/* $Id: bitops.h,v 1.39 2002/01/30 01:40:00 davem Exp $ * bitops.h: Bit string operations on the V9. * * Copyright 1996, 1997 David S. Miller (davem@caip.rutgers.edu) */ #ifndef _SPARC64_BITOPS_H #define _SPARC64_BITOPS_H #include #include extern long ___test_and_set_bit(unsigned long nr, volatile unsigned long *addr); extern long ___test_and_clear_bit(unsigned long nr, volatile unsigned long *addr); extern long ___test_and_change_bit(unsigned long nr, volatile unsigned long *addr); #define test_and_set_bit(nr,addr) ({___test_and_set_bit(nr,addr)!=0;}) #define test_and_clear_bit(nr,addr) ({___test_and_clear_bit(nr,addr)!=0;}) #define test_and_change_bit(nr,addr) ({___test_and_change_bit(nr,addr)!=0;}) #define set_bit(nr,addr) ((void)___test_and_set_bit(nr,addr)) #define clear_bit(nr,addr) ((void)___test_and_clear_bit(nr,addr)) #define change_bit(nr,addr) ((void)___test_and_change_bit(nr,addr)) /* "non-atomic" versions... */ static __inline__ void __set_bit(int nr, volatile unsigned long *addr) { volatile unsigned long *m = addr + (nr >> 6); *m |= (1UL << (nr & 63)); } static __inline__ void __clear_bit(int nr, volatile unsigned long *addr) { volatile unsigned long *m = addr + (nr >> 6); *m &= ~(1UL << (nr & 63)); } static __inline__ void __change_bit(int nr, volatile unsigned long *addr) { volatile unsigned long *m = addr + (nr >> 6); *m ^= (1UL << (nr & 63)); } static __inline__ int __test_and_set_bit(int nr, volatile unsigned long *addr) { volatile unsigned long *m = addr + (nr >> 6); long old = *m; long mask = (1UL << (nr & 63)); *m = (old | mask); return ((old & mask) != 0); } static __inline__ int __test_and_clear_bit(int nr, volatile unsigned long *addr) { volatile unsigned long *m = addr + (nr >> 6); long old = *m; long mask = (1UL << (nr & 63)); *m = (old & ~mask); return ((old & mask) != 0); } static __inline__ int __test_and_change_bit(int nr, volatile unsigned long *addr) { volatile unsigned long *m = addr + (nr >> 6); long old = *m; long mask = (1UL << (nr & 63)); *m = (old ^ mask); return ((old & mask) != 0); } #define smp_mb__before_clear_bit() do { } while(0) #define smp_mb__after_clear_bit() do { } while(0) static __inline__ int test_bit(int nr, __const__ volatile unsigned long *addr) { return (1UL & ((addr)[nr >> 6] >> (nr & 63))) != 0UL; } /* The easy/cheese version for now. */ static __inline__ unsigned long ffz(unsigned long word) { unsigned long result; result = 0; while(word & 1) { result++; word >>= 1; } return result; } /** * __ffs - find first bit in word. * @word: The word to search * * Undefined if no bit exists, so code should check against 0 first. */ static __inline__ unsigned long __ffs(unsigned long word) { unsigned long result = 0; while (!(word & 1UL)) { result++; word >>= 1; } return result; } /* * fls: find last bit set. */ #define fls(x) generic_fls(x) #ifdef __KERNEL__ /* * Every architecture must define this function. It's the fastest * way of searching a 140-bit bitmap where the first 100 bits are * unlikely to be set. It's guaranteed that at least one of the 140 * bits is cleared. */ static inline int sched_find_first_bit(unsigned long *b) { if (unlikely(b[0])) return __ffs(b[0]); if (unlikely(((unsigned int)b[1]))) return __ffs(b[1]) + 64; if (b[1] >> 32) return __ffs(b[1] >> 32) + 96; return __ffs(b[2]) + 128; } /* * ffs: find first bit set. This is defined the same way as * the libc and compiler builtin ffs routines, therefore * differs in spirit from the above ffz (man ffs). */ static __inline__ int ffs(int x) { if (!x) return 0; return __ffs((unsigned long)x) + 1; } /* * hweightN: returns the hamming weight (i.e. the number * of bits set) of a N-bit word */ #ifdef ULTRA_HAS_POPULATION_COUNT static __inline__ unsigned int hweight64(unsigned long w) { unsigned int res; __asm__ ("popc %1,%0" : "=r" (res) : "r" (w)); return res; } static __inline__ unsigned int hweight32(unsigned int w) { unsigned int res; __asm__ ("popc %1,%0" : "=r" (res) : "r" (w & 0xffffffff)); return res; } static __inline__ unsigned int hweight16(unsigned int w) { unsigned int res; __asm__ ("popc %1,%0" : "=r" (res) : "r" (w & 0xffff)); return res; } static __inline__ unsigned int hweight8(unsigned int w) { unsigned int res; __asm__ ("popc %1,%0" : "=r" (res) : "r" (w & 0xff)); return res; } #else #define hweight64(x) generic_hweight64(x) #define hweight32(x) generic_hweight32(x) #define hweight16(x) generic_hweight16(x) #define hweight8(x) generic_hweight8(x) #endif #endif /* __KERNEL__ */ /** * find_next_bit - find the next set bit in a memory region * @addr: The address to base the search on * @offset: The bitnumber to start searching at * @size: The maximum size to search */ static __inline__ unsigned long find_next_bit(unsigned long *addr, unsigned long size, unsigned long offset) { unsigned long *p = addr + (offset >> 6); unsigned long result = offset & ~63UL; unsigned long tmp; if (offset >= size) return size; size -= result; offset &= 63UL; if (offset) { tmp = *(p++); tmp &= (~0UL << offset); if (size < 64) goto found_first; if (tmp) goto found_middle; size -= 64; result += 64; } while (size & ~63UL) { if ((tmp = *(p++))) goto found_middle; result += 64; size -= 64; } if (!size) return result; tmp = *p; found_first: tmp &= (~0UL >> (64 - size)); if (tmp == 0UL) /* Are any bits set? */ return result + size; /* Nope. */ found_middle: return result + __ffs(tmp); } /** * find_first_bit - find the first set bit in a memory region * @addr: The address to start the search at * @size: The maximum size to search * * Returns the bit-number of the first set bit, not the number of the byte * containing a bit. */ #define find_first_bit(addr, size) \ find_next_bit((addr), (size), 0) /* find_next_zero_bit() finds the first zero bit in a bit string of length * 'size' bits, starting the search at bit 'offset'. This is largely based * on Linus's ALPHA routines, which are pretty portable BTW. */ static __inline__ unsigned long find_next_zero_bit(unsigned long *addr, unsigned long size, unsigned long offset) { unsigned long *p = addr + (offset >> 6); unsigned long result = offset & ~63UL; unsigned long tmp; if (offset >= size) return size; size -= result; offset &= 63UL; if (offset) { tmp = *(p++); tmp |= ~0UL >> (64-offset); if (size < 64) goto found_first; if (~tmp) goto found_middle; size -= 64; result += 64; } while (size & ~63UL) { if (~(tmp = *(p++))) goto found_middle; result += 64; size -= 64; } if (!size) return result; tmp = *p; found_first: tmp |= ~0UL << size; if (tmp == ~0UL) /* Are any bits zero? */ return result + size; /* Nope. */ found_middle: return result + ffz(tmp); } #define find_first_zero_bit(addr, size) \ find_next_zero_bit((addr), (size), 0) extern long ___test_and_set_le_bit(int nr, volatile unsigned long *addr); extern long ___test_and_clear_le_bit(int nr, volatile unsigned long *addr); #define test_and_set_le_bit(nr,addr) ({___test_and_set_le_bit(nr,addr)!=0;}) #define test_and_clear_le_bit(nr,addr) ({___test_and_clear_le_bit(nr,addr)!=0;}) #define set_le_bit(nr,addr) ((void)___test_and_set_le_bit(nr,addr)) #define clear_le_bit(nr,addr) ((void)___test_and_clear_le_bit(nr,addr)) static __inline__ int test_le_bit(int nr, __const__ unsigned long * addr) { int mask; __const__ unsigned char *ADDR = (__const__ unsigned char *) addr; ADDR += nr >> 3; mask = 1 << (nr & 0x07); return ((mask & *ADDR) != 0); } #define find_first_zero_le_bit(addr, size) \ find_next_zero_le_bit((addr), (size), 0) static __inline__ unsigned long find_next_zero_le_bit(unsigned long *addr, unsigned long size, unsigned long offset) { unsigned long *p = addr + (offset >> 6); unsigned long result = offset & ~63UL; unsigned long tmp; if (offset >= size) return size; size -= result; offset &= 63UL; if(offset) { tmp = __swab64p(p++); tmp |= (~0UL >> (64-offset)); if(size < 64) goto found_first; if(~tmp) goto found_middle; size -= 64; result += 64; } while(size & ~63) { if(~(tmp = __swab64p(p++))) goto found_middle; result += 64; size -= 64; } if(!size) return result; tmp = __swab64p(p); found_first: tmp |= (~0UL << size); if (tmp == ~0UL) /* Are any bits zero? */ return result + size; /* Nope. */ found_middle: return result + ffz(tmp); } #ifdef __KERNEL__ #define ext2_set_bit(nr,addr) test_and_set_le_bit((nr),(unsigned long *)(addr)) #define ext2_set_bit_atomic(lock,nr,addr) test_and_set_le_bit((nr),(unsigned long *)(addr)) #define ext2_clear_bit(nr,addr) test_and_clear_le_bit((nr),(unsigned long *)(addr)) #define ext2_clear_bit_atomic(lock,nr,addr) test_and_clear_le_bit((nr),(unsigned long *)(addr)) #define ext2_test_bit(nr,addr) test_le_bit((nr),(unsigned long *)(addr)) #define ext2_find_first_zero_bit(addr, size) \ find_first_zero_le_bit((unsigned long *)(addr), (size)) #define ext2_find_next_zero_bit(addr, size, off) \ find_next_zero_le_bit((unsigned long *)(addr), (size), (off)) /* Bitmap functions for the minix filesystem. */ #define minix_test_and_set_bit(nr,addr) test_and_set_bit((nr),(unsigned long *)(addr)) #define minix_set_bit(nr,addr) set_bit((nr),(unsigned long *)(addr)) #define minix_test_and_clear_bit(nr,addr) \ test_and_clear_bit((nr),(unsigned long *)(addr)) #define minix_test_bit(nr,addr) test_bit((nr),(unsigned long *)(addr)) #define minix_find_first_zero_bit(addr,size) \ find_first_zero_bit((unsigned long *)(addr),(size)) #endif /* __KERNEL__ */ #endif /* defined(_SPARC64_BITOPS_H) */