#ifndef _LINUX_SCHED_H #define _LINUX_SCHED_H #include /* for HZ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct exec_domain; /* * cloning flags: */ #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */ #define CLONE_VM 0x00000100 /* set if VM shared between processes */ #define CLONE_FS 0x00000200 /* set if fs info shared between processes */ #define CLONE_FILES 0x00000400 /* set if open files shared between processes */ #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */ #define CLONE_IDLETASK 0x00001000 /* set if new pid should be 0 (kernel only)*/ #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */ #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */ #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */ #define CLONE_THREAD 0x00010000 /* Same thread group? */ #define CLONE_NEWNS 0x00020000 /* New namespace group? */ #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */ #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */ #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */ #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */ #define CLONE_DETACHED 0x00400000 /* Unused, ignored */ #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */ #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */ #define CLONE_STOPPED 0x02000000 /* Start in stopped state */ /* * List of flags we want to share for kernel threads, * if only because they are not used by them anyway. */ #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND) /* * These are the constant used to fake the fixed-point load-average * counting. Some notes: * - 11 bit fractions expand to 22 bits by the multiplies: this gives * a load-average precision of 10 bits integer + 11 bits fractional * - if you want to count load-averages more often, you need more * precision, or rounding will get you. With 2-second counting freq, * the EXP_n values would be 1981, 2034 and 2043 if still using only * 11 bit fractions. */ extern unsigned long avenrun[]; /* Load averages */ #define FSHIFT 11 /* nr of bits of precision */ #define FIXED_1 (1<>= FSHIFT; #define CT_TO_SECS(x) ((x) / HZ) #define CT_TO_USECS(x) (((x) % HZ) * 1000000/HZ) extern int nr_threads; extern int last_pid; DECLARE_PER_CPU(unsigned long, process_counts); extern int nr_processes(void); extern unsigned long nr_running(void); extern unsigned long nr_uninterruptible(void); extern unsigned long nr_iowait(void); #include #include #include #include #include #include #define TASK_RUNNING 0 #define TASK_INTERRUPTIBLE 1 #define TASK_UNINTERRUPTIBLE 2 #define TASK_STOPPED 4 #define TASK_ZOMBIE 8 #define TASK_DEAD 16 #define TASK_ONHOLD 32 #define __set_task_state(tsk, state_value) \ do { (tsk)->state = (state_value); } while (0) #define set_task_state(tsk, state_value) \ set_mb((tsk)->state, (state_value)) #define __set_current_state(state_value) \ do { current->state = (state_value); } while (0) #define set_current_state(state_value) \ set_mb(current->state, (state_value)) /* * Scheduling policies */ #define SCHED_NORMAL 0 #define SCHED_FIFO 1 #define SCHED_RR 2 struct sched_param { int sched_priority; }; #ifdef __KERNEL__ #include /* * This serializes "schedule()" and also protects * the run-queue from deletions/modifications (but * _adding_ to the beginning of the run-queue has * a separate lock). */ extern rwlock_t tasklist_lock; extern spinlock_t mmlist_lock; typedef struct task_struct task_t; extern void sched_init(void); extern void sched_init_smp(void); extern void init_idle(task_t *idle, int cpu); extern cpumask_t nohz_cpu_mask; extern void show_state(void); extern void show_regs(struct pt_regs *); /* * TASK is a pointer to the task whose backtrace we want to see (or NULL for current * task), SP is the stack pointer of the first frame that should be shown in the back * trace (or NULL if the entire call-chain of the task should be shown). */ extern void show_stack(struct task_struct *task, unsigned long *sp); void io_schedule(void); long io_schedule_timeout(long timeout); extern void cpu_init (void); extern void trap_init(void); extern void update_process_times(int user); extern void scheduler_tick(int user_tick, int system); extern unsigned long cache_decay_ticks; /* Attach to any functions which should be ignored in wchan output. */ #define __sched __attribute__((__section__(".sched.text"))) /* Is this address in the __sched