/* * Copyright (c) 2009, 2010, 2011, 2012, 2013 Nicira, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include "classifier.h" #include #include #include "byte-order.h" #include "dynamic-string.h" #include "flow.h" #include "hash.h" #include "odp-util.h" #include "ofp-util.h" #include "packets.h" #include "ovs-thread.h" static struct cls_subtable *find_subtable(const struct classifier *, const struct minimask *); static struct cls_subtable *insert_subtable(struct classifier *, const struct minimask *); static void destroy_subtable(struct classifier *, struct cls_subtable *); static void update_subtables_after_insertion(struct classifier *, struct cls_subtable *, unsigned int new_priority); static void update_subtables_after_removal(struct classifier *, struct cls_subtable *, unsigned int del_priority); static struct cls_rule *find_match_wc(const struct cls_subtable *, const struct flow *, struct flow_wildcards *); static struct cls_rule *find_equal(struct cls_subtable *, const struct miniflow *, uint32_t hash); static struct cls_rule *insert_rule(struct classifier *, struct cls_subtable *, struct cls_rule *); /* Iterates RULE over HEAD and all of the cls_rules on HEAD->list. */ #define FOR_EACH_RULE_IN_LIST(RULE, HEAD) \ for ((RULE) = (HEAD); (RULE) != NULL; (RULE) = next_rule_in_list(RULE)) #define FOR_EACH_RULE_IN_LIST_SAFE(RULE, NEXT, HEAD) \ for ((RULE) = (HEAD); \ (RULE) != NULL && ((NEXT) = next_rule_in_list(RULE), true); \ (RULE) = (NEXT)) static struct cls_rule *next_rule_in_list__(struct cls_rule *); static struct cls_rule *next_rule_in_list(struct cls_rule *); /* cls_rule. */ /* Initializes 'rule' to match packets specified by 'match' at the given * 'priority'. 'match' must satisfy the invariant described in the comment at * the definition of struct match. * * The caller must eventually destroy 'rule' with cls_rule_destroy(). * * (OpenFlow uses priorities between 0 and UINT16_MAX, inclusive, but * internally Open vSwitch supports a wider range.) */ void cls_rule_init(struct cls_rule *rule, const struct match *match, unsigned int priority) { minimatch_init(&rule->match, match); rule->priority = priority; } /* Same as cls_rule_init() for initialization from a "struct minimatch". */ void cls_rule_init_from_minimatch(struct cls_rule *rule, const struct minimatch *match, unsigned int priority) { minimatch_clone(&rule->match, match); rule->priority = priority; } /* Initializes 'dst' as a copy of 'src'. * * The caller must eventually destroy 'dst' with cls_rule_destroy(). */ void cls_rule_clone(struct cls_rule *dst, const struct cls_rule *src) { minimatch_clone(&dst->match, &src->match); dst->priority = src->priority; } /* Initializes 'dst' with the data in 'src', destroying 'src'. * * The caller must eventually destroy 'dst' with cls_rule_destroy(). */ void cls_rule_move(struct cls_rule *dst, struct cls_rule *src) { minimatch_move(&dst->match, &src->match); dst->priority = src->priority; } /* Frees memory referenced by 'rule'. Doesn't free 'rule' itself (it's * normally embedded into a larger structure). * * ('rule' must not currently be in a classifier.) */ void cls_rule_destroy(struct cls_rule *rule) { minimatch_destroy(&rule->match); } /* Returns true if 'a' and 'b' match the same packets at the same priority, * false if they differ in some way. */ bool cls_rule_equal(const struct cls_rule *a, const struct cls_rule *b) { return a->priority == b->priority && minimatch_equal(&a->match, &b->match); } /* Returns a hash value for 'rule', folding in 'basis'. */ uint32_t cls_rule_hash(const struct cls_rule *rule, uint32_t basis) { return minimatch_hash(&rule->match, hash_int(rule->priority, basis)); } /* Appends a string describing 'rule' to 's'. */ void cls_rule_format(const struct cls_rule *rule, struct ds *s) { minimatch_format(&rule->match, s, rule->priority); } /* Returns true if 'rule' matches every packet, false otherwise. */ bool cls_rule_is_catchall(const