on-chip RAM if present and supported. */ if (!(np->features & FE_RAM)) dev->s.base_2 = 0; if (dev->s.base_2) { np->ram_ba = (u32)dev->s.base_2; if (np->features & FE_RAM8K) np->ram_ws = 8192; else np->ram_ws = 4096; np->s.ram_va = ioremap(dev->s.base_2_c, np->ram_ws); if (!np->s.ram_va) { printf_err("%s: can't map PCI MEMORY region\n", sym_name(np)); goto attach_failed; } } /* * Perform O/S independent stuff. */ if (sym_hcb_attach(np, fw, dev->nvram)) goto attach_failed; /* * Install the interrupt handler. * If we synchonize the C code with SCRIPTS on interrupt, * we donnot want to share the INTR line at all. */ if (request_irq(dev->s.irq, sym53c8xx_intr, SA_SHIRQ, NAME53C8XX, np)) { printf_err("%s: request irq %d failure\n", sym_name(np), dev->s.irq); goto attach_failed; } np->s.irq = dev->s.irq; /* * After SCSI devices have been opened, we cannot * reset the bus safely, so we do it here. */ spin_lock_irqsave(instance->host_lock, flags); if (sym_reset_scsi_bus(np, 0)) goto reset_failed; /* * Initialize some queue headers. */ sym_que_init(&np->s.wait_cmdq); sym_que_init(&np->s.busy_cmdq); /* * Start the SCRIPTS. */ sym_start_up (np, 1); /* * Start the timer daemon */ init_timer(&np->s.timer); np->s.timer.data = (unsigned long) np; np->s.timer.function = sym53c8xx_timer; np->s.lasttime=0; sym_timer (np); /* * Fill Linux host instance structure * and return success. */ instance->max_channel = 0; instance->this_id = np->myaddr; instance->max_id = np->maxwide ? 16 : 8; instance->max_lun = SYM_CONF_MAX_LUN; #ifndef SYM_CONF_IOMAPPED instance->base = (unsigned long) np->s.mmio_va; #endif instance->irq = np->s.irq; instance->unique_id = np->s.io_port; instance->io_port = np->s.io_port; instance->n_io_port = np->s.io_ws; instance->dma_channel = 0; instance->cmd_per_lun = SYM_CONF_MAX_TAG; instance->can_queue = (SYM_CONF_MAX_START-2); instance->sg_tablesize = SYM_CONF_MAX_SG; instance->max_cmd_len = 16; BUG_ON(sym2_transport_template == NULL); instance->transportt = sym2_transport_template; spin_unlock_irqrestore(instance->host_lock, flags); return instance; reset_failed: printf_err("%s: FATAL ERROR: CHECK SCSI BUS - CABLES, " "TERMINATION, DEVICE POWER etc.!\n", sym_name(np)); spin_unlock_irqrestore(instance->host_lock, flags); attach_failed: if (!instance) return NULL; printf_info("%s: giving up ...\n", sym_name(np)); if (np) sym_free_resources(np); scsi_host_put(instance); return NULL; } /* * Detect and try to read SYMBIOS and TEKRAM NVRAM. */ #if SYM_CONF_NVRAM_SUPPORT static void __devinit sym_get_nvram(struct sym_device *devp, struct sym_nvram *nvp) { devp->nvram = nvp; devp->device_id = devp->chip.device_id; nvp->type = 0; /* * Get access to chip IO registers */ #ifndef SYM_CONF_IOMAPPED devp->s.mmio_va = ioremap(devp->s.base_c, 128); if (!devp->s.mmio_va) return; #endif sym_read_nvram(devp, nvp); /* * Release access to chip IO registers */ #ifndef SYM_CONF_IOMAPPED iounmap(devp->s.mmio_va); #endif } #else static inline void sym_get_nvram(struct sym_device *devp, struct sym_nvram *nvp) { } #endif /* SYM_CONF_NVRAM_SUPPORT */ /* * Driver setup from the boot command line */ #ifdef SYM_LINUX_BOOT_COMMAND_LINE_SUPPORT static struct sym_driver_setup sym_driver_safe_setup __initdata = SYM_LINUX_DRIVER_SAFE_SETUP; #ifdef MODULE char *sym53c8xx = 0; /* command line passed by insmod */ MODULE_PARM(sym53c8xx, "s"); #endif #define OPT_MAX_TAG 1 #define OPT_BURST_ORDER 2 #define OPT_SCSI_LED 3 #define OPT_SCSI_DIFF 4 #define OPT_IRQ_MODE 5 #define OPT_SCSI_BUS_CHECK 6 #define OPT_HOST_ID 7 #define OPT_REVERSE_PROBE 8 #define OPT_VERBOSE 9 #define OPT_DEBUG 10 #define OPT_SETTLE_DELAY 11 #define OPT_USE_NVRAM 12 #define OPT_EXCLUDE 13 #define OPT_SAFE_SETUP 14 static char setup_token[] __initdata = "tags:" "burst:" "led:" "diff:" "irqm:" "buschk:" "hostid:" "revprob:" "verb:" "debug:" "settle:" "nvram:" "excl:" "safe:" ; #ifdef MODULE #define ARG_SEP ' ' #else #define ARG_SEP ',' #endif static int __init get_setup_token(char *p) { char *cur = setup_token; char *pc; int i = 0; while (cur != NULL && (pc = strchr(cur, ':')) != NULL) { ++pc; ++i; if (!strncmp(p, cur, pc - cur)) return i; cur = pc; } return 0; } #endif /* SYM_LINUX_BOOT_COMMAND_LINE_SUPPORT */ int __init sym53c8xx_setup(char *str) { #ifdef SYM_LINUX_BOOT_COMMAND_LINE_SUPPORT char *cur = str; char *pc, *pv; unsigned long val; unsigned int i, c; int xi = 0; while (cur != NULL && (pc = strchr(cur, ':')) != NULL) { char *pe; val = 0; pv = pc; c = *++pv; if (c == 'n') val = 0; else if (c == 'y') val = 1; else val = (int) simple_strtoul(pv, &pe, 0); switch (get_setup_token(cur)) { case OPT_MAX_TAG: sym_driver_setup.max_tag = val; if (!(pe && *pe == '/')) break; i = 0; while (*pe && *pe != ARG_SEP && i < sizeof(sym_driver_setup.tag_ctrl)-1) { sym_driver_setup.tag_ctrl[i++] = *pe++; } sym_driver_setup.tag_ctrl[i] = '\0'; break; case OPT_SAFE_SETUP: memcpy(&sym_driver_setup, &sym_driver_safe_setup, sizeof(sym_driver_setup)); break; case OPT_EXCLUDE: if (xi < 8) sym_driver_setup.excludes[xi++] = val; break; #define __SIMPLE_OPTION(NAME, name) \ case OPT_ ## NAME : \ sym_driver_setup.name = val;\ break; __SIMPLE_OPTION(BURST_ORDER, burst_order) __SIMPLE_OPTION(SCSI_LED, scsi_led) __SIMPLE_OPTION(SCSI_DIFF, scsi_diff) __SIMPLE_OPTION(IRQ_MODE, irq_mode) __SIMPLE_OPTION(SCSI_BUS_CHECK, scsi_bus_check) __SIMPLE_OPTION(HOST_ID, host_id) __SIMPLE_OPTION(REVERSE_PROBE, reverse_probe) __SIMPLE_OPTION(VERBOSE, verbose) __SIMPLE_OPTION(DEBUG, debug) __SIMPLE_OPTION(SETTLE_DELAY, settle_delay) __SIMPLE_OPTION(USE_NVRAM, use_nvram) #undef __SIMPLE_OPTION default: printk("sym53c8xx_setup: unexpected boot option '%.*s' ignored\n", (int)(pc-cur+1), cur); break; } if ((cur = strchr(cur, ARG_SEP)) != NULL) ++cur; } #endif /* SYM_LINUX_BOOT_COMMAND_LINE_SUPPORT */ return 1; } #ifndef MODULE __setup("sym53c8xx=", sym53c8xx_setup); #endif /* * Read and check the PCI configuration for any detected NCR * boards and save data for attaching after all boards have * been detected. */ static int __devinit sym53c8xx_pci_init(struct pci_dev *pdev, struct sym_device *device) { struct sym_pci_chip *chip; u_long base, base_2; u_long base_c, base_2_c, io_port; int i; u_short device_id, status_reg; u_char revision; /* Choose some short name for this device */ sprintf(device->s.inst_name, "sym.%d.%d.%d", pdev->bus->number, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); device_id = pdev->device; io_port = pdev->resource[0].start; base_c = pdev->resource[1].start; i = pci_get_base_address(pdev, 1, &base); base_2_c = pdev->resource[i].start; pci_get_base_address(pdev, i, &base_2); base &= PCI_BASE_ADDRESS_MEM_MASK; base_2 &= PCI_BASE_ADDRESS_MEM_MASK; pci_read_config_byte(pdev, PCI_CLASS_REVISION, &revision); /* * If user excluded this chip, do not initialize it. */ if (io_port) { for (i = 0 ; i < 8 ; i++) { if (sym_driver_setup.excludes[i] == io_port) return -1; } } /* * Check if the chip is supported. */ chip = sym_lookup_pci_chip_table(device_id, revision); if (!chip) { printf_info("%s: device not supported\n", sym_name(device)); return -1; } /* * Check if the chip has been assigned resources we need. * XXX: can this still happen with Linux 2.6's PCI layer? */ #ifdef SYM_CONF_IOMAPPED if (!io_port) { printf_info("%s: IO base address disabled.