/* * Read-Copy Update mechanism for mutual exclusion * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * Copyright (C) IBM Corporation, 2001 * * Author: Dipankar Sarma * * Based on the original work by Paul McKenney * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. * Papers: * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) * * For detailed explanation of Read-Copy Update mechanism see - * http://lse.sourceforge.net/locking/rcupdate.html * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Definition for rcupdate control block. */ struct rcu_ctrlblk rcu_ctrlblk = { .cur = -300, .completed = -300 , .lock = SEQCNT_ZERO }; /* Bookkeeping of the progress of the grace period */ struct { spinlock_t mutex; /* Guard this struct and writes to rcu_ctrlblk */ cpumask_t rcu_cpu_mask; /* CPUs that need to switch in order */ /* for current batch to proceed. */ } rcu_state ____cacheline_maxaligned_in_smp = {.mutex = SPIN_LOCK_UNLOCKED, .rcu_cpu_mask = CPU_MASK_NONE }; DEFINE_PER_CPU(struct rcu_data, rcu_data) = { 0L }; /* Fake initialization required by compiler */ static DEFINE_PER_CPU(struct tasklet_struct, rcu_tasklet) = {NULL}; #define RCU_tasklet(cpu) (per_cpu(rcu_tasklet, cpu)) /** * call_rcu - Queue an RCU update request. * @head: structure to be used for queueing the RCU updates. * @func: actual update function to be invoked after the grace period * * The update function will be invoked as soon as all CPUs have performed * a context switch or been seen in the idle loop or in a user process. * The read-side of critical section that use call_rcu() for updation must * be protected by rcu_read_lock()/rcu_read_unlock(). */ void fastcall call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) { int cpu; unsigned long flags; head->func = func; head->next = NULL; local_irq_save(flags); cpu = smp_processor_id(); *RCU_nxttail(cpu) = head; RCU_nxttail(cpu) = &head->next; local_irq_restore(flags); } /* * Invoke the completed RCU callbacks. They are expected to be in * a per-cpu list. */ static void rcu_do_batch(struct rcu_head *list) { struct rcu_head *next; while (list) { next = list->next; list->func(list); list = next; } } /* * Grace period handling: * The grace period handling consists out of two steps: * - A new grace period is started. * This is done by rcu_start_batch. The start is not broadcasted to * all cpus, they must pick this up by comparing rcu_ctrlblk.cur with * RCU_quiescbatch(cpu). All cpus are recorded in the * rcu_state.rcu_cpu_mask bitmap. * - All cpus must go through a quiescent state. * Since the start of the grace period is not broadcasted, at least two * calls to rcu_check_quiescent_state are required: * The first call just notices that a new grace period is running. The * following calls check if there was a quiescent state since the beginning * of the grace period. If so, it updates rcu_state.rcu_cpu_mask. If * the bitmap is empty, then the grace period is completed. * rcu_check_quiescent_state calls rcu_start_batch(0) to start the next grace * period (if necessary). */ /* * Register a new batch of callbacks, and start it up if there is currently no * active batch and the batch to be registered has not already occurred. * Caller must hold rcu_state.mutex. */ static void rcu_start_batch(int next_pending) { if (next_pending) rcu_ctrlblk.next_pending = 1; if (rcu_ctrlblk.next_pending && rcu_ctrlblk.completed == rcu_ctrlblk.cur) { /* Can't change, since spin lock held. */ cpus_andnot(rcu_state.rcu_cpu_mask, cpu_online_map, nohz_cpu_mask); write_seqcount_begin(&rcu_ctrlblk.lock); rcu_ctrlblk.next_pending = 0; rcu_ctrlblk.cur++; write_seqcount_end(&rcu_ctrlblk.lock); } } /* * cpu went through a quiescent state since the beginning of the grace period. * Clear it from the cpu mask and complete the grace period if it was the last * cpu. Start another grace period if someone has further entries pending */ static void cpu_quiet(int cpu) { cpu_clear(cpu, rcu_state.rcu_cpu_mask); if (cpus_empty(rcu_state.rcu_cpu_mask)) { /* batch completed ! */ rcu_ctrlblk.completed = rcu_ctrlblk.cur; rcu_start_batch(0); } } /* * Check if the cpu has gone through a quiescent state (say context * switch). If so and if it already hasn't done so in this RCU * quiescent cycle, then indicate that it has done so. */ static void rcu_check_quiescent_state(void) { int cpu = smp_processor_id(); if (RCU_quiescbatch(cpu) != rcu_ctrlblk.cur) { /* new grace period: record qsctr value. */ RCU_qs_pending(cpu) = 1; RCU_last_qsctr(cpu) = RCU_qsctr(cpu); RCU_quiescbatch(cpu) = rcu_ctrlblk.cur; return; } /* Grace period already completed for this cpu? * qs_pending is checked instead of the