struct cls_rule *rule) { return minimask_is_catchall(&rule->match.mask); } /* Initializes 'cls' as a classifier that initially contains no classification * rules. */ void classifier_init(struct classifier *cls, const uint8_t *flow_segments) { cls->n_rules = 0; hmap_init(&cls->subtables); list_init(&cls->subtables_priority); hmap_init(&cls->partitions); ovs_rwlock_init(&cls->rwlock); cls->n_flow_segments = 0; if (flow_segments) { while (cls->n_flow_segments < CLS_MAX_INDICES && *flow_segments < FLOW_U32S) { cls->flow_segments[cls->n_flow_segments++] = *flow_segments++; } } } /* Destroys 'cls'. Rules within 'cls', if any, are not freed; this is the * caller's responsibility. */ void classifier_destroy(struct classifier *cls) { if (cls) { struct cls_subtable *partition, *next_partition; struct cls_subtable *subtable, *next_subtable; HMAP_FOR_EACH_SAFE (subtable, next_subtable, hmap_node, &cls->subtables) { destroy_subtable(cls, subtable); } hmap_destroy(&cls->subtables); HMAP_FOR_EACH_SAFE (partition, next_partition, hmap_node, &cls->partitions) { hmap_remove(&cls->partitions, &partition->hmap_node); free(partition); } hmap_destroy(&cls->partitions); ovs_rwlock_destroy(&cls->rwlock); } } /* Returns true if 'cls' contains no classification rules, false otherwise. */ bool classifier_is_empty(const struct classifier *cls) { return cls->n_rules == 0; } /* Returns the number of rules in 'cls'. */ int classifier_count(const struct classifier *cls) { return cls->n_rules; } static uint32_t hash_metadata(ovs_be64 metadata_) { uint64_t metadata = (OVS_FORCE uint64_t) metadata_; return hash_2words(metadata, metadata >> 32); } static struct cls_partition * find_partition(const struct classifier *cls, ovs_be64 metadata, uint32_t hash) { struct cls_partition *partition; HMAP_FOR_EACH_IN_BUCKET (partition, hmap_node, hash, &cls->partitions) { if (partition->metadata == metadata) { return partition; } } return NULL; } static struct cls_partition * create_partition(struct classifier *cls, struct cls_subtable *subtable, ovs_be64 metadata) { uint32_t hash = hash_metadata(metadata); struct cls_partition *partition = find_partition(cls, metadata, hash); if (!partition) { partition = xmalloc(sizeof *partition); partition->metadata = metadata; partition->tags = 0; tag_tracker_init(&partition->tracker); hmap_insert(&cls->partitions, &partition->hmap_node, hash); } tag_tracker_add(&partition->tracker, &partition->tags, subtable->tag); return partition; } /* Inserts 'rule' into 'cls'. Until 'rule' is removed from 'cls', the caller * must not modify or free it. * * If 'cls' already contains an identical rule (including wildcards, values of * fixed fields, and priority), replaces the old rule by 'rule' and returns the * rule that was replaced. The caller takes ownership of the returned rule and * is thus responsible for destroying it with cls_rule_destroy(), freeing the * memory block in which it resides, etc., as necessary. * * Returns NULL if 'cls' does not contain a rule with an identical key, after * inserting the new rule. In this case, no rules are displaced by the new * rule, even rules that cannot have any effect because the new rule matches a * superset of their flows and has higher priority. */ struct cls_rule * classifier_replace(struct classifier *cls, struct cls_rule *rule) { struct cls_rule *old_rule; struct cls_subtable *subtable; subtable = find_subtable(cls, &rule->match.mask); if (!subtable) { subtable = insert_subtable(cls, &rule->match.mask); } old_rule = insert_rule(cls, subtable, rule); if (!old_rule) { if (minimask_get_metadata_mask(&rule->match.mask) == OVS_BE64_MAX) { ovs_be64 metadata = miniflow_get_metadata(&rule->match.flow); rule->partition = create_partition(cls, subtable, metadata); } else { rule->partition = NULL; } subtable->n_rules++; cls->n_rules++; } else { rule->partition = old_rule->partition; } return old_rule; } /* Inserts 'rule' into 'cls'. Until 'rule' is removed