\n", sym_name(device)); return -1; } #else if (!base) { printf_info("%s: MMIO base address disabled.\n", sym_name(device)); return -1; } #endif /* * Ignore Symbios chips controlled by various RAID controllers. * These controllers set value 0x52414944 at RAM end - 16. */ #if defined(__i386__) if (base_2_c) { unsigned int ram_size, ram_val; void *ram_ptr; if (chip->features & FE_RAM8K) ram_size = 8192; else ram_size = 4096; ram_ptr = ioremap(base_2_c, ram_size); if (ram_ptr) { ram_val = readl_raw(ram_ptr + ram_size - 16); iounmap(ram_ptr); if (ram_val == 0x52414944) { printf_info("%s: not initializing, " "driven by RAID controller.\n", sym_name(device)); return -1; } } } #endif /* i386 and PCI MEMORY accessible */ /* * Copy the chip description to our device structure, * so we can make it match the actual device and options. */ memcpy(&device->chip, chip, sizeof(device->chip)); device->chip.revision_id = revision; /* * Some features are required to be enabled in order to * work around some chip problems. :) ;) * (ITEM 12 of a DEL about the 896 I haven't yet). * We must ensure the chip will use WRITE AND INVALIDATE. * The revision number limit is for now arbitrary. */ if (device_id == PCI_DEVICE_ID_NCR_53C896 && revision < 0x4) { chip->features |= (FE_WRIE | FE_CLSE); } /* If the chip can do Memory Write Invalidate, enable it */ if (chip->features & FE_WRIE) { if (pci_set_mwi(pdev)) return -1; } /* * Work around for errant bit in 895A. The 66Mhz * capable bit is set erroneously. Clear this bit. * (Item 1 DEL 533) * * Make sure Config space and Features agree. * * Recall: writes are not normal to status register - * write a 1 to clear and a 0 to leave unchanged. * Can only reset bits. */ pci_read_config_word(pdev, PCI_STATUS, &status_reg); if (chip->features & FE_66MHZ) { if (!(status_reg & PCI_STATUS_66MHZ)) chip->features &= ~FE_66MHZ; } else { if (status_reg & PCI_STATUS_66MHZ) { status_reg = PCI_STATUS_66MHZ; pci_write_config_word(pdev, PCI_STATUS, status_reg); pci_read_config_word(pdev, PCI_STATUS, &status_reg); } } /* * Initialise device structure with items required by sym_attach. */ device->pdev = pdev; device->s.base = base; device->s.base_2 = base_2; device->s.base_c = base_c; device->s.base_2_c = base_2_c; device->s.io_port = io_port; device->s.irq = pdev->irq; return 0; } /* * The NCR PQS and PDS cards are constructed as a DEC bridge * behind which sits a proprietary NCR memory controller and * either four or two 53c875s as separate devices. We can tell * if an 875 is part of a PQS/PDS or not since if it is, it will * be on the same bus as the memory controller. In its usual * mode of operation, the 875s are slaved to the memory * controller for all transfers. To operate with the Linux * driver, the memory controller is disabled and the 875s * freed to function independently. The only wrinkle is that * the preset SCSI ID (which may be zero) must be read in from * a special configuration space register of the 875. */ void sym_config_pqs(struct pci_dev *pdev, struct sym_device *sym_dev) { int slot; for (slot = 0; slot < 256; slot++) { u8 tmp; struct pci_dev *memc = pci_get_slot(pdev->bus, slot); if (!memc || memc->vendor != 0x101a || memc->device == 0x0009) { pci_dev_put(memc); continue; } /* * We set these bits in the memory controller once per 875. * This isn't a problem in practice. */ /* bit 1: allow individual 875 configuration */ pci_read_config_byte(memc, 0x44, &tmp); tmp |= 0x2; pci_write_config_byte(memc, 0x44, tmp); /* bit 2: drive individual 875 interrupts to the bus */ pci_read_config_byte(memc, 0x45, &tmp); tmp |= 0x4; pci_write_config_byte(memc, 0x45, tmp); pci_read_config_byte(pdev, 0x84, &tmp); sym_dev->host_id = tmp; pci_dev_put(memc); break; } } /* * Called before unloading the module. * Detach the host. * We have to free resources and halt the NCR chip. */ static int sym_detach(struct sym_hcb *np) { printk("%s: detaching ...