/* * linux/kernel/power/swsusp.c * * This file is to realize architecture-independent * machine suspend feature using pretty near only high-level routines * * Copyright (C) 1998-2001 Gabor Kuti * Copyright (C) 1998,2001-2004 Pavel Machek * * This file is released under the GPLv2. * * I'd like to thank the following people for their work: * * Pavel Machek : * Modifications, defectiveness pointing, being with me at the very beginning, * suspend to swap space, stop all tasks. Port to 2.4.18-ac and 2.5.17. * * Steve Doddi : * Support the possibility of hardware state restoring. * * Raph : * Support for preserving states of network devices and virtual console * (including X and svgatextmode) * * Kurt Garloff : * Straightened the critical function in order to prevent compilers from * playing tricks with local variables. * * Andreas Mohr * * Alex Badea : * Fixed runaway init * * More state savers are welcome. Especially for the scsi layer... * * For TODOs,FIXMEs also look in Documentation/power/swsusp.txt */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "power.h" /* References to section boundaries */ extern const void __nosave_begin, __nosave_end; /* Variables to be preserved over suspend */ static int pagedir_order_check; static int nr_copy_pages_check; extern char resume_file[]; static dev_t resume_device; /* Local variables that should not be affected by save */ unsigned int nr_copy_pages __nosavedata = 0; /* Suspend pagedir is allocated before final copy, therefore it must be freed after resume Warning: this is evil. There are actually two pagedirs at time of resume. One is "pagedir_save", which is empty frame allocated at time of suspend, that must be freed. Second is "pagedir_nosave", allocated at time of resume, that travels through memory not to collide with anything. Warning: this is even more evil than it seems. Pagedirs this file talks about are completely different from page directories used by MMU hardware. */ suspend_pagedir_t *pagedir_nosave __nosavedata = NULL; static suspend_pagedir_t *pagedir_save; static int pagedir_order __nosavedata = 0; #define SWSUSP_SIG "S1SUSPEND" static struct swsusp_header { char reserved[PAGE_SIZE - 20 - sizeof(swp_entry_t)]; swp_entry_t swsusp_info; char orig_sig[10]; char sig[10]; } __attribute__((packed, aligned(PAGE_SIZE))) swsusp_header; static struct swsusp_info swsusp_info; /* * XXX: We try to keep some more pages free so that I/O operations succeed * without paging. Might this be more? */ #define PAGES_FOR_IO 512 /* * Saving part... */ /* We memorize in swapfile_used what swap devices are used for suspension */ #define SWAPFILE_UNUSED 0 #define SWAPFILE_SUSPEND 1 /* This is the suspending device */ #define SWAPFILE_IGNORED 2 /* Those are other swap devices ignored for suspension */ static unsigned short swapfile_used[MAX_SWAPFILES]; static unsigned short root_swap; static int mark_swapfiles(swp_entry_t prev) { int error; rw_swap_page_sync(READ, swp_entry(root_swap, 0), virt_to_page((unsigned long)&swsusp_header)); if (!memcmp("SWAP-SPACE",swsusp_header.sig, 10) || !memcmp("SWAPSPACE2",swsusp_header.sig, 10)) { memcpy(swsusp_header.orig_sig,swsusp_header.sig, 10); memcpy(swsusp_header.sig,SWSUSP_SIG, 10); swsusp_header.swsusp_info = prev; error = rw_swap_page_sync(WRITE, swp_entry(root_swap, 0), virt_to_page((unsigned long) &swsusp_header)); } else { pr_debug("swsusp: Partition is not swap space.