from 'cls', the caller * must not modify or free it. * * 'cls' must not contain an identical rule (including wildcards, values of * fixed fields, and priority). Use classifier_find_rule_exactly() to find * such a rule. */ void classifier_insert(struct classifier *cls, struct cls_rule *rule) { struct cls_rule *displaced_rule = classifier_replace(cls, rule); ovs_assert(!displaced_rule); } /* Removes 'rule' from 'cls'. It is the caller's responsibility to destroy * 'rule' with cls_rule_destroy(), freeing the memory block in which 'rule' * resides, etc., as necessary. */ void classifier_remove(struct classifier *cls, struct cls_rule *rule) { struct cls_partition *partition; struct cls_rule *head; struct cls_subtable *subtable; int i; subtable = find_subtable(cls, &rule->match.mask); /* Remove rule node from indices. */ for (i = 0; i < subtable->n_indices; i++) { hindex_remove(&subtable->indices[i], &rule->index_nodes[i]); } head = find_equal(subtable, &rule->match.flow, rule->hmap_node.hash); if (head != rule) { list_remove(&rule->list); } else if (list_is_empty(&rule->list)) { hmap_remove(&subtable->rules, &rule->hmap_node); } else { struct cls_rule *next = CONTAINER_OF(rule->list.next, struct cls_rule, list); list_remove(&rule->list); hmap_replace(&subtable->rules, &rule->hmap_node, &next->hmap_node); } partition = rule->partition; if (partition) { tag_tracker_subtract(&partition->tracker, &partition->tags, subtable->tag); if (!partition->tags) { hmap_remove(&cls->partitions, &partition->hmap_node); free(partition); } } if (--subtable->n_rules == 0) { destroy_subtable(cls, subtable); } else { update_subtables_after_removal(cls, subtable, rule->priority); } cls->n_rules--; } /* Finds and returns the highest-priority rule in 'cls' that matches 'flow'. * Returns a null pointer if no rules in 'cls' match 'flow'. If multiple rules * of equal priority match 'flow', returns one arbitrarily. * * If a rule is found and 'wc' is non-null, bitwise-OR's 'wc' with the * set of bits that were significant in the lookup. At some point * earlier, 'wc' should have been initialized (e.g., by * flow_wildcards_init_catchall()). */ struct cls_rule * classifier_lookup(const struct classifier *cls, const struct flow *flow, struct flow_wildcards *wc) { const struct cls_partition *partition; struct cls_subtable *subtable; struct cls_rule *best; tag_type tags; /* Determine 'tags' such that, if 'subtable->tag' doesn't intersect them, * then 'flow' cannot possibly match in 'subtable': * * - If flow->metadata maps to a given 'partition', then we can use * 'tags' for 'partition->tags'. * * - If flow->metadata has no partition, then no rule in 'cls' has an * exact-match for flow->metadata. That means that we don't need to * search any subtable that includes flow->metadata in its mask. * * In either case, we always need to search any cls_subtables that do not * include flow->metadata in its mask. One way to do that would be to * check the "cls_subtable"s explicitly for that, but that would require an * extra branch per subtable. Instead, we mark such a cls_subtable's * 'tags' as TAG_ALL and make sure that 'tags' is never empty. This means * that 'tags' always intersects such a cls_subtable's 'tags', so we don't * need a special case. */ partition = (hmap_is_empty(&cls->partitions) ? NULL : find_partition(cls, flow->metadata, hash_metadata(flow->metadata))); tags = partition ? partition->tags : TAG_ARBITRARY; best = NULL; LIST_FOR_EACH (subtable, list_node, &cls->subtables_priority) { struct cls_rule *rule; if (!tag_intersects(tags, subtable->tag)) { continue; } rule = find_match_wc(subtable, flow, wc); if (rule) { best = rule; LIST_FOR_EACH_CONTINUE (subtable, list_node, &cls->subtables_priority) { if (subtable->max_priority <= best->priority) { /* Subtables are in descending priority order, * can not find anything better. */ return best; } if (!tag_intersects(tags, subtable->tag)) { continue; } rule = find_match_wc(subtable, flow, wc); if (rule && rule->priority > best->priority) { best = rule; } } break; } } return best; } /* Finds and returns a rule in 'cls' with exactly the same priority and * matching criteria as 'target'. Returns a null pointer if 'cls' doesn't * contain an exact match. */ struct cls_rule * classifier_find_rule_exactly(const struct classifier *cls, const struct cls_rule *target) { struct cls_rule *head, *rule; struct cls_subtable *subtable; subtable = find_subtable(cls, &target->match.mask); if (!subtable) { return NULL; } /* Skip if there is no hope. */ if (target->priority > subtable->max_priority) { return NULL; } head = find_equal(subtable, &target->match.flow, miniflow_hash_in_minimask(&target->match.flow, &target->match.mask, 0)); FOR_EACH_RULE_IN_LIST (rule, head) { if (target->priority >= rule->priority) { return target->priority == rule->priority ? rule : NULL; } } return NULL; } /* Finds and returns a rule in 'cls' with priority 'priority' and exactly the * same matching criteria as 'target'. Returns a null pointer if 'cls' doesn't * contain an exact match. */ struct cls_rule * classifier_find_match_exactly(const struct classifier *cls, const struct match *target, unsigned int priority) { struct cls_rule *retval; struct cls_rule cr; cls_rule_init(&cr, target, priority); retval = classifier_find_rule_exactly(cls, &cr); cls_rule_destroy(&cr); return retval; } /* Checks if 'target' would overlap any other rule in 'cls'. Two rules are * considered to overlap if both rules have the same priority and a packet * could match both. */ bool classifier_rule_overlaps(const struct classifier *cls, const struct cls_rule *target) { struct cls_subtable *subtable; /* Iterate subtables in the descending max priority order. */ LIST_FOR_EACH (subtable, list_node, &cls->subtables_priority) { uint32_t storage[FLOW_U32S]; struct minimask mask; struct cls_rule *head; if (target->priority > subtable->max_priority) { break; /* Can skip this and the rest of the subtables. */ } minimask_combine(&mask, &target->match.mask, &subtable->mask, storage); HMAP_FOR_EACH (head, hmap_node, &subtable->rules) { struct cls_rule *rule; FOR_EACH_RULE_IN_LIST (rule, head) { if (rule->priority < target->priority) { break; /* Rules in descending priority order. */ } if (rule->priority == target->priority && miniflow_equal_in_minimask(&target->match.flow, &rule->match.flow, &mask)) { return true; } } } } return false; } /* Returns true if 'rule' exactly matches 'criteria' or if 'rule' is more * specific than 'criteria'. That is, 'rule' matches 'criteria' and this * function returns true if, for every field: * * - 'criteria' and 'rule' specify the same (non-wildcarded) value for the * field, or * * - 'criteria' wildcards the field, * * Conversely, 'rule' does not match 'criteria' and this function returns false * if, for at least one field: * * - 'criteria' and 'rule' specify different values for the field, or * * - 'criteria' specifies a value for the field but 'rule' wildcards it. * * Equivalently, the truth table for whether a field matches is: * * rule * * c wildcard exact * r +---------+---------+ * i wild | yes | yes | * t card | | | * e +---------+---------+ * r exact | no |if values| * i | |are equal| * a +---------+---------+ * * This is the matching rule used by OpenFlow 1.0 non-strict OFPT_FLOW_MOD * commands and by OpenFlow 1.0 aggregate and flow stats. * * Ignores rule->priority. */ bool cls_rule_is_loose_match(const struct cls_rule *rule, const struct minimatch *criteria) { return (!minimask_has_extra(&rule->match.mask, &criteria->mask) && miniflow_equal_in_minimask(&rule->match.flow, &criteria->flow, &criteria->mask)); } /* Iteration. */ static bool rule_matches(const struct cls_rule *rule, const struct cls_rule *target) { return (!target || miniflow_equal_in_minimask(&rule->match.flow, &target->match.flow, &target->match.mask)); } static struct cls_rule * search_subtable(const