functions? */ extern int in_sched_functions(unsigned long addr); #define MAX_SCHEDULE_TIMEOUT LONG_MAX extern signed long FASTCALL(schedule_timeout(signed long timeout)); asmlinkage void schedule(void); struct namespace; /* Maximum number of active map areas.. This is a random (large) number */ #define DEFAULT_MAX_MAP_COUNT 65536 extern int sysctl_max_map_count; #include struct mm_struct { struct vm_area_struct * mmap; /* list of VMAs */ struct rb_root mm_rb; struct vm_area_struct * mmap_cache; /* last find_vma result */ unsigned long free_area_cache; /* first hole */ pgd_t * pgd; atomic_t mm_users; /* How many users with user space? */ atomic_t mm_count; /* How many references to "struct mm_struct" (users count as 1) */ int map_count; /* number of VMAs */ struct rw_semaphore mmap_sem; spinlock_t page_table_lock; /* Protects task page tables and mm->rss */ struct list_head mmlist; /* List of all active mm's. These are globally strung * together off init_mm.mmlist, and are protected * by mmlist_lock */ unsigned long start_code, end_code, start_data, end_data; unsigned long start_brk, brk, start_stack; unsigned long arg_start, arg_end, env_start, env_end; unsigned long rss, total_vm, locked_vm; unsigned long def_flags; unsigned long saved_auxv[40]; /* for /proc/PID/auxv */ unsigned dumpable:1; cpumask_t cpu_vm_mask; /* Architecture-specific MM context */ mm_context_t context; struct vx_info *mm_vx_info; /* coredumping support */ int core_waiters; struct completion *core_startup_done, core_done; /* aio bits */ rwlock_t ioctx_list_lock; struct kioctx *ioctx_list; struct kioctx default_kioctx; }; extern int mmlist_nr; struct sighand_struct { atomic_t count; struct k_sigaction action[_NSIG]; spinlock_t siglock; }; /* * NOTE! "signal_struct" does not have it's own * locking, because a shared signal_struct always * implies a shared sighand_struct, so locking * sighand_struct is always a proper superset of * the locking of signal_struct. */ struct signal_struct { atomic_t count; /* current thread group signal load-balancing target: */ task_t *curr_target; /* shared signal handling: */ struct sigpending shared_pending; /* thread group exit support */ int group_exit; int group_exit_code; /* overloaded: * - notify group_exit_task when ->count is equal to notify_count * - everyone except group_exit_task is stopped during signal delivery * of fatal signals, group_exit_task processes the signal. */ struct task_struct *group_exit_task; int notify_count; /* thread group stop support, overloads group_exit_code too */ int group_stop_count; /* POSIX.1b Interval Timers */ struct list_head posix_timers; /* job control IDs */ pid_t pgrp; pid_t tty_old_pgrp; pid_t session; /* boolean value for session group leader */ int leader; struct tty_struct *tty; /* NULL if no tty */ }; /* * Priority of a process goes from 0..MAX_PRIO-1, valid RT * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL tasks are * in the range MAX_RT_PRIO..MAX_PRIO-1. Priority values * are inverted: lower p->prio value means higher priority. * * The MAX_USER_RT_PRIO value allows the actual maximum * RT priority to be separate from the value exported to * user-space. This allows kernel threads to set their * priority to a value higher than any user task. Note: * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO. */ #define MAX_USER_RT_PRIO 100 #define MAX_RT_PRIO MAX_USER_RT_PRIO #define MAX_PRIO (MAX_RT_PRIO + 40) #define rt_task(p) ((p)->prio < MAX_RT_PRIO) /* * Some day this will be a full-fledged user tracking system.. */ struct user_struct { atomic_t __count; /* reference count */ atomic_t processes; /* How many processes does this user have? */ atomic_t files; /* How many open files does this user have? */ atomic_t sigpending; /* How many pending signals does this user have? */ /* protected by mq_lock */ unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ /* Hash table maintenance information */ struct list_head uidhash_list; uid_t uid; xid_t xid; }; extern struct user_struct *find_user(xid_t, uid_t); extern struct user_struct root_user; #define INIT_USER (&root_user) typedef struct prio_array prio_array_t; struct backing_dev_info; struct reclaim_state; /* POSIX.1b interval timer structure. */ struct k_itimer { struct list_head list; /* free/ allocate list */ spinlock_t it_lock; clockid_t it_clock; /* which timer