/* * Copyright (C) 2000, 2001, 2002 Jeff Dike (jdike@karaya.com) * Derived from include/asm-i386/pgtable.h * Licensed under the GPL */ #ifndef __UM_PGTABLE_H #define __UM_PGTABLE_H #include "linux/sched.h" #include "asm/processor.h" #include "asm/page.h" #include "asm/fixmap.h" extern void *um_virt_to_phys(struct task_struct *task, unsigned long virt, pte_t *pte_out); /* zero page used for uninitialized stuff */ extern unsigned long *empty_zero_page; #define pgtable_cache_init() do ; while (0) /* PMD_SHIFT determines the size of the area a second-level page table can map */ #define PMD_SHIFT 22 #define PMD_SIZE (1UL << PMD_SHIFT) #define PMD_MASK (~(PMD_SIZE-1)) /* PGDIR_SHIFT determines what a third-level page table entry can map */ #define PGDIR_SHIFT 22 #define PGDIR_SIZE (1UL << PGDIR_SHIFT) #define PGDIR_MASK (~(PGDIR_SIZE-1)) /* * entries per page directory level: the i386 is two-level, so * we don't really have any PMD directory physically. */ #define PTRS_PER_PTE 1024 #define PTRS_PER_PMD 1 #define PTRS_PER_PGD 1024 #define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE) #define FIRST_USER_PGD_NR 0 #define pte_ERROR(e) \ printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e)) #define pmd_ERROR(e) \ printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e)) #define pgd_ERROR(e) \ printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e)) extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; /* * pgd entries used up by user/kernel: */ #define USER_PGD_PTRS (TASK_SIZE >> PGDIR_SHIFT) #define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS) #ifndef __ASSEMBLY__ /* Just any arbitrary offset to the start of the vmalloc VM area: the * current 8MB value just means that there will be a 8MB "hole" after the * physical memory until the kernel virtual memory starts. That means that * any out-of-bounds memory accesses will hopefully be caught. * The vmalloc() routines leaves a hole of 4kB between each vmalloced * area for the same reason. ;) */ extern unsigned long end_iomem; #define VMALLOC_OFFSET (__va_space) #define VMALLOC_START ((end_iomem + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)) #ifdef CONFIG_HIGHMEM # define VMALLOC_END (PKMAP_BASE-2*PAGE_SIZE) #else # define VMALLOC_END (FIXADDR_START-2*PAGE_SIZE) #endif #define _PAGE_PRESENT 0x001 #define _PAGE_NEWPAGE 0x002 #define _PAGE_NEWPROT 0x004 #define _PAGE_FILE 0x008 /* set:pagecache unset:swap */ #define _PAGE_PROTNONE 0x010 /* If not present */ #define _PAGE_RW 0x020 #define _PAGE_USER 0x040 #define _PAGE_ACCESSED 0x080 #define _PAGE_DIRTY 0x100 #define REGION_MASK 0xf0000000 #define REGION_SHIFT 28 #define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY) #define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY) #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) #define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED) #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED) #define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED) #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED) #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED) #define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_DIRTY | _PAGE_ACCESSED) /* * The i386 can't do page protection for execute, and considers that the same are read. * Also, write permissions imply read permissions. This is the closest we can get.. */ #define __P000 PAGE_NONE #define __P001 PAGE_READONLY #define __P010 PAGE_COPY #define __P011 PAGE_COPY #define __P100 PAGE_READONLY #define __P101 PAGE_READONLY #define __P110 PAGE_COPY #define __P111 PAGE_COPY #define __S000 PAGE_NONE #define __S001 PAGE_READONLY #define __S010 PAGE_SHARED #define __S011 PAGE_SHARED #define __S100 PAGE_READONLY #define __S101 PAGE_READONLY #define __S110 PAGE_SHARED #define __S111 PAGE_SHARED /* * Define this if things work differently on an i386 and an i486: * it will (on an i486) warn about kernel memory accesses that are * done without a 