\n"); error = -ENODEV; } return error; } /* * Check whether the swap device is the specified resume * device, irrespective of whether they are specified by * identical names. * * (Thus, device inode aliasing is allowed. You can say /dev/hda4 * instead of /dev/ide/host0/bus0/target0/lun0/part4 [if using devfs] * and they'll be considered the same device. This is *necessary* for * devfs, since the resume code can only recognize the form /dev/hda4, * but the suspend code would see the long name.) */ static int is_resume_device(const struct swap_info_struct *swap_info) { struct file *file = swap_info->swap_file; struct inode *inode = file->f_dentry->d_inode; return S_ISBLK(inode->i_mode) && resume_device == MKDEV(imajor(inode), iminor(inode)); } static int swsusp_swap_check(void) /* This is called before saving image */ { int i, len; len=strlen(resume_file); root_swap = 0xFFFF; swap_list_lock(); for(i=0; iswap_address; if (entry.val) swap_free(entry); else break; (pagedir_nosave + i)->swap_address = (swp_entry_t){0}; } } /** * data_write - Write saved image to swap. * * Walk the list of pages in the image and sync each one to swap. */ static int data_write(void) { int error = 0; int i; unsigned int mod = nr_copy_pages / 100; if (!mod) mod = 1; printk( "Writing data to swap (%d pages)... ", nr_copy_pages ); for (i = 0; i < nr_copy_pages && !error; i++) { if (!(i%mod)) printk( "\b\b\b\b%3d%%", i / mod ); error = write_page((pagedir_nosave+i)->address, &((pagedir_nosave+i)->swap_address)); } printk("\b\b\b\bdone\n"); return error; } static void dump_info(void) { pr_debug(" swsusp: Version: %u\n",swsusp_info.version_code); pr_debug(" swsusp: Num Pages: %ld\n",swsusp_info.num_physpages); pr_debug(" swsusp: UTS Sys: %s\n",swsusp_info.uts.sysname); pr_debug(" swsusp: UTS Node: %s\n",swsusp_info.uts.nodename); pr_debug(" swsusp: UTS Release: %s\n",swsusp_info.uts.release); pr_debug(" swsusp: UTS Version: %s\n",swsusp_info.uts.version); pr_debug(" swsusp: UTS Machine: %s\n",swsusp_info.uts.machine); pr_debug(" swsusp: UTS Domain: %s\n",swsusp_info.uts.domainname); pr_debug(" swsusp: CPUs: %d\n",swsusp_info.cpus); pr_debug(" swsusp: Image: %ld Pages\n",swsusp_info.image_pages); pr_debug(" swsusp: Pagedir: %ld Pages\n",swsusp_info.pagedir_pages); } static void init_header(void) { memset(&swsusp_info,0,sizeof(swsusp_info)); swsusp_info.version_code = LINUX_VERSION_CODE; swsusp_info.num_physpages = num_physpages; memcpy(&swsusp_info.uts,&system_utsname,sizeof(system_utsname)); swsusp_info.suspend_pagedir = pagedir_nosave; swsusp_info.cpus = num_online_cpus(); swsusp_info.image_pages = nr_copy_pages; dump_info(); } static int close_swap(void) { swp_entry_t entry; int error; error = write_page((unsigned long)&swsusp_info,&entry); if (!error) { printk( "S" ); error = mark_swapfiles(entry); printk( "|\n" ); } return error; } /** * free_pagedir_entries - Free pages used by the page directory. * * This is used during suspend for error recovery. */ static void free_pagedir_entries(void) { int i; for (i = 0; i < swsusp_info.pagedir_pages; i++) swap_free(swsusp_info.pagedir[i]); } /** * write_pagedir - Write the array of pages holding the page directory. * @last: Last swap entry we write (needed for header). */ static int write_pagedir(void) { unsigned long addr = (unsigned long)pagedir_nosave; int error = 0; int n = SUSPEND_PD_PAGES(nr_copy_pages); int i; swsusp_info.pagedir_pages = n; printk( "Writing pagedir (%d pages)\n", n); for (i = 0; i < n && !error; i++, addr += PAGE_SIZE) error = write_page(addr, &swsusp_info.pagedir[i]); return error; } /** * write_suspend_image - Write entire image and metadata. * */ static int write_suspend_image(void) { int error; init_header(); if ((error = data_write())) goto FreeData; if ((error = write_pagedir())) goto FreePagedir; if ((error = close_swap())) goto FreePagedir; Done: return error; FreePagedir: free_pagedir_entries(); FreeData: data_free(); goto Done; } #ifdef CONFIG_HIGHMEM struct highmem_page { char *data; struct page *page; struct highmem_page *next; }; static struct highmem_page *highmem_copy; static int save_highmem_zone(struct zone *zone) { unsigned long zone_pfn; mark_free_pages(zone); for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) { struct page *page; struct highmem_page *save; void *kaddr; unsigned long pfn = zone_pfn + zone->zone_start_pfn; if (!(pfn%1000)) printk("."); if (!pfn_valid(pfn)) continue; page = pfn_to_page(pfn); /* * This condition results from rvmalloc() sans vmalloc_32() * and architectural memory reservations. This should be * corrected eventually when the cases giving rise to this * are better understood. */ if (PageReserved(page)) { printk("highmem reserved page?!\n"); continue; } BUG_ON(PageNosave(page)); if (PageNosaveFree(page)) continue; save = kmalloc(sizeof(struct highmem_page), GFP_ATOMIC); if (!save) return -ENOMEM; save->next = highmem_copy; save->page = page; save->data = (void *) get_zeroed_page(GFP_ATOMIC); if (!save->data) { kfree(save); return -ENOMEM; } kaddr = kmap_atomic(page, KM_USER0); memcpy(save->data, kaddr, PAGE_SIZE); kunmap_atomic(kaddr, KM_USER0); highmem_copy = save; } return 0; } #endif /* CONFIG_HIGHMEM */ static int save_highmem(void) { #ifdef CONFIG_HIGHMEM struct zone *zone; int res = 0; pr_debug("swsusp: Saving Highmem\n"); for_each_zone(zone) { if (is_highmem(zone)) res = save_highmem_zone(zone); if (res) return res; } #endif return 0; } static int restore_highmem(void) { #ifdef CONFIG_HIGHMEM printk("swsusp: Restoring Highmem\n"); while (highmem_copy) { struct highmem_page *save = highmem_copy; void *kaddr; highmem_copy = save->next; kaddr = kmap_atomic(save->page, KM_USER0); memcpy(kaddr, save->data, PAGE_SIZE); kunmap_atomic(kaddr, KM_USER0); free_page((long) save->data); kfree(save); } #endif return 0; } static int pfn_is_nosave(unsigned long pfn) { unsigned long nosave_begin_pfn = __pa(&__nosave_begin) >> PAGE_SHIFT; unsigned long nosave_end_pfn = PAGE_ALIGN(__pa(&__nosave_end)) >> PAGE_SHIFT; return (pfn >= nosave_begin_pfn) && (pfn < nosave_end_pfn); } /** * saveable - Determine whether a page should be cloned or not. * @pfn: The page * * We save a page if it's Reserved, and not in the range of pages * statically defined as 'unsaveable', or if it isn't reserved, and * isn't part of a free chunk of pages. */ static int saveable(struct zone * zone, unsigned long * zone_pfn) { unsigned long pfn = *zone_pfn + zone->zone_start_pfn; struct page * page; if (!pfn_valid(pfn)) return 0; page = pfn_to_page(pfn); BUG_ON(PageReserved(page) && PageNosave(page)); if (PageNosave(page)) return 0; if (PageReserved(page) && pfn_is_nosave(pfn)) { pr_debug("[nosave pfn 0x%lx]", pfn); return 0; } if (PageNosaveFree(page)) return 0; return 1; } static void count_data_pages(void) { struct zone *zone; unsigned long zone_pfn; nr_copy_pages = 0; for_each_zone(zone) { if (is_highmem(zone)) continue; mark_free_pages(zone); for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) nr_copy_pages += saveable(zone, &zone_pfn); } } static void copy_data_pages(void) { struct zone *zone; unsigned long zone_pfn; struct pbe * pbe = pagedir_nosave; int to_copy = nr_copy_pages; for_each_zone(zone) { if (is_highmem(zone)) continue; mark_free_pages(zone); for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) { if (saveable(zone, &zone_pfn)) { struct page * page; page = pfn_to_page(zone_pfn + zone->zone_start_pfn); pbe->orig_address = (long) page_address(page); /* copy_page is not usable for copying task structs. */ memcpy((void *)pbe->address, (void *)pbe->orig_address, PAGE_SIZE); pbe++; to_copy--; } } } BUG_ON(to_copy); } /** * calc_order - Determine the order of allocation needed for pagedir_save. * * This looks tricky, but is just subtle. Please fix it some time. * Since there are %nr_copy_pages worth of pages in the snapshot, we need * to allocate enough contiguous space to hold * (%nr_copy_pages * sizeof(struct pbe)), * which has the saved/orig locations of the page.. * * SUSPEND_PD_PAGES() tells us how many pages we need to hold those * structures, then we call get_bitmask_order(), which will tell us the * last bit set in the number, starting with 1. (If we need 30 pages, that * is 0x0000001e in hex. The last bit is the 5th, which is the order we * would use to allocate 32 contiguous pages). * * Since we also need to save those pages, we add the number of pages that * we need to nr_copy_pages, and in case of an overflow, do the * calculation again to update the number of pages needed. * * With this model, we will tend to waste a lot of memory if we just cross * an order boundary. Plus, the higher the order of allocation that we try * to do, the more likely we are to fail in a low-memory situtation * (though we're unlikely to get this far in such a case, since swsusp * requires half of memory to be free anyway). */ static void calc_order(void) { int diff = 0; int order = 0; do { diff = get_bitmask_order(SUSPEND_PD_PAGES(nr_copy_pages)) - order; if (diff) { order += diff; nr_copy_pages += 1 << diff; } } while(diff); pagedir_order = order; } /** * alloc_pagedir - Allocate the page directory. * * First, determine exactly how many contiguous pages we need and * allocate them. */ static int alloc_pagedir(void) { calc_order(); pagedir_save = (suspend_pagedir_t *)__get_free_pages(GFP_ATOMIC | __GFP_COLD, pagedir_order); if (!pagedir_save) return -ENOMEM; memset(pagedir_save, 0, (1 << pagedir_order) * PAGE_SIZE); pagedir_nosave = pagedir_save; return 0; } /** * free_image_pages - Free pages allocated for snapshot */ static void free_image_pages(void) { struct pbe * p; int i; p = pagedir_save; for (i = 0, p = pagedir_save; i < nr_copy_pages; i++, p++) { if (p->address) { ClearPageNosave(virt_to_page(p->address)); free_page(p->address); p->address = 0; } } } /** * alloc_image_pages - Allocate pages for the snapshot. * */ static int alloc_image_pages(void) { struct pbe * p; int i; for (i = 0, p = pagedir_save; i < nr_copy_pages; i++, p++) { p->address = get_zeroed_page(GFP_ATOMIC | __GFP_COLD); if (!p->address) return -ENOMEM; SetPageNosave(virt_to_page(p->address)); } return 0; } void swsusp_free(void) { BUG_ON(PageNosave(virt_to_page(pagedir_save))); BUG_ON(PageNosaveFree(virt_to_page(pagedir_save))); free_image_pages(); free_pages((unsigned long) pagedir_save, pagedir_order); } /** * enough_free_mem - Make sure we enough free memory to snapshot. * * Returns TRUE or FALSE after checking the number of available * free pages. */ static int enough_free_mem(void) { if (nr_free_pages() < (nr_copy_pages + PAGES_FOR_IO)) { pr_debug("swsusp: Not enough free pages: Have %d\n", nr_free_pages()); return 0; } return 1; } /** * enough_swap - Make sure we have enough swap to save the image. * * Returns TRUE or FALSE after checking the total amount of swap * space avaiable. * * FIXME: si_swapinfo(&i) returns all swap devices information. * We should only consider resume_device. */ static int enough_swap(void) { struct sysinfo i; si_swapinfo(&i); if (i.freeswap < (nr_copy_pages + PAGES_FOR_IO)) { pr_debug("swsusp: Not enough swap. Need %ld\n",i.freeswap); return 0; } return 1; } static int swsusp_alloc(void) { int error; pr_debug("suspend: (pages needed: %d + %d free: %d)\n", nr_copy_pages, PAGES_FOR_IO, nr_free_pages()); pagedir_nosave = NULL; if (!enough_free_mem()) return -ENOMEM; if (!enough_swap()) return -ENOSPC; if ((error = alloc_pagedir())) { printk(KERN_ERR "suspend: Allocating pagedir failed.