struct cls_subtable *subtable, const struct cls_rule *target) { if (!target || !minimask_has_extra(&subtable->mask, &target->match.mask)) { struct cls_rule *rule; HMAP_FOR_EACH (rule, hmap_node, &subtable->rules) { if (rule_matches(rule, target)) { return rule; } } } return NULL; } /* Initializes 'cursor' for iterating through rules in 'cls': * * - If 'target' is null, the cursor will visit every rule in 'cls'. * * - If 'target' is nonnull, the cursor will visit each 'rule' in 'cls' * such that cls_rule_is_loose_match(rule, target) returns true. * * Ignores target->priority. */ void cls_cursor_init(struct cls_cursor *cursor, const struct classifier *cls, const struct cls_rule *target) { cursor->cls = cls; cursor->target = target && !cls_rule_is_catchall(target) ? target : NULL; } /* Returns the first matching cls_rule in 'cursor''s iteration, or a null * pointer if there are no matches. */ struct cls_rule * cls_cursor_first(struct cls_cursor *cursor) { struct cls_subtable *subtable; HMAP_FOR_EACH (subtable, hmap_node, &cursor->cls->subtables) { struct cls_rule *rule = search_subtable(subtable, cursor->target); if (rule) { cursor->subtable = subtable; return rule; } } return NULL; } /* Returns the next matching cls_rule in 'cursor''s iteration, or a null * pointer if there are no more matches. */ struct cls_rule * cls_cursor_next(struct cls_cursor *cursor, const struct cls_rule *rule_) { struct cls_rule *rule = CONST_CAST(struct cls_rule *, rule_); const struct cls_subtable *subtable; struct cls_rule *next; next = next_rule_in_list__(rule); if (next->priority < rule->priority) { return next; } /* 'next' is the head of the list, that is, the rule that is included in * the subtable's hmap. (This is important when the classifier contains * rules that differ only in priority.) */ rule = next; HMAP_FOR_EACH_CONTINUE (rule, hmap_node, &cursor->subtable->rules) { if (rule_matches(rule, cursor->target)) { return rule; } } subtable = cursor->subtable; HMAP_FOR_EACH_CONTINUE (subtable, hmap_node, &cursor->cls->subtables) { rule = search_subtable(subtable, cursor->target); if (rule) { cursor->subtable = subtable; return rule; } } return NULL; } static struct cls_subtable * find_subtable(const struct classifier *cls, const struct minimask *mask) { struct cls_subtable *subtable; HMAP_FOR_EACH_IN_BUCKET (subtable, hmap_node, minimask_hash(mask, 0), &cls->subtables) { if (minimask_equal(mask, &subtable->mask)) { return subtable; } } return NULL; } static struct cls_subtable * insert_subtable(struct classifier *cls, const struct minimask *mask) { uint32_t hash = minimask_hash(mask, 0); struct cls_subtable *subtable; int i, index = 0; struct flow_wildcards old, new; uint8_t prev; subtable = xzalloc(sizeof *subtable); hmap_init(&subtable->rules); minimask_clone(&subtable->mask, mask); /* Init indices for segmented lookup, if any. */ flow_wildcards_init_catchall(&new); old = new; prev = 0; for (i = 0; i < cls->n_flow_segments; i++) { flow_wildcards_fold_minimask_range(&new, mask, prev, cls->flow_segments[i]); /* Add an index if it adds mask bits. */ if (!flow_wildcards_equal(&new, &old)) { hindex_init(&subtable->indices[index]); subtable->index_ofs[index] = cls->flow_segments[i]; index++; old = new; } prev = cls->flow_segments[i]; } /* Check if the rest of the subtable's mask adds any bits, * and remove the last index if it doesn't. */ if (index > 0) { flow_wildcards_fold_minimask_range(&new, mask, prev, FLOW_U32S); if (flow_wildcards_equal(&new, &old)) { --index; subtable->index_ofs[index] = 0; hindex_destroy(&subtable->indices[index]); } } subtable->n_indices = index; hmap_insert(&cls->subtables, &subtable->hmap_node, hash); list_push_back(&cls->subtables_priority, &subtable->list_node); subtable->tag = (minimask_get_metadata_mask(mask) == OVS_BE64_MAX ? tag_create_deterministic(hash) : TAG_ALL); return subtable; } static void destroy_subtable(struct classifier *cls, struct