type */ timer_t it_id; /* timer id */ int it_overrun; /* overrun on pending signal */ int it_overrun_last; /* overrun on last delivered signal */ int it_requeue_pending; /* waiting to requeue this timer */ int it_sigev_notify; /* notify word of sigevent struct */ int it_sigev_signo; /* signo word of sigevent struct */ sigval_t it_sigev_value; /* value word of sigevent struct */ unsigned long it_incr; /* interval specified in jiffies */ struct task_struct *it_process; /* process to send signal to */ struct timer_list it_timer; struct sigqueue *sigq; /* signal queue entry. */ struct list_head abs_timer_entry; /* clock abs_timer_list */ struct timespec wall_to_prev; /* wall_to_monotonic used when set */ }; struct io_context; /* See blkdev.h */ void exit_io_context(void); #define NGROUPS_SMALL 32 #define NGROUPS_PER_BLOCK ((int)(PAGE_SIZE / sizeof(gid_t))) struct group_info { int ngroups; atomic_t usage; gid_t small_block[NGROUPS_SMALL]; int nblocks; gid_t *blocks[0]; }; /* * get_group_info() must be called with the owning task locked (via task_lock()) * when task != current. The reason being that the vast majority of callers are * looking at current->group_info, which can not be changed except by the * current task. Changing current->group_info requires the task lock, too. */ #define get_group_info(group_info) do { \ atomic_inc(&(group_info)->usage); \ } while (0) #define put_group_info(group_info) do { \ if (atomic_dec_and_test(&(group_info)->usage)) \ groups_free(group_info); \ } while (0) struct group_info *groups_alloc(int gidsetsize); void groups_free(struct group_info *group_info); int set_current_groups(struct group_info *group_info); /* access the groups "array" with this macro */ #define GROUP_AT(gi, i) \ ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK]) struct audit_context; /* See audit.c */ struct mempolicy; struct task_struct { volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ struct thread_info *thread_info; atomic_t usage; unsigned long flags; /* per process flags, defined below */ unsigned long ptrace; int lock_depth; /* Lock depth */ int prio, static_prio; struct list_head run_list; prio_array_t *array; unsigned long sleep_avg; long interactive_credit; unsigned long long timestamp; int activated; unsigned long policy; cpumask_t cpus_allowed; unsigned int time_slice, first_time_slice; struct list_head tasks; /* * ptrace_list/ptrace_children forms the list of my children * that were stolen by a ptracer. */ struct list_head ptrace_children; struct list_head ptrace_list; struct mm_struct *mm, *active_mm; /* task state */ struct linux_binfmt *binfmt; int exit_code, exit_signal; int pdeath_signal; /* The signal sent when the parent dies */ /* ??? */ unsigned long personality; int did_exec:1; pid_t pid; pid_t tgid; /* * pointers to (original) parent process, youngest child, younger sibling, * older sibling, respectively. (p->father can be replaced with * p->parent->pid) */ struct task_struct *real_parent; /* real parent process (when being debugged) */ struct task_struct *parent; /* parent process */ /* * children/sibling forms the list of my children plus the * tasks I'm ptracing. */ struct list_head children; /* list of my children */ struct list_head sibling; /* linkage in my parent's children list */ struct task_struct *group_leader; /* threadgroup leader */ /* PID/PID hash table linkage. */ struct pid_link pids[PIDTYPE_MAX]; wait_queue_head_t wait_chldexit; /* for wait4() */ struct completion *vfork_done; /* for vfork() */ int __user *set_child_tid; /* CLONE_CHILD_SETTID */ int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ unsigned long rt_priority; unsigned long it_real_value, it_prof_value, it_virt_value; unsigned long it_real_incr, it_prof_incr, it_virt_incr; struct timer_list real_timer; unsigned long utime, stime, cutime, cstime; unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; /* context switch counts */ u64 start_time; /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; /* process credentials */ uid_t uid,euid,suid,fsuid; gid_t gid,egid,sgid,fsgid; struct group_info *group_info; kernel_cap_t cap_effective, cap_inheritable, cap_permitted; int keep_capabilities:1; struct user_struct *user; /* limits */ struct rlimit rlim[RLIM_NLIMITS]; unsigned short used_math; char comm[16]; /* file system info */ int link_count, total_link_count; /* ipc