actual bitmap to avoid * cacheline trashing. */ if (!RCU_qs_pending(cpu)) return; /* * Races with local timer interrupt - in the worst case * we may miss one quiescent state of that CPU. That is * tolerable. So no need to disable interrupts. */ if (RCU_qsctr(cpu) == RCU_last_qsctr(cpu)) return; RCU_qs_pending(cpu) = 0; spin_lock(&rcu_state.mutex); /* * RCU_quiescbatch/batch.cur and the cpu bitmap can come out of sync * during cpu startup. Ignore the quiescent state. */ if (likely(RCU_quiescbatch(cpu) == rcu_ctrlblk.cur)) cpu_quiet(cpu); spin_unlock(&rcu_state.mutex); } #ifdef CONFIG_HOTPLUG_CPU /* warning! helper for rcu_offline_cpu. do not use elsewhere without reviewing * locking requirements, the list it's pulling from has to belong to a cpu * which is dead and hence not processing interrupts. */ static void rcu_move_batch(struct rcu_head *list) { int cpu; local_irq_disable(); cpu = smp_processor_id(); while (list != NULL) { *RCU_nxttail(cpu) = list; RCU_nxttail(cpu) = &list->next; list = list->next; } local_irq_enable(); } static void rcu_offline_cpu(int cpu) { /* if the cpu going offline owns the grace period * we can block indefinitely waiting for it, so flush * it here */ spin_lock_bh(&rcu_state.mutex); if (rcu_ctrlblk.cur != rcu_ctrlblk.completed) cpu_quiet(cpu); spin_unlock_bh(&rcu_state.mutex); rcu_move_batch(RCU_curlist(cpu)); rcu_move_batch(RCU_nxtlist(cpu)); tasklet_kill_immediate(&RCU_tasklet(cpu), cpu); } #endif void rcu_restart_cpu(int cpu) { spin_lock_bh(&rcu_state.mutex); RCU_quiescbatch(cpu) = rcu_ctrlblk.completed; RCU_qs_pending(cpu) = 0; spin_unlock_bh(&rcu_state.mutex); } /* * This does the RCU processing work from tasklet context. */ static void rcu_process_callbacks(unsigned long unused) { int cpu = smp_processor_id(); struct rcu_head *rcu_list = NULL; if (RCU_curlist(cpu) && !rcu_batch_before(rcu_ctrlblk.completed, RCU_batch(cpu))) { rcu_list = RCU_curlist(cpu); RCU_curlist(cpu) = NULL; } local_irq_disable(); if (RCU_nxtlist(cpu) && !RCU_curlist(cpu)) { int next_pending, seq; RCU_curlist(cpu) = RCU_nxtlist(cpu); RCU_nxtlist(cpu) = NULL; RCU_nxttail(cpu) = &RCU_nxtlist(cpu); local_irq_enable(); /* * start the next batch of callbacks */ do { seq = read_seqcount_begin(&rcu_ctrlblk.lock); /* determine batch number */ RCU_batch(cpu) = rcu_ctrlblk.cur + 1; next_pending = rcu_ctrlblk.next_pending; } while (read_seqcount_retry(&rcu_ctrlblk.lock, seq)); if (!next_pending) { /* and start it/schedule start if it's a new batch */ spin_lock(&rcu_state.mutex); rcu_start_batch(1); spin_unlock(&rcu_state.mutex); } } else { local_irq_enable(); } rcu_check_quiescent_state(); if (rcu_list) rcu_do_batch(rcu_list); } void rcu_check_callbacks(int cpu, int user) { if (user || (idle_cpu(cpu) && !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) RCU_qsctr(cpu)++; tasklet_schedule(&RCU_tasklet(cpu)); } static void __devinit rcu_online_cpu(int cpu) { memset(&per_cpu(rcu_data, cpu), 0, sizeof(struct rcu_data)); tasklet_init(&RCU_tasklet(cpu), rcu_process_callbacks, 0UL); RCU_nxttail(cpu) = &RCU_nxtlist(cpu); RCU_quiescbatch(cpu) = rcu_ctrlblk.completed; RCU_qs_pending(cpu) = 0; } static int __devinit rcu_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) { long cpu = (long)hcpu; switch (action) { case CPU_UP_PREPARE: rcu_online_cpu(cpu); break; #ifdef CONFIG_HOTPLUG_CPU case CPU_DEAD: rcu_offline_cpu(cpu); break; #endif default: break; } return NOTIFY_OK; } static struct notifier_block __devinitdata rcu_nb = { .notifier_call = rcu_cpu_notify, }; /* * Initializes rcu mechanism. Assumed to be called early. * That is before local timer(SMP) or jiffie timer (uniproc) is setup. * Note that rcu_qsctr and friends are implicitly * initialized due to the choice of ``0'' for RCU_CTR_INVALID. */ void __init rcu_init(void) { rcu_cpu_notify(&rcu_nb, CPU_UP_PREPARE, (void *)(long)smp_processor_id()); /* Register notifier for non-boot CPUs */ register_cpu_notifier(&rcu_nb); } struct rcu_synchronize { struct rcu_head head; struct completion completion; }; /* Because of FASTCALL declaration of complete, we use this wrapper */ static void wakeme_after_rcu(struct rcu_head *head) { struct rcu_synchronize *rcu; rcu = container_of(head, struct rcu_synchronize, head); complete(&rcu->completion); } /** * synchronize-kernel - wait until all the CPUs have gone * through a "quiescent" state. It may sleep. */ void synchronize_kernel(void) { struct rcu_synchronize rcu; init_completion(&rcu.completion); /* Will wake me after RCU finished */ call_rcu(&rcu.head, wakeme_after_rcu); /* Wait for it */ wait_for_completion(&rcu.completion); } EXPORT_SYMBOL(call_rcu); EXPORT_SYMBOL(synchronize_kernel);