'verify_area(VERIFY_WRITE,..)' */ #undef TEST_VERIFY_AREA /* page table for 0-4MB for everybody */ extern unsigned long pg0[1024]; /* * BAD_PAGETABLE is used when we need a bogus page-table, while * BAD_PAGE is used for a bogus page. * * ZERO_PAGE is a global shared page that is always zero: used * for zero-mapped memory areas etc.. */ extern pte_t __bad_page(void); extern pte_t * __bad_pagetable(void); #define BAD_PAGETABLE __bad_pagetable() #define BAD_PAGE __bad_page() #define ZERO_PAGE(vaddr) virt_to_page(empty_zero_page) /* number of bits that fit into a memory pointer */ #define BITS_PER_PTR (8*sizeof(unsigned long)) /* to align the pointer to a pointer address */ #define PTR_MASK (~(sizeof(void*)-1)) /* sizeof(void*)==1<>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK) #define pte_none(x) !(pte_val(x) & ~_PAGE_NEWPAGE) #define pte_present(x) (pte_val(x) & (_PAGE_PRESENT | _PAGE_PROTNONE)) #define pte_clear(xp) do { pte_val(*(xp)) = _PAGE_NEWPAGE; } while (0) #define pmd_none(x) (!(pmd_val(x) & ~_PAGE_NEWPAGE)) #define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE) #define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT) #define pmd_clear(xp) do { pmd_val(*(xp)) = _PAGE_NEWPAGE; } while (0) #define pmd_newpage(x) (pmd_val(x) & _PAGE_NEWPAGE) #define pmd_mkuptodate(x) (pmd_val(x) &= ~_PAGE_NEWPAGE) /* * The "pgd_xxx()" functions here are trivial for a folded two-level * setup: the pgd is never bad, and a pmd always exists (as it's folded * into the pgd entry) */ static inline int pgd_none(pgd_t pgd) { return 0; } static inline int pgd_bad(pgd_t pgd) { return 0; } static inline int pgd_present(pgd_t pgd) { return 1; } static inline void pgd_clear(pgd_t * pgdp) { } #define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT)) #define pte_page(pte) phys_to_page(pte_val(pte)) #define pmd_page(pmd) phys_to_page(pmd_val(pmd) & PAGE_MASK) #define pte_pfn(x) phys_to_pfn(pte_val(x)) #define pfn_pte(pfn, prot) __pte(pfn_to_phys(pfn) | pgprot_val(prot)) extern struct page *phys_to_page(const unsigned long phys); extern struct page *__virt_to_page(const unsigned long virt); #define virt_to_page(addr) __virt_to_page((const unsigned long) addr) /* * Bits 0 through 3 are taken */ #define PTE_FILE_MAX_BITS 28 #define pte_to_pgoff(pte) ((pte).pte_low >> 4) #define pgoff_to_pte(off) \ ((pte_t) { ((off) << 4) + _PAGE_FILE }) static inline pte_t pte_mknewprot(pte_t pte) { pte_val(pte) |= _PAGE_NEWPROT; return(pte); } static inline pte_t pte_mknewpage(pte_t pte) { pte_val(pte) |= _PAGE_NEWPAGE; return(pte); } static inline void set_pte(pte_t *pteptr, pte_t pteval) { /* If it's a swap entry, it needs to be marked _PAGE_NEWPAGE so * fix_range knows to unmap it. _PAGE_NEWPROT is specific to * mapped pages. */ *pteptr = pte_mknewpage(pteval); if(pte_present(*pteptr)) *pteptr = pte_mknewprot(*pteptr); } /* * (pmds are folded into pgds so this doesn't get actually called, * but the define is needed for a generic inline function.) */ #define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval) #define set_pgd(pgdptr, pgdval) (*(pgdptr) = pgdval) /* * The following only work if pte_present() is true. * Undefined behaviour if not.. */ static inline int pte_user(pte_t pte) { return((pte_val(pte) & _PAGE_USER) && !(pte_val(pte) & _PAGE_PROTNONE)); } static inline int pte_read(pte_t pte) { return((pte_val(pte) & _PAGE_USER) && !(pte_val(pte) & _PAGE_PROTNONE)); } static inline int pte_exec(pte_t pte){ return((pte_val(pte) & _PAGE_USER) && !(pte_val(pte) & _PAGE_PROTNONE)); } static inline int pte_write(pte_t pte) { return((pte_val(pte) & _PAGE_RW) && !