stuff */ struct sysv_sem sysvsem; /* CPU-specific state of this task */ struct thread_struct thread; /* filesystem information */ struct fs_struct *fs; /* open file information */ struct files_struct *files; /* namespace */ struct namespace *namespace; /* signal handlers */ struct signal_struct *signal; struct sighand_struct *sighand; sigset_t blocked, real_blocked; struct sigpending pending; unsigned long sas_ss_sp; size_t sas_ss_size; int (*notifier)(void *priv); void *notifier_data; sigset_t *notifier_mask; void *security; struct audit_context *audit_context; /* vserver context data */ xid_t xid; struct vx_info *vx_info; /* vserver network data */ nid_t nid; struct nx_info *nx_info; /* Thread group tracking */ u32 parent_exec_id; u32 self_exec_id; /* Protection of (de-)allocation: mm, files, fs, tty */ spinlock_t alloc_lock; /* Protection of proc_dentry: nesting proc_lock, dcache_lock, write_lock_irq(&tasklist_lock); */ spinlock_t proc_lock; /* context-switch lock */ spinlock_t switch_lock; /* journalling filesystem info */ void *journal_info; /* VM state */ struct reclaim_state *reclaim_state; struct dentry *proc_dentry; struct backing_dev_info *backing_dev_info; struct io_context *io_context; unsigned long ptrace_message; siginfo_t *last_siginfo; /* For ptrace use. */ #ifdef CONFIG_NUMA struct mempolicy *mempolicy; short il_next; /* could be shared with used_math */ #endif }; static inline pid_t process_group(struct task_struct *tsk) { return tsk->signal->pgrp; } extern void __put_task_struct(struct task_struct *tsk); #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) #define put_task_struct(tsk) \ do { if (atomic_dec_and_test(&(tsk)->usage)) __put_task_struct(tsk); } while(0) /* * Per process flags */ #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */ /* Not implemented yet, only for 486*/ #define PF_STARTING 0x00000002 /* being created */ #define PF_EXITING 0x00000004 /* getting shut down */ #define PF_DEAD 0x00000008 /* Dead */ #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ #define PF_DUMPCORE 0x00000200 /* dumped core */ #define PF_SIGNALED 0x00000400 /* killed by a signal */ #define PF_MEMALLOC 0x00000800 /* Allocating memory */ #define PF_MEMDIE 0x00001000 /* Killed for out-of-memory */ #define PF_FLUSHER 0x00002000 /* responsible for disk writeback */ #define PF_FREEZE 0x00004000 /* this task should be frozen for suspend */ #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ #define PF_FROZEN 0x00010000 /* frozen for system suspend */ #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ #define PF_KSWAPD 0x00040000 /* I am kswapd */ #define PF_SWAPOFF 0x00080000 /* I am in swapoff */ #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ #define PF_SYNCWRITE 0x00200000 /* I am doing a sync write */ #ifdef CONFIG_SMP #define SCHED_LOAD_SCALE 128UL /* increase resolution of load */ #define SD_BALANCE_NEWIDLE 1 /* Balance when about to become idle */ #define SD_BALANCE_EXEC 2 /* Balance on exec */ #define SD_BALANCE_CLONE 4 /* Balance on clone */ #define SD_WAKE_IDLE 8 /* Wake to idle CPU on task wakeup */ #define SD_WAKE_AFFINE 16 /* Wake task to waking CPU */ #define SD_WAKE_BALANCE 32 /* Perform balancing at task wakeup */ #define SD_SHARE_CPUPOWER 64 /* Domain members share cpu power */ struct sched_group { struct sched_group *next; /* Must be a circular list */ cpumask_t cpumask; /* * CPU power of this group, SCHED_LOAD_SCALE being max power for a * single CPU. This should be read only (except for setup). Although * it will need to be written to at cpu hot(un)plug time, perhaps the * cpucontrol semaphore will provide enough exclusion? */ unsigned long cpu_power; }; struct sched_domain { /* These fields must be setup */ struct sched_domain *parent; /* top domain must be null terminated */ struct sched_group *groups; /* the balancing groups of the domain */ cpumask_t span; /* span of all CPUs in this domain */ unsigned long min_interval; /* Minimum balance interval ms */ unsigned long max_interval; /* Maximum balance interval ms */ unsigned int busy_factor; /* less balancing by factor if busy */ unsigned int imbalance_pct; /* No balance until over watermark */ unsigned long long cache_hot_time; /* Task considered cache hot (ns) */ unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ unsigned int per_cpu_gain; /* CPU % gained by adding domain cpus */ int flags; /* See SD_* */ /* Runtime fields. */ unsigned long last_balance; /* init to jiffies. units in jiffies */ unsigned int balance_interval; /* initialise to 1. units in ms. */ unsigned int nr_balance_failed; /* initialise to 0 */ }; /* Common values for SMT siblings */ #define SD_SIBLING_INIT (struct sched_domain) { \ .span = CPU_MASK_NONE, \ .parent = NULL, \ .groups = NULL, \ .min_interval = 1, \ .max_interval = 2, \ .busy_factor = 8, \ .imbalance_pct = 110, \ .cache_hot_time = 0, \ .cache_nice_tries = 0, \ .per_cpu_gain = 15, \ .flags = SD_BALANCE_NEWIDLE \ | SD_BALANCE_EXEC \ | SD_BALANCE_CLONE \ | SD_WAKE_AFFINE \ | SD_WAKE_IDLE \ | SD_SHARE_CPUPOWER, \ .last_balance = jiffies, \ .balance_interval = 1, \ .nr_balance_failed = 0, \ } /* Common values for CPUs */ #define SD_CPU_INIT (struct sched_domain) { \ .span = CPU_MASK_NONE, \ .parent = NULL, \ .groups = NULL, \ .min_interval = 1, \ .max_interval = 4, \ .busy_factor = 64, \ .imbalance_pct = 125, \ .cache_hot_time = (5*1000000/2), \ .cache_nice_tries = 1, \ .per_cpu_gain = 100, \ .flags = SD_BALANCE_NEWIDLE \ | SD_BALANCE_EXEC \ | SD_BALANCE_CLONE \ | SD_WAKE_AFFINE \ | SD_WAKE_BALANCE, \ .last_balance = jiffies, \ .balance_interval = 1, \ .nr_balance_failed = 0, \ } #ifdef CONFIG_NUMA /* Common values for NUMA nodes */ #define SD_NODE_INIT (struct sched_domain) { \ .span = CPU_MASK_NONE, \ .parent = NULL, \ .groups = NULL, \ .min_interval = 8, \ .max_interval = 32, \ .busy_factor = 32, \ .imbalance_pct = 125, \ .cache_hot_time = (10*1000000), \ .cache_nice_tries = 1, \ .per_cpu_gain = 100, \ .flags = SD_BALANCE_EXEC \ | SD_BALANCE_CLONE \ | SD_WAKE_BALANCE, \ .last_balance = jiffies, \ .balance_interval = 1, \ .nr_balance_failed = 0, \ } #endif extern void cpu_attach_domain(struct sched_domain *sd, int cpu); extern int set_cpus_allowed(task_t *p, cpumask_t new_mask); #else static inline int set_cpus_allowed(task_t *p, cpumask_t new_mask) { return 0; } #endif extern unsigned long long sched_clock(void); #ifdef CONFIG_SMP extern void sched_balance_exec(void); #else #define sched_balance_exec() {} #endif extern void sched_idle_next(void); extern void set_user_nice(task_t *p, long nice); extern int task_prio(const task_t *p); extern int task_nice(const task_t *p); extern int task_curr(const task_t *p); extern int idle_cpu(int cpu); void yield(void); /* * The default (Linux) execution domain. */ extern struct exec_domain default_exec_domain; union thread_union { struct thread_info thread_info; unsigned long stack[THREAD_SIZE/sizeof(long)]; }; #ifndef __HAVE_ARCH_KSTACK_END static inline int kstack_end(void *addr) { /* Reliable end of stack detection: * Some APM bios versions misalign the stack */ return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); } #endif extern union thread_union init_thread_union; extern struct task_struct init_task; extern struct mm_struct init_mm; extern struct task_struct *find_task_by_pid(int pid); extern void set_special_pids(pid_t session, pid_t pgrp); extern void __set_special_pids(pid_t session, pid_t pgrp); /* per-UID process charging. */ extern struct user_struct * alloc_uid(xid_t, uid_t); static inline struct user_struct *get_uid(struct user_struct *u) { atomic_inc(&u->__count); return u; } extern void free_uid(struct user_struct *); extern void switch_uid(struct user_struct *); #include extern unsigned long itimer_ticks; extern unsigned long itimer_next; extern void do_timer(struct pt_regs *); extern int FASTCALL(wake_up_state(struct task_struct * tsk, unsigned int state)); extern int FASTCALL(wake_up_process(struct task_struct * tsk)); extern void FASTCALL(wake_up_forked_process(struct task_struct * tsk)); #ifdef CONFIG_SMP extern void kick_process(struct task_struct *tsk); extern void FASTCALL(wake_up_forked_thread(struct task_struct * tsk)); #else static inline void kick_process(struct task_struct *tsk) { } static inline void wake_up_forked_thread(struct task_struct * tsk) { wake_up_forked_process(tsk); } #endif extern void FASTCALL(sched_fork(task_t * p)); extern void FASTCALL(sched_exit(task_t * p)); extern int in_group_p(gid_t); extern int in_egroup_p(gid_t); extern void proc_caches_init(void); extern void flush_signals(struct task_struct *); extern void flush_signal_handlers(struct task_struct *, int