\n", sym_name(np)); del_timer_sync(&np->s.timer); /* * Reset NCR chip. * We should use sym_soft_reset(), but we don't want to do * so, since we may not be safe if interrupts occur. */ printk("%s: resetting chip\n", sym_name(np)); OUTB (nc_istat, SRST); UDELAY (10); OUTB (nc_istat, 0); sym_free_resources(np); return 1; } MODULE_LICENSE("Dual BSD/GPL"); /* * Driver host template. */ static struct scsi_host_template sym2_template = { .module = THIS_MODULE, .name = "sym53c8xx", .info = sym53c8xx_info, .queuecommand = sym53c8xx_queue_command, .slave_configure = sym53c8xx_slave_configure, .eh_abort_handler = sym53c8xx_eh_abort_handler, .eh_device_reset_handler = sym53c8xx_eh_device_reset_handler, .eh_bus_reset_handler = sym53c8xx_eh_bus_reset_handler, .eh_host_reset_handler = sym53c8xx_eh_host_reset_handler, .this_id = 7, .use_clustering = DISABLE_CLUSTERING, #ifdef SYM_LINUX_PROC_INFO_SUPPORT .proc_info = sym53c8xx_proc_info, .proc_name = NAME53C8XX, #endif }; static int attach_count; static int __devinit sym2_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct sym_device sym_dev; struct sym_nvram nvram; struct Scsi_Host *instance; memset(&sym_dev, 0, sizeof(sym_dev)); memset(&nvram, 0, sizeof(nvram)); if (pci_enable_device(pdev)) return -ENODEV; pci_set_master(pdev); if (pci_request_regions(pdev, NAME53C8XX)) goto disable; sym_dev.host_id = SYM_SETUP_HOST_ID; if (sym53c8xx_pci_init(pdev, &sym_dev)) goto free; sym_config_pqs(pdev, &sym_dev); sym_get_nvram(&sym_dev, &nvram); instance = sym_attach(&sym2_template, attach_count, &sym_dev); if (!instance) goto free; if (scsi_add_host(instance, &pdev->dev)) goto detach; scsi_scan_host(instance); attach_count++; return 0; detach: sym_detach(pci_get_drvdata(pdev)); free: pci_release_regions(pdev); disable: pci_disable_device(pdev); return -ENODEV; } static void __devexit sym2_remove(struct pci_dev *pdev) { struct sym_hcb *np = pci_get_drvdata(pdev); struct Scsi_Host *host = np->s.host; scsi_remove_host(host); scsi_host_put(host); sym_detach(np); pci_release_regions(pdev); pci_disable_device(pdev); attach_count--; } static void sym2_get_offset(struct scsi_device *sdev) { struct sym_hcb *np = ((struct host_data *)sdev->host->hostdata)->ncb; struct sym_tcb *tp = &np->target[sdev->id]; spi_offset(sdev) = tp->tinfo.curr.offset; } static void sym2_set_offset(struct scsi_device *sdev, int offset) { struct sym_hcb *np = ((struct host_data *)sdev->host->hostdata)->ncb; struct sym_tcb *tp = &np->target[sdev->id]; if (tp->tinfo.curr.options & PPR_OPT_DT) { if (offset > np->maxoffs_dt) offset = np->maxoffs_dt; } else { if (offset > np->maxoffs) offset = np->maxoffs; } tp->tinfo.goal.offset = offset; } static void sym2_get_period(struct scsi_device *sdev) { struct sym_hcb *np = ((struct host_data *)sdev->host->hostdata)->ncb; struct sym_tcb *tp = &np->target[sdev->id]; spi_period(sdev) = tp->tinfo.curr.period; } static void sym2_set_period(struct scsi_device *sdev, int period) { struct sym_hcb *np = ((struct host_data *)sdev->host->hostdata)->ncb; struct sym_tcb *tp = &np->target[sdev->id]; if (period <= 9 && np->minsync_dt) { if (period < np->minsync_dt) period = np->minsync_dt; tp->tinfo.goal.options = PPR_OPT_DT; tp->tinfo.goal.period = period; if (!tp->tinfo.curr.offset || tp->tinfo.curr.offset > np->maxoffs_dt) tp->tinfo.goal.offset = np->maxoffs_dt; } else { if (period < np->minsync) period = np->minsync; tp->tinfo.goal.options = 0; tp->tinfo.goal.period = period; if (!tp->tinfo.curr.offset || tp->tinfo.curr.offset > np->maxoffs) tp->tinfo.goal.offset = np->maxoffs; } } static void sym2_get_width(struct scsi_device *sdev) { struct sym_hcb *np = ((struct host_data *)sdev->host->hostdata)->ncb; struct sym_tcb *tp = &np->target[sdev->id]; spi_width(sdev) = tp->tinfo.curr.width ? 