/* * eeh.h * Copyright (C) 2001 Dave Engebretsen & Todd Inglett IBM Corporation. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #ifndef _PPC64_EEH_H #define _PPC64_EEH_H #include #include struct pci_dev; struct device_node; /* I/O addresses are converted to EEH "tokens" such that a driver will cause * a bad page fault if the address is used directly (i.e. these addresses are * never actually mapped. Translation between IO <-> EEH region is 1 to 1. */ #define IO_TOKEN_TO_ADDR(token) \ (((unsigned long)(token) & ~(0xfUL << REGION_SHIFT)) | \ (IO_REGION_ID << REGION_SHIFT)) #define IO_ADDR_TO_TOKEN(addr) \ (((unsigned long)(addr) & ~(0xfUL << REGION_SHIFT)) | \ (EEH_REGION_ID << REGION_SHIFT)) /* Values for eeh_mode bits in device_node */ #define EEH_MODE_SUPPORTED (1<<0) #define EEH_MODE_NOCHECK (1<<1) extern void __init eeh_init(void); unsigned long eeh_check_failure(void *token, unsigned long val); void *eeh_ioremap(unsigned long addr, void *vaddr); void __init pci_addr_cache_build(void); /** * eeh_add_device_early * eeh_add_device_late * * Perform eeh initialization for devices added after boot. * Call eeh_add_device_early before doing any i/o to the * device (including config space i/o). Call eeh_add_device_late * to finish the eeh setup for this device. */ struct device_node; void eeh_add_device_early(struct device_node *); void eeh_add_device_late(struct pci_dev *); /** * eeh_remove_device - undo EEH setup for the indicated pci device * @dev: pci device to be removed * * This routine should be when a device is removed from a running * system (e.g. by hotplug or dlpar). */ void eeh_remove_device(struct pci_dev *); #define EEH_DISABLE 0 #define EEH_ENABLE 1 #define EEH_RELEASE_LOADSTORE 2 #define EEH_RELEASE_DMA 3 int eeh_set_option(struct pci_dev *dev, int options); /* * EEH_POSSIBLE_ERROR() -- test for possible MMIO failure. * * Order this macro for performance. * If EEH is off for a device and it is a memory BAR, ioremap will * map it to the IOREGION. In this case addr == vaddr and since these * should be in registers we compare them first. Next we check for * ff's which indicates a (very) possible failure. * * If this macro yields TRUE, the caller relays to eeh_check_failure() * which does further tests out of line. */ #define EEH_POSSIBLE_IO_ERROR(val, type) ((val) == (type)~0) /* The vaddr will equal the addr if EEH checking is disabled for * this device. This is because eeh_ioremap() will not have * remapped to 0xA0, and thus both vaddr and addr will be 0xE0... */ #define EEH_POSSIBLE_ERROR(addr, vaddr, val, type) \ ((vaddr) != (addr) && EEH_POSSIBLE_IO_ERROR(val, type)) /* * MMIO read/write operations with EEH support. */ static inline u8 eeh_readb(void *addr) { volatile u8 *vaddr = (volatile u8 *)IO_TOKEN_TO_ADDR(addr); u8 val = in_8(vaddr); if (EEH_POSSIBLE_ERROR(addr, vaddr, val, u8)) return eeh_check_failure(addr, val); return val; } static inline void eeh_writeb(u8 val, void *addr) { volatile u8 *vaddr = (volatile u8 *)IO_TOKEN_TO_ADDR(addr); out_8(vaddr, val); } static inline u16 eeh_readw(void *addr) { volatile u16 *vaddr = (volatile u16 *)IO_TOKEN_TO_ADDR(addr); u16 val = in_le16(vaddr); if (EEH_POSSIBLE_ERROR(addr, vaddr, val, u16)) return