force_default); extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) { unsigned long flags; int ret; spin_lock_irqsave(&tsk->sighand->siglock, flags); ret = dequeue_signal(tsk, mask, info); spin_unlock_irqrestore(&tsk->sighand->siglock, flags); return ret; } extern void block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask); extern void unblock_all_signals(void); extern void release_task(struct task_struct * p); extern int send_sig_info(int, struct siginfo *, struct task_struct *); extern int send_group_sig_info(int, struct siginfo *, struct task_struct *); extern int force_sig_info(int, struct siginfo *, struct task_struct *); extern int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp); extern int kill_pg_info(int, struct siginfo *, pid_t); extern int kill_sl_info(int, struct siginfo *, pid_t); extern int kill_proc_info(int, struct siginfo *, pid_t); extern void notify_parent(struct task_struct *, int); extern void do_notify_parent(struct task_struct *, int); extern void force_sig(int, struct task_struct *); extern void force_sig_specific(int, struct task_struct *); extern int send_sig(int, struct task_struct *, int); extern void zap_other_threads(struct task_struct *p); extern int kill_pg(pid_t, int, int); extern int kill_sl(pid_t, int, int); extern int kill_proc(pid_t, int, int); extern struct sigqueue *sigqueue_alloc(void); extern void sigqueue_free(struct sigqueue *); extern int send_sigqueue(int, struct sigqueue *, struct task_struct *); extern int send_group_sigqueue(int, struct sigqueue *, struct task_struct *); extern int do_sigaction(int, const struct k_sigaction *, struct k_sigaction *); extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long); /* These can be the second arg to send_sig_info/send_group_sig_info. */ #define SEND_SIG_NOINFO ((struct siginfo *) 0) #define SEND_SIG_PRIV ((struct siginfo *) 1) #define SEND_SIG_FORCED ((struct siginfo *) 2) /* True if we are on the alternate signal stack. */ static inline int on_sig_stack(unsigned long sp) { return (sp - current->sas_ss_sp < current->sas_ss_size); } static inline int sas_ss_flags(unsigned long sp) { return (current->sas_ss_size == 0 ? SS_DISABLE : on_sig_stack(sp) ? SS_ONSTACK : 0); } #ifdef CONFIG_SECURITY /* code is in security.c */ extern int capable(int cap); #else static inline int capable(int cap) { if (cap_raised(current->cap_effective, cap)) { current->flags |= PF_SUPERPRIV; return 1; } return 0; } #endif /* * Routines for handling mm_structs */ extern struct mm_struct * mm_alloc(void); /* mmdrop drops the mm and the page tables */ extern void FASTCALL(__mmdrop(struct mm_struct *)); static inline void mmdrop(struct mm_struct * mm) { if (atomic_dec_and_test(&mm->mm_count)) __mmdrop(mm); } /* mmput gets rid of the mappings and all user-space */ extern void mmput(struct mm_struct *); /* Grab a reference to the mm if its not already going away */ extern struct mm_struct *mmgrab(struct mm_struct *); /* Remove the current tasks stale references to the old mm_struct */ extern void mm_release(struct task_struct *, struct mm_struct *); extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *); extern void flush_thread(void); extern void exit_thread(void); extern void exit_mm(struct task_struct *); extern void exit_files(struct task_struct *); extern void exit_signal(struct task_struct *); extern void __exit_signal(struct task_struct *); extern void exit_sighand(struct task_struct *); extern void __exit_sighand(struct task_struct *); extern void exit_itimers(struct signal_struct *); extern NORET_TYPE void do_group_exit(int); extern void reparent_to_init(void); extern void daemonize(const char *, ...); extern int allow_signal(int); extern int disallow_signal(int); extern task_t *child_reaper; extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *); extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *); extern struct task_struct * copy_process(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *); #ifdef CONFIG_SMP extern void wait_task_inactive(task_t * p); #else #define wait_task_inactive(p) do { } while (0) #endif #define remove_parent(p) list_del_init(&(p)->sibling) #define add_parent(p, parent) list_add_tail(&(p)->sibling,&(parent)->children) #define REMOVE_LINKS(p) do { \ if (thread_group_leader(p)) \ list_del_init(&(p)->tasks); \ remove_parent(p); \ } while (0) #define SET_LINKS(p) do { \ if (thread_group_leader(p)) \ list_add_tail(&(p)->tasks,&init_task.tasks); \ add_parent(p, (p)->parent); \ } while (0) #define next_task(p) list_entry((p)->tasks.next, struct task_struct, tasks) #define prev_task(p) list_entry((p)->tasks.prev, struct task_struct, tasks) #define for_each_process(p) \ for (p = &init_task ; (p = next_task(p)) != &init_task ; ) /* * Careful: do_each_thread/while_each_thread is a double loop so * 'break' will not work as expected - use goto instead. */ #define do_each_thread(g, t) \ for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do #define while_each_thread(g, t) \ while ((t = next_thread(t)) != g) extern task_t * FASTCALL(next_thread(const task_t *p)); #define thread_group_leader(p) (p->pid == p->tgid) static inline int thread_group_empty(task_t *p) { struct pid *pid = p->pids[PIDTYPE_TGID].pidptr; return pid->task_list.next->next == &pid->task_list; } #define delay_group_leader(p) \ (thread_group_leader(p) && !thread_group_empty(p)) extern void unhash_process(struct task_struct *p); /* * Protects ->fs, ->files, ->mm, ->ptrace, ->group_info and synchronises with * wait4(). * * Nests both inside and outside of read_lock(&tasklist_lock). * It must not be nested with write_lock_irq(&tasklist_lock), * neither inside nor outside. */ static inline void task_lock(struct task_struct *p) { spin_lock(&p->alloc_lock); } static inline void task_unlock(struct task_struct *p) { spin_unlock(&p->alloc_lock); } /** * get_task_mm - acquire a reference to the task's mm * * Returns %NULL if the task has no mm. User must release * the mm via mmput() after use. */ static inline struct mm_struct * get_task_mm(struct task_struct * task) { struct mm_struct * mm; task_lock(task); mm = task->mm; if (mm) mm = mmgrab(mm); task_unlock(task); return mm; } /* set thread flags in other task's structures * - see asm/thread_info.h for TIF_xxxx flags available */ static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) { set_ti_thread_flag(tsk->thread_info,flag); } static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) { clear_ti_thread_flag(tsk->thread_info,flag); } static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) { return test_and_set_ti_thread_flag(tsk->thread_info,flag); } static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) { return test_and_clear_ti_thread_flag(tsk->thread_info,flag); } static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) { return test_ti_thread_flag(tsk->thread_info,flag); } static inline void set_tsk_need_resched(struct task_struct *tsk) { set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); } static inline void clear_tsk_need_resched(struct task_struct *tsk) { clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); } static inline int signal_pending(struct task_struct *p) { return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); } static inline int need_resched(void) { return unlikely(test_thread_flag(TIF_NEED_RESCHED)); } extern void __cond_resched(void); static inline void cond_resched(void) { if (need_resched()) __cond_resched(); } /* * cond_resched_lock() - if a reschedule is pending, drop the given lock, * call schedule, and on return reacquire the lock. * * This works OK both with and without CONFIG_PREEMPT. We do strange low-level * operations here to prevent schedule() from being called twice (once via * spin_unlock(), once by hand). */ static inline void cond_resched_lock(spinlock_t * lock) { if (need_resched()) { _raw_spin_unlock(lock); preempt_enable_no_resched(); __cond_resched(); spin_lock(lock); } } /* Reevaluate whether the task has signals pending delivery. This is required every time the blocked sigset_t changes. callers must hold sighand->siglock. */ extern FASTCALL(void recalc_sigpending_tsk(struct task_struct *t)); extern void recalc_sigpending(void); extern void signal_wake_up(struct task_struct *t, int resume_stopped); /* * Wrappers for p->thread_info->cpu access. No-op on UP. */ #ifdef CONFIG_SMP static inline unsigned int task_cpu(const struct task_struct *p) { return p->thread_info->cpu; } static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) { p->thread_info->cpu = cpu; } #else static inline unsigned int task_cpu(const struct task_struct *p) { return 0; } static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) { } #endif /* CONFIG_SMP */ #endif /* __KERNEL__ */ #endif