1 : 0; } static void sym2_set_width(struct scsi_device *sdev, int width) { struct sym_hcb *np = ((struct host_data *)sdev->host->hostdata)->ncb; struct sym_tcb *tp = &np->target[sdev->id]; tp->tinfo.goal.width = width; } static void sym2_get_dt(struct scsi_device *sdev) { struct sym_hcb *np = ((struct host_data *)sdev->host->hostdata)->ncb; struct sym_tcb *tp = &np->target[sdev->id]; spi_dt(sdev) = (tp->tinfo.curr.options & PPR_OPT_DT) ? 1 : 0; } static void sym2_set_dt(struct scsi_device *sdev, int dt) { struct sym_hcb *np = ((struct host_data *)sdev->host->hostdata)->ncb; struct sym_tcb *tp = &np->target[sdev->id]; if (!dt) { /* if clearing DT, then we may need to reduce the * period and the offset */ if (tp->tinfo.curr.period < np->minsync) tp->tinfo.goal.period = np->minsync; if (tp->tinfo.curr.offset > np->maxoffs) tp->tinfo.goal.offset = np->maxoffs; tp->tinfo.goal.options &= ~PPR_OPT_DT; } else { tp->tinfo.goal.options |= PPR_OPT_DT; } } static struct spi_function_template sym2_transport_functions = { .set_offset = sym2_set_offset, .get_offset = sym2_get_offset, .show_offset = 1, .set_period = sym2_set_period, .get_period = sym2_get_period, .show_period = 1, .set_width = sym2_set_width, .get_width = sym2_get_width, .show_width = 1, .get_dt = sym2_get_dt, .set_dt = sym2_set_dt, .show_dt = 1, }; static struct pci_device_id sym2_id_table[] __devinitdata = { { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C810, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C820, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, /* new */ { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C825, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C815, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C810AP, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, /* new */ { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C860, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C1510, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C896, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C895, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C885, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C875, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C1510, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, /* new */ { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C895A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C875A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C1010_33, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C1010_66, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C875J, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, { 0, } }; MODULE_DEVICE_TABLE(pci, sym2_id_table); static struct pci_driver sym2_driver = { .name = NAME53C8XX, .id_table = sym2_id_table, .probe = sym2_probe, .remove = __devexit_p(sym2_remove), }; static int __init sym2_init(void) { sym2_transport_template = spi_attach_transport(&sym2_transport_functions); if (!sym2_transport_template) return -ENODEV; pci_register_driver(&sym2_driver); return 0; } static void __exit sym2_exit(void) { pci_unregister_driver(&sym2_driver); spi_release_transport(sym2_transport_template); } module_init(sym2_init); module_exit(sym2_exit);