cls_subtable *subtable) { int i; for (i = 0; i < subtable->n_indices; i++) { hindex_destroy(&subtable->indices[i]); } minimask_destroy(&subtable->mask); hmap_remove(&cls->subtables, &subtable->hmap_node); hmap_destroy(&subtable->rules); list_remove(&subtable->list_node); free(subtable); } /* This function performs the following updates for 'subtable' in 'cls' * following the addition of a new rule with priority 'new_priority' to * 'subtable': * * - Update 'subtable->max_priority' and 'subtable->max_count' if necessary. * * - Update 'subtable''s position in 'cls->subtables_priority' if necessary. * * This function should only be called after adding a new rule, not after * replacing a rule by an identical one or modifying a rule in-place. */ static void update_subtables_after_insertion(struct classifier *cls, struct cls_subtable *subtable, unsigned int new_priority) { if (new_priority == subtable->max_priority) { ++subtable->max_count; } else if (new_priority > subtable->max_priority) { struct cls_subtable *iter; subtable->max_priority = new_priority; subtable->max_count = 1; /* Possibly move 'subtable' earlier in the priority list. If we break * out of the loop, then 'subtable' should be moved just after that * 'iter'. If the loop terminates normally, then 'iter' will be the * list head and we'll move subtable just after that (e.g. to the front * of the list). */ iter = subtable; LIST_FOR_EACH_REVERSE_CONTINUE (iter, list_node, &cls->subtables_priority) { if (iter->max_priority >= subtable->max_priority) { break; } } /* Move 'subtable' just after 'iter' (unless it's already there). */ if (iter->list_node.next != &subtable->list_node) { list_splice(iter->list_node.next, &subtable->list_node, subtable->list_node.next); } } } /* This function performs the following updates for 'subtable' in 'cls' * following the deletion of a rule with priority 'del_priority' from * 'subtable': * * - Update 'subtable->max_priority' and 'subtable->max_count' if necessary. * * - Update 'subtable''s position in 'cls->subtables_priority' if necessary. * * This function should only be called after removing a rule, not after * replacing a rule by an identical one or modifying a rule in-place. */ static void update_subtables_after_removal(struct classifier *cls, struct cls_subtable *subtable, unsigned int del_priority) { struct cls_subtable *iter; if (del_priority == subtable->max_priority && --subtable->max_count == 0) { struct cls_rule *head; subtable->max_priority = 0; HMAP_FOR_EACH (head, hmap_node, &subtable->rules) { if (head->priority > subtable->max_priority) { subtable->max_priority = head->priority; subtable->max_count = 1; } else if (head->priority == subtable->max_priority) { ++subtable->max_count; } } /* Possibly move 'subtable' later in the priority list. If we break * out of the loop, then 'subtable' should be moved just before that * 'iter'. If the loop terminates normally, then 'iter' will be the * list head and we'll move subtable just before that (e.g. to the back * of the list). */ iter = subtable; LIST_FOR_EACH_CONTINUE (iter, list_node, &cls->subtables_priority) { if (iter->max_priority <= subtable->max_priority) { break; } } /* Move 'subtable' just before 'iter' (unless it's already there). */ if (iter->list_node.prev != &subtable->list_node) { list_splice(&iter->list_node, &subtable->list_node, subtable->list_node.next); } } } static inline struct cls_rule * find_match(const struct cls_subtable *subtable, const struct flow *flow, uint32_t hash) { struct cls_rule *rule; HMAP_FOR_EACH_WITH_HASH (rule, hmap_node, hash, &subtable->rules) { if (minimatch_matches_flow(&rule->match, flow)) { return rule; } } return NULL; } static struct cls_rule * find_match_wc(const struct cls_subtable *subtable, const struct flow *flow, struct flow_wildcards * wc) { uint32_t basis = 0, hash; struct cls_rule *rule = NULL; uint8_t prev_u32ofs = 0; int i; if (!wc) { return