\n"); return error; } if ((error = alloc_image_pages())) { printk(KERN_ERR "suspend: Allocating image pages failed.\n"); swsusp_free(); return error; } nr_copy_pages_check = nr_copy_pages; pagedir_order_check = pagedir_order; return 0; } static int suspend_prepare_image(void) { int error; pr_debug("swsusp: critical section: \n"); if (save_highmem()) { printk(KERN_CRIT "Suspend machine: Not enough free pages for highmem\n"); restore_highmem(); return -ENOMEM; } drain_local_pages(); count_data_pages(); printk("swsusp: Need to copy %u pages\n",nr_copy_pages); error = swsusp_alloc(); if (error) return error; /* During allocating of suspend pagedir, new cold pages may appear. * Kill them. */ drain_local_pages(); copy_data_pages(); /* * End of critical section. From now on, we can write to memory, * but we should not touch disk. This specially means we must _not_ * touch swap space! Except we must write out our image of course. */ printk("swsusp: critical section/: done (%d pages copied)\n", nr_copy_pages ); return 0; } /* It is important _NOT_ to umount filesystems at this point. We want * them synced (in case something goes wrong) but we DO not want to mark * filesystem clean: it is not. (And it does not matter, if we resume * correctly, we'll mark system clean, anyway.) */ int swsusp_write(void) { int error; device_resume(); lock_swapdevices(); error = write_suspend_image(); /* This will unlock ignored swap devices since writing is finished */ lock_swapdevices(); return error; } extern asmlinkage int swsusp_arch_suspend(void); extern asmlinkage int swsusp_arch_resume(void); asmlinkage int swsusp_save(void) { int error = 0; if ((error = swsusp_swap_check())) { printk(KERN_ERR "swsusp: FATAL: cannot find swap device, try " "swapon -a!\n"); return error; } return suspend_prepare_image(); } int swsusp_suspend(void) { int error; if ((error = arch_prepare_suspend())) return error; local_irq_disable(); /* At this point, device_suspend() has been called, but *not* * device_power_down(). We *must* device_power_down() now. * Otherwise, drivers for some devices (e.g. interrupt controllers) * become desynchronized with the actual state of the hardware * at resume time, and evil weirdness ensues. */ if ((error = device_power_down(PMSG_FREEZE))) { local_irq_enable(); return error; } save_processor_state(); error = swsusp_arch_suspend(); /* Restore control flow magically appears here */ restore_processor_state(); restore_highmem(); device_power_up(); local_irq_enable(); return error; } asmlinkage int swsusp_restore(void) { BUG_ON (nr_copy_pages_check != nr_copy_pages); BUG_ON (pagedir_order_check != pagedir_order); /* Even mappings of "global" things (vmalloc) need to be fixed */ __flush_tlb_global(); return 0; } int swsusp_resume(void) { int error; local_irq_disable(); device_power_down(PMSG_FREEZE); /* We'll ignore saved state, but this gets preempt count (etc) right */ save_processor_state(); error = swsusp_arch_resume(); /* Code below is only ever reached in case of failure. Otherwise * execution continues at place where swsusp_arch_suspend was called */ BUG_ON(!error); restore_processor_state(); restore_highmem(); device_power_up(); local_irq_enable(); return error; } /* More restore stuff */ /* * Returns true if given address/order collides with any orig_address */ static int __init does_collide_order(unsigned long addr, int order) { int i; for (i=0; i < (1<address = addr; } return 0; } static int __init swsusp_pagedir_relocate(void) { /* * We have to avoid recursion (not to overflow kernel stack), * and that's why code looks pretty cryptic */ suspend_pagedir_t *old_pagedir = pagedir_nosave; void **eaten_memory = NULL; void **c = eaten_memory, *m, *f; int ret = 0; struct zone *zone; int i; struct pbe *p; unsigned long zone_pfn; printk("Relocating pagedir "); /* Set page flags */ for_each_zone(zone) { for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) SetPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn)); } /* Clear orig address */ for(i = 0, p = pagedir_nosave; i < nr_copy_pages; i++, p++) { ClearPageNosaveFree(virt_to_page(p->orig_address)); } if (!does_collide_order((unsigned long)old_pagedir, pagedir_order)) { printk("not necessary\n"); return check_pagedir(); } while ((m = (void *) __get_free_pages(GFP_ATOMIC, pagedir_order)) != NULL) { if (!does_collide_order((unsigned long)m, pagedir_order)) break; eaten_memory = m; printk( "." ); *eaten_memory = c; c = eaten_memory; } if (!m) { printk("out of memory\n"); ret = -ENOMEM; } else { pagedir_nosave = memcpy(m, old_pagedir, PAGE_SIZE << pagedir_order); } c = eaten_memory; while (c) { printk(":"); f = c; c = *c; free_pages((unsigned long)f, pagedir_order); } if (ret) return ret; printk("|\n"); return check_pagedir(); } /** * Using bio to read from swap. * This code requires a bit more work than just using buffer heads * but, it is the recommended way for 2.5/2.6. * The following are to signal the beginning and end of I/O. Bios * finish asynchronously, while we want them to happen synchronously. * A simple atomic_t, and a wait loop take care of this problem. */ static atomic_t io_done = ATOMIC_INIT(0); static int end_io(struct bio * bio, unsigned int num, int err) { if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) panic("I/O error reading memory image"); atomic_set(&io_done, 0); return 0; } static struct block_device * resume_bdev; /** * submit - submit BIO request. * @rw: READ or WRITE. * @off physical offset of page. * @page: page we're reading or writing. * * Straight from the textbook - allocate and initialize the bio. * If we're writing, make sure the page is marked as dirty. * Then submit it and wait. */ static int submit(int rw, pgoff_t page_off, void * page) { int error = 0; struct bio * bio; bio = bio_alloc(GFP_ATOMIC, 1); if (!bio) return -ENOMEM; bio->bi_sector = page_off * (PAGE_SIZE >> 9); bio_get(bio); bio->bi_bdev = resume_bdev; bio->bi_end_io = end_io; if (bio_add_page(bio, virt_to_page(page), PAGE_SIZE, 0) < PAGE_SIZE) { printk("swsusp: ERROR: adding page to bio at %ld\n",page_off); error = -EFAULT; goto Done; } if (rw == WRITE) bio_set_pages_dirty(bio); atomic_set(&io_done, 1); submit_bio(rw | (1 << BIO_RW_SYNC), bio); while (atomic_read(&io_done)) yield(); Done: bio_put(bio); return error; } static int bio_read_page(pgoff_t page_off, void * page) { return submit(READ, page_off, page); } static int bio_write_page(pgoff_t page_off, void * page) { return submit(WRITE, page_off, page); } /* * Sanity check if this image makes sense with this kernel/swap context * I really don't think that it's foolproof but more than nothing.. */ static const char * __init sanity_check(void) { dump_info(); if(swsusp_info.version_code != LINUX_VERSION_CODE) return "kernel version"; if(swsusp_info.num_physpages != num_physpages) return "memory size"; if (strcmp(swsusp_info.uts.sysname,system_utsname.sysname)) return "system type"; if (strcmp(swsusp_info.uts.release,system_utsname.release)) return "kernel release"; if (strcmp(swsusp_info.uts.version,system_utsname.version)) return "version"; if (strcmp(swsusp_info.uts.machine,system_utsname.machine)) return "machine"; if(swsusp_info.cpus != num_online_cpus()) return "number of cpus"; return NULL; } static int __init check_header(void) { const char * reason = NULL; int error; if ((error = bio_read_page(swp_offset(swsusp_header.swsusp_info), &swsusp_info))) return error; /* Is this same machine? */ if ((reason = sanity_check())) { printk(KERN_ERR "swsusp: Resume mismatch: %s\n",reason); return -EPERM; } nr_copy_pages = swsusp_info.image_pages; pagedir_order = get_bitmask_order(SUSPEND_PD_PAGES(nr_copy_pages)); return error; } static int __init check_sig(void) { int error; memset(&swsusp_header, 0, sizeof(swsusp_header)); if ((error = bio_read_page(0, &swsusp_header))) return error; if (!memcmp(SWSUSP_SIG, swsusp_header.sig, 10)) { memcpy(swsusp_header.sig, swsusp_header.orig_sig, 10); /* * Reset swap signature now. */ error = bio_write_page(0, &swsusp_header); } else { pr_debug(KERN_ERR "swsusp: Suspend partition has wrong signature?\n"); return -EINVAL; } if (!error) pr_debug("swsusp: Signature found, resuming\n"); return error; } /** * swsusp_read_data - Read image pages from swap. * * You do not need to check for overlaps, check_pagedir() * already did that. */ static int __init data_read(void) { struct pbe * p; int error; int i; int mod = nr_copy_pages / 100; if (!mod) mod = 1; if ((error = swsusp_pagedir_relocate())) return error; printk( "Reading image data (%d pages): ", nr_copy_pages ); for(i = 0, p = pagedir_nosave; i < nr_copy_pages && !error; i++, p++) { if (!(i%mod)) printk( "\b\b\b\b%3d%%", i / mod ); error = bio_read_page(swp_offset(p->swap_address), (void *)p->address); } printk(" %d done.\n",i); return error; } extern dev_t __init name_to_dev_t(const char *line); static int __init read_pagedir(void) { unsigned long addr; int i, n = swsusp_info.pagedir_pages; int error = 0; addr = __get_free_pages(GFP_ATOMIC, pagedir_order); if (!addr) return -ENOMEM; pagedir_nosave = (struct pbe *)addr; pr_debug("swsusp: Reading pagedir (%d Pages)\n",n); for (i = 0; i < n && !error; i++, addr += PAGE_SIZE) { unsigned long offset = swp_offset(swsusp_info.pagedir[i]); if (offset) error = bio_read_page(offset, (void *)addr); else error = -EFAULT; } if (error) free_pages((unsigned long)pagedir_nosave, pagedir_order); return error; } static int __init read_suspend_image(void) { int error = 0; if ((error = check_sig())) return error; if ((error = check_header())) return error; if ((error = read_pagedir())) return error; if ((error = data_read())) free_pages((unsigned long)pagedir_nosave, pagedir_order); return error; } /** * swsusp_read - Read saved image from swap. */ int __init swsusp_read(void) { int error; if (!strlen(resume_file)) return -ENOENT; resume_device = name_to_dev_t(resume_file); pr_debug("swsusp: Resume From Partition: %s\n", resume_file); resume_bdev = open_by_devnum(resume_device, FMODE_READ); if (!IS_ERR(resume_bdev)) { set_blocksize(resume_bdev, PAGE_SIZE); error = read_suspend_image(); blkdev_put(resume_bdev); } else error = PTR_ERR(resume_bdev); if (!error) pr_debug("Reading resume file was successful\n"); else pr_debug("swsusp: Error %d resuming\n", error); return error; }