(pte_val(pte) & _PAGE_PROTNONE)); } /* * The following only works if pte_present() is not true. */ static inline int pte_file(pte_t pte) { return (pte).pte_low & _PAGE_FILE; } static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } static inline int pte_newpage(pte_t pte) { return pte_val(pte) & _PAGE_NEWPAGE; } static inline int pte_newprot(pte_t pte) { return(pte_present(pte) && (pte_val(pte) & _PAGE_NEWPROT)); } static inline pte_t pte_rdprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_USER; return(pte_mknewprot(pte)); } static inline pte_t pte_exprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_USER; return(pte_mknewprot(pte)); } static inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~_PAGE_DIRTY; return(pte); } static inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_ACCESSED; return(pte); } static inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_RW; return(pte_mknewprot(pte)); } static inline pte_t pte_mkread(pte_t pte) { pte_val(pte) |= _PAGE_USER; return(pte_mknewprot(pte)); } static inline pte_t pte_mkexec(pte_t pte) { pte_val(pte) |= _PAGE_USER; return(pte_mknewprot(pte)); } static inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return(pte); } static inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; return(pte); } static inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) |= _PAGE_RW; return(pte_mknewprot(pte)); } static inline pte_t pte_mkuptodate(pte_t pte) { pte_val(pte) &= ~_PAGE_NEWPAGE; if(pte_present(pte)) pte_val(pte) &= ~_PAGE_NEWPROT; return(pte); } extern unsigned long page_to_phys(struct page *page); /* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. */ extern pte_t mk_pte(struct page *page, pgprot_t pgprot); static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) { pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); if(pte_present(pte)) pte = pte_mknewpage(pte_mknewprot(pte)); return pte; } #define pmd_page_kernel(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK)) /* * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD] * * this macro returns the index of the entry in the pgd page which would * control the given virtual address */ #define pgd_index(address) ((address >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) /* * pgd_offset() returns a (pgd_t *) * pgd_index() is used get the offset into the pgd page's array of pgd_t's; */ #define pgd_offset(mm, address) \ ((mm)->pgd + ((address) >> PGDIR_SHIFT)) /* * a shortcut which implies the use of the kernel's pgd, instead * of a process's */ #define pgd_offset_k(address) pgd_offset(&init_mm, address) #define pmd_index(address) \ (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) /* Find an entry in the second-level page table.. */ static inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address) { return (pmd_t *) dir; } /* * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE] * * this macro returns the index of the entry in the pte page which would * control the given virtual address */ #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) #define pte_offset_kernel(dir, address) \ ((pte_t *) pmd_page_kernel(*(dir)) + pte_index(address)) #define pte_offset_map(dir, address) \ ((pte_t *)kmap_atomic(pmd_page(*(dir)),KM_PTE0) + pte_index(address)) #define pte_offset_map_nested(dir, address) \ ((pte_t *)kmap_atomic(pmd_page(*(dir)),KM_PTE1) + pte_index(address)) #define pte_unmap(pte) kunmap_atomic((pte), KM_PTE0) #define pte_unmap_nested(pte) kunmap_atomic((pte), KM_PTE1) #define update_mmu_cache(vma,address,pte) do ; while (0) /* Encode and de-code a swap entry */ #define __swp_type(x) (((x).val >> 4) & 0x3f) #define __swp_offset(x) ((x).val >> 11) #define __swp_entry(type, offset) \ ((swp_entry_t) { ((type) << 4) | ((offset) << 11) }) #define __pte_to_swp_entry(pte) \ ((swp_entry_t) { pte_val(pte_mkuptodate(pte)) }) #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) #define kern_addr_valid(addr) (1) #include #endif #endif /* * Overrides for Emacs so that we follow Linus's tabbing style. * Emacs will notice this stuff at the end of the file and automatically * adjust the settings for this buffer only. This must remain at the end * of the file. * --------------------------------------------------------------------------- * Local variables: * c-file-style: "linux" * End: */