find_match(subtable, flow, flow_hash_in_minimask(flow, &subtable->mask, 0)); } /* Try to finish early by checking fields in segments. */ for (i = 0; i < subtable->n_indices; i++) { struct hindex_node *inode; hash = flow_hash_in_minimask_range(flow, &subtable->mask, prev_u32ofs, subtable->index_ofs[i], &basis); prev_u32ofs = subtable->index_ofs[i]; inode = hindex_node_with_hash(&subtable->indices[i], hash); if (!inode) { /* No match, can stop immediately, but must fold in the mask * covered so far. */ flow_wildcards_fold_minimask_range(wc, &subtable->mask, 0, prev_u32ofs); return NULL; } /* If we have narrowed down to a single rule already, check whether * that rule matches. If it does match, then we're done. If it does * not match, then we know that we will never get a match, but we do * not yet know how many wildcards we need to fold into 'wc' so we * continue iterating through indices to find that out. (We won't * waste time calling minimatch_matches_flow() again because we've set * 'rule' nonnull.) * * This check shows a measurable benefit with non-trivial flow tables. * * (Rare) hash collisions may cause us to miss the opportunity for this * optimization. */ if (!inode->s && !rule) { ASSIGN_CONTAINER(rule, inode - i, index_nodes); if (minimatch_matches_flow(&rule->match, flow)) { goto out; } } } if (!rule) { /* Multiple potential matches exist, look for one. */ hash = flow_hash_in_minimask_range(flow, &subtable->mask, prev_u32ofs, FLOW_U32S, &basis); rule = find_match(subtable, flow, hash); } else { /* We already narrowed the matching candidates down to just 'rule', * but it didn't match. */ rule = NULL; } out: flow_wildcards_fold_minimask(wc, &subtable->mask); return rule; } static struct cls_rule * find_equal(struct cls_subtable *subtable, const struct miniflow *flow, uint32_t hash) { struct cls_rule *head; HMAP_FOR_EACH_WITH_HASH (head, hmap_node, hash, &subtable->rules) { if (miniflow_equal(&head->match.flow, flow)) { return head; } } return NULL; } static struct cls_rule * insert_rule(struct classifier *cls, struct cls_subtable *subtable, struct cls_rule *new) { struct cls_rule *head; struct cls_rule *old = NULL; int i; uint32_t basis = 0, hash; uint8_t prev_u32ofs = 0; /* Add new node to segment indices. */ for (i = 0; i < subtable->n_indices; i++) { hash = minimatch_hash_range(&new->match, prev_u32ofs, subtable->index_ofs[i], &basis); hindex_insert(&subtable->indices[i], &new->index_nodes[i], hash); prev_u32ofs = subtable->index_ofs[i]; } hash = minimatch_hash_range(&new->match, prev_u32ofs, FLOW_U32S, &basis); head = find_equal(subtable, &new->match.flow, hash); if (!head) { hmap_insert(&subtable->rules, &new->hmap_node, hash); list_init(&new->list); goto out; } else { /* Scan the list for the insertion point that will keep the list in * order of decreasing priority. */ struct cls_rule *rule; new->hmap_node.hash = hash; /* Otherwise done by hmap_insert. */ FOR_EACH_RULE_IN_LIST (rule, head) { if (new->priority >= rule->priority) { if (rule == head) { /* 'new' is the new highest-priority flow in the list. */ hmap_replace(&subtable->rules, &rule->hmap_node, &new->hmap_node); } if (new->priority == rule->priority) { list_replace(&new->list, &rule->list); old = rule; goto out; } else { list_insert(&rule->list, &new->list); goto out; } } } /* Insert 'new' at the end of the list. */ list_push_back(&head->list, &new->list); } out: if (!old) { update_subtables_after_insertion(cls, subtable, new->priority); } else { /* Remove old node from indices. */ for (i = 0; i < subtable->n_indices; i++) { hindex_remove(&subtable->indices[i], &old->index_nodes[i]); } } return old; } static struct cls_rule * next_rule_in_list__(struct cls_rule *rule) { struct cls_rule *next = OBJECT_CONTAINING(rule->list.next, next, list); return next; } static struct cls_rule * next_rule_in_list(struct cls_rule *rule) { struct cls_rule *next = next_rule_in_list__(rule); return next->priority < rule->priority ? next : NULL; }