eeh_check_failure(addr, val); return val; } static inline void eeh_writew(u16 val, void *addr) { volatile u16 *vaddr = (volatile u16 *)IO_TOKEN_TO_ADDR(addr); out_le16(vaddr, val); } static inline u16 eeh_raw_readw(void *addr) { volatile u16 *vaddr = (volatile u16 *)IO_TOKEN_TO_ADDR(addr); u16 val = in_be16(vaddr); if (EEH_POSSIBLE_ERROR(addr, vaddr, val, u16)) return eeh_check_failure(addr, val); return val; } static inline void eeh_raw_writew(u16 val, void *addr) { volatile u16 *vaddr = (volatile u16 *)IO_TOKEN_TO_ADDR(addr); out_be16(vaddr, val); } static inline u32 eeh_readl(void *addr) { volatile u32 *vaddr = (volatile u32 *)IO_TOKEN_TO_ADDR(addr); u32 val = in_le32(vaddr); if (EEH_POSSIBLE_ERROR(addr, vaddr, val, u32)) return eeh_check_failure(addr, val); return val; } static inline void eeh_writel(u32 val, void *addr) { volatile u32 *vaddr = (volatile u32 *)IO_TOKEN_TO_ADDR(addr); out_le32(vaddr, val); } static inline u32 eeh_raw_readl(void *addr) { volatile u32 *vaddr = (volatile u32 *)IO_TOKEN_TO_ADDR(addr); u32 val = in_be32(vaddr); if (EEH_POSSIBLE_ERROR(addr, vaddr, val, u32)) return eeh_check_failure(addr, val); return val; } static inline void eeh_raw_writel(u32 val, void *addr) { volatile u32 *vaddr = (volatile u32 *)IO_TOKEN_TO_ADDR(addr); out_be32(vaddr, val); } static inline u64 eeh_readq(void *addr) { volatile u64 *vaddr = (volatile u64 *)IO_TOKEN_TO_ADDR(addr); u64 val = in_le64(vaddr); if (EEH_POSSIBLE_ERROR(addr, vaddr, val, u64)) return eeh_check_failure(addr, val); return val; } static inline void eeh_writeq(u64 val, void *addr) { volatile u64 *vaddr = (volatile u64 *)IO_TOKEN_TO_ADDR(addr); out_le64(vaddr, val); } static inline u64 eeh_raw_readq(void *addr) { volatile u64 *vaddr = (volatile u64 *)IO_TOKEN_TO_ADDR(addr); u64 val = in_be64(vaddr); if (EEH_POSSIBLE_ERROR(addr, vaddr, val, u64)) return eeh_check_failure(addr, val); return val; } static inline void eeh_raw_writeq(u64 val, void *addr) { volatile u64 *vaddr = (volatile u64 *)IO_TOKEN_TO_ADDR(addr); out_be64(vaddr, val); } #define EEH_CHECK_ALIGN(v,a) \ ((((unsigned long)(v)) & ((a) - 1)) == 0) static inline void eeh_memset_io(void *addr, int c, unsigned long n) { void *vaddr = (void *)IO_TOKEN_TO_ADDR(addr); u32 lc = c; lc |= lc << 8; lc |= lc << 16; while(n && !EEH_CHECK_ALIGN(vaddr, 4)) { *((volatile u8 *)vaddr) = c; vaddr = (void *)((unsigned long)vaddr + 1); n--; } while(n >= 4) { *((volatile u32 *)vaddr) = lc; vaddr = (void *)((unsigned long)vaddr + 4); n -= 4; } while(n) { *((volatile u8 *)vaddr) = c; vaddr = (void *)((unsigned long)vaddr + 1); n--; } __asm__ __volatile__ ("sync" : : : "memory"); } static inline void eeh_memcpy_fromio(void *dest, void *src, unsigned long n) { void *vsrc = (void *)IO_TOKEN_TO_ADDR(src); void *vsrcsave = vsrc, *destsave = dest, *srcsave = src; unsigned long nsave = n; while(n && (!EEH_CHECK_ALIGN(vsrc, 4) || !EEH_CHECK_ALIGN(dest, 4))) { *((u8 *)dest) = *((volatile u8 *)vsrc); __asm__ __volatile__ ("eieio" : : : "memory"); vsrc = (void *)((unsigned long)vsrc + 1); dest = (void *)((unsigned long)dest + 1); n--; } while(n > 4) { *((u32 *)dest) = *((volatile u32 *)vsrc); __asm__ __volatile__ ("eieio" : : : "memory"); vsrc = (void *)((unsigned long)vsrc + 4); dest = (void *)((unsigned long)dest + 4); n -= 4; } while(n) { *((u8 *)dest) = *((volatile u8 *)vsrc); __asm__ __volatile__ ("eieio" : : : "memory"); vsrc = (void *)((unsigned long)vsrc + 1); dest = (void *)((unsigned long)dest + 1); n--; } __asm__ __volatile__ ("sync" : : : "memory"); /* Look for ffff's here at dest[n]. Assume that at least 4 bytes * were copied. Check all four bytes. */ if ((nsave >= 4) && (EEH_POSSIBLE_ERROR(srcsave, vsrcsave, (*((u32 *) destsave+nsave-4)), u32))) { eeh_check_failure(srcsave, (*((u32 *) destsave+nsave-4))); } } static inline void eeh_memcpy_toio(void *dest, void *src, unsigned long n) { void *vdest = (void *)IO_TOKEN_TO_ADDR(dest); while(n && (!EEH_CHECK_ALIGN(vdest, 4) || !EEH_CHECK_ALIGN(src, 4))) { *((volatile u8 *)vdest) = *((u8 *)src); src = (void *)((unsigned long)src + 1); vdest = (void *)((unsigned long)vdest + 1); n--; } while(n > 4) { *((volatile u32 *)vdest) = *((volatile u32 *)src); src = (void *)((unsigned long)src + 4); vdest = (void *)((unsigned long)vdest + 4); n-=4; } while(n) { *((volatile u8 *)vdest) = *((u8 *)src); src = (void *)((unsigned long)src + 1); vdest = (void *)((unsigned long)vdest + 1); n--; } __asm__ __volatile__ ("sync" : : : "memory"); } #undef EEH_CHECK_ALIGN #define MAX_ISA_PORT 0x10000 extern unsigned long io_page_mask; #define _IO_IS_VALID(port) ((port) >= MAX_ISA_PORT || (1 << (port>>PAGE_SHIFT)) & io_page_mask) static inline u8 eeh_inb(unsigned long port) { u8 val; if (!_IO_IS_VALID(port)) return ~0; val = in_8((u8 *)(port+pci_io_base)); if (EEH_POSSIBLE_IO_ERROR(val, u8)) return eeh_check_failure((void*)(port), val); return val; } static inline void eeh_outb(u8 val, unsigned long port) { if (_IO_IS_VALID(port)) out_8((u8 *)(port+pci_io_base), val); } static inline u16 eeh_inw(unsigned long port) { u16 val; if (!_IO_IS_VALID(port)) return ~0; val = in_le16((u16 *)(port+pci_io_base)); if (EEH_POSSIBLE_IO_ERROR(val, u16)) return eeh_check_failure((void*)(port), val); return val; } static inline void eeh_outw(u16 val, unsigned long port) { if (_IO_IS_VALID(port)) out_le16((u16 *)(port+pci_io_base), val); } static inline u32 eeh_inl(unsigned long port) { u32 val; if (!_IO_IS_VALID(port)) return ~0; val = in_le32((u32 *)(port+pci_io_base)); if (EEH_POSSIBLE_IO_ERROR(val, u32)) return eeh_check_failure((void*)(port), val); return val; } static inline void eeh_outl(u32 val, unsigned long port) { if (_IO_IS_VALID(port)) out_le32((u32 *)(port+pci_io_base), val); } /* in-string eeh macros */ static inline void eeh_insb(unsigned long port, void * buf, int ns) { _insb((u8 *)(port+pci_io_base), buf, ns); if (EEH_POSSIBLE_IO_ERROR((*(((u8*)buf)+ns-1)), u8)) eeh_check_failure((void*)(port), *(u8*)buf); } static inline void eeh_insw_ns(unsigned long port, void * buf, int ns) { _insw_ns((u16 *)(port+pci_io_base), buf, ns); if (EEH_POSSIBLE_IO_ERROR((*(((u16*)buf)+ns-1)), u16)) eeh_check_failure((void*)(port), *(u16*)buf); } static inline void eeh_insl_ns(unsigned long port, void * buf, int nl) { _insl_ns((u32 *)(port+pci_io_base), buf, nl); if (EEH_POSSIBLE_IO_ERROR((*(((u32*)buf)+nl-1)), u32)) eeh_check_failure((void*)(port), *(u32*)buf); } #endif /* _PPC64_EEH_H */