/* * Copyright (c) 2008, 2009, 2010, 2011 Nicira Networks. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include "flow.h" #include #include #include #include #include "byte-order.h" #include "coverage.h" #include "dpif.h" #include "dynamic-string.h" #include "hash.h" #include "ofpbuf.h" #include "openflow/openflow.h" #include "openvswitch/datapath-protocol.h" #include "packets.h" #include "unaligned.h" #include "vlog.h" VLOG_DEFINE_THIS_MODULE(flow); COVERAGE_DEFINE(flow_extract); static struct arp_eth_header * pull_arp(struct ofpbuf *packet) { return ofpbuf_try_pull(packet, ARP_ETH_HEADER_LEN); } static struct ip_header * pull_ip(struct ofpbuf *packet) { if (packet->size >= IP_HEADER_LEN) { struct ip_header *ip = packet->data; int ip_len = IP_IHL(ip->ip_ihl_ver) * 4; if (ip_len >= IP_HEADER_LEN && packet->size >= ip_len) { return ofpbuf_pull(packet, ip_len); } } return NULL; } static struct tcp_header * pull_tcp(struct ofpbuf *packet) { if (packet->size >= TCP_HEADER_LEN) { struct tcp_header *tcp = packet->data; int tcp_len = TCP_OFFSET(tcp->tcp_ctl) * 4; if (tcp_len >= TCP_HEADER_LEN && packet->size >= tcp_len) { return ofpbuf_pull(packet, tcp_len); } } return NULL; } static struct udp_header * pull_udp(struct ofpbuf *packet) { return ofpbuf_try_pull(packet, UDP_HEADER_LEN); } static struct icmp_header * pull_icmp(struct ofpbuf *packet) { return ofpbuf_try_pull(packet, ICMP_HEADER_LEN); } static void parse_vlan(struct ofpbuf *b, struct flow *flow) { struct qtag_prefix { ovs_be16 eth_type; /* ETH_TYPE_VLAN */ ovs_be16 tci; }; if (b->size >= sizeof(struct qtag_prefix) + sizeof(ovs_be16)) { struct qtag_prefix *qp = ofpbuf_pull(b, sizeof *qp); flow->vlan_tci = qp->tci | htons(VLAN_CFI); } } static ovs_be16 parse_ethertype(struct ofpbuf *b) { struct llc_snap_header *llc; ovs_be16 proto; proto = *(ovs_be16 *) ofpbuf_pull(b, sizeof proto); if (ntohs(proto) >= ETH_TYPE_MIN) { return proto; } if (b->size < sizeof *llc) { return htons(FLOW_DL_TYPE_NONE); } llc = b->data; if (llc->llc.llc_dsap != LLC_DSAP_SNAP || llc->llc.llc_ssap != LLC_SSAP_SNAP || llc->llc.llc_cntl != LLC_CNTL_SNAP || memcmp(llc->snap.snap_org, SNAP_ORG_ETHERNET, sizeof llc->snap.snap_org)) { return htons(FLOW_DL_TYPE_NONE); } ofpbuf_pull(b, sizeof *llc); return llc->snap.snap_type; } /* Initializes 'flow' members from 'packet', 'tun_id', and 'in_port. * Initializes 'packet' header pointers as follows: * * - packet->l2 to the start of the Ethernet header. * * - packet->l3 to just past the Ethernet header, or just past the * vlan_header if one is present, to the first byte of the payload of the * Ethernet frame. * * - packet->l4 to just past the IPv4 header, if one is present and has a * correct length, and otherwise NULL. * * - packet->l7 to just past the TCP or UDP or ICMP header, if one is * present and has a correct length, and otherwise NULL. */ int flow_extract(struct ofpbuf *packet, ovs_be64 tun_id, uint16_t in_port, struct flow *flow) { struct ofpbuf b = *packet; struct eth_header *eth; int retval = 0; COVERAGE_INC(flow_extract); memset(flow, 0, sizeof *flow); flow->tun_id = tun_id; flow->in_port = in_port; packet->l2 = b.data; packet->l3 = NULL; packet->l4 = NULL; packet->l7 = NULL; if (b.size < sizeof *eth) { return 0; } /* Link layer. */ eth = b.data; memcpy(flow->dl_src, eth->eth_src, ETH_ADDR_LEN); memcpy(flow->dl_dst, eth->eth_dst, ETH_ADDR_LEN); /* dl_type, vlan_tci. */ ofpbuf_pull(&b, ETH_ADDR_LEN * 2); if (eth->eth_type == htons(ETH_TYPE_VLAN)) { parse_vlan(&b, flow); } flow->dl_type = parse_ethertype(&b); /* Network layer. */ packet->l3 = b.data; if (flow->dl_type == htons(ETH_TYPE_IP)) { const struct ip_header *nh = pull_ip(&b); if (nh) { flow->nw_src = get_unaligned_be32(&nh->ip_src); flow->nw_dst = get_unaligned_be32(&nh->ip_dst); flow->nw_tos = nh->ip_tos & IP_DSCP_MASK; flow->nw_proto = nh->ip_proto; packet->l4 = b.data; if (!IP_IS_FRAGMENT(nh->ip_frag_off)) { if (flow->nw_proto == IP_TYPE_TCP) { const struct tcp_header *tcp = pull_tcp(&b); if (tcp) { flow->tp_src = tcp->tcp_src; flow->tp_dst = tcp->tcp_dst; packet->l7 = b.data; } } else if (flow->nw_proto == IP_TYPE_UDP) { const struct udp_header *udp = pull_udp(&b); if (udp) { flow->tp_src = udp->udp_src; flow->tp_dst = udp->udp_dst; packet->l7 = b.data; } } else if (flow->nw_proto == IP_TYPE_ICMP) { const struct icmp_header *icmp = pull_icmp(&b); if (icmp) { flow->icmp_type = htons(icmp->icmp_type); flow->icmp_code = htons(icmp->icmp_code); packet->l7 = b.data; } } } else { retval = 1; } } } else if (flow->dl_type == htons(ETH_TYPE_ARP)) { const struct arp_eth_header *arp = pull_arp(&b); if (arp && arp->ar_hrd == htons(1) && arp->ar_pro == htons(ETH_TYPE_IP) && arp->ar_hln == ETH_ADDR_LEN && arp->ar_pln == 4) { /* We only match on the lower 8 bits of the opcode. */ if (ntohs(arp->ar_op) <= 0xff) { flow->nw_proto = ntohs(arp->ar_op); } if ((flow->nw_proto == ARP_OP_REQUEST) || (flow->nw_proto == ARP_OP_REPLY)) { flow->nw_src = arp->ar_spa; flow->nw_dst = arp->ar_tpa; } } } return retval; } /* Extracts the flow stats for a packet. The 'flow' and 'packet' * arguments must have been initialized through a call to flow_extract(). */ void flow_extract_stats(const struct flow *flow, struct ofpbuf *packet, struct dpif_flow_stats *stats) { memset(stats, 0, sizeof(*stats)); if ((flow->dl_type == htons(ETH_TYPE_IP)) && packet->l4) { if ((flow->nw_proto == IP_TYPE_TCP) && packet->l7) { struct tcp_header *tcp = packet->l4; stats->tcp_flags = TCP_FLAGS(tcp->tcp_ctl); } } stats->n_bytes = packet->size; stats->n_packets = 1; } char * flow_to_string(const struct flow *flow) { struct ds ds = DS_EMPTY_INITIALIZER; flow_format(&ds, flow); return ds_cstr(&ds); } void flow_format(struct ds *ds, const struct flow *flow) { ds_put_format(ds, "tunnel%#"PRIx64":in_port%04"PRIx16":tci(", flow->tun_id, flow->in_port); if (flow->vlan_tci) { ds_put_format(ds, "vlan%"PRIu16",pcp%d", vlan_tci_to_vid(flow->vlan_tci), vlan_tci_to_pcp(flow->vlan_tci)); } else { ds_put_char(ds, '0'); } ds_put_format(ds, ") mac"ETH_ADDR_FMT"->"ETH_ADDR_FMT " type%04"PRIx16 " proto%"PRIu8 " tos%"PRIu8 " ip"IP_FMT"->"IP_FMT " port%"PRIu16"->%"PRIu16, ETH_ADDR_ARGS(flow->dl_src), ETH_ADDR_ARGS(flow->dl_dst), ntohs(flow->dl_type), flow->nw_proto, flow->nw_tos, IP_ARGS(&flow->nw_src), IP_ARGS(&flow->nw_dst), ntohs(flow->tp_src), ntohs(flow->tp_dst)); } void flow_print(FILE *stream, const struct flow *flow) { char *s = flow_to_string(flow); fputs(s, stream); free(s); } /* flow_wildcards functions. */ /* Initializes 'wc' as a set of wildcards that matches every packet. */ void flow_wildcards_init_catchall(struct flow_wildcards *wc) { wc->wildcards = FWW_ALL; wc->tun_id_mask = htonll(0); wc->nw_src_mask = htonl(0); wc->nw_dst_mask = htonl(0); memset(wc->reg_masks, 0, sizeof wc->reg_masks); wc->vlan_tci_mask = htons(0); wc->zero = 0; } /* Initializes 'wc' as an exact-match set of wildcards; that is, 'wc' does not * wildcard any bits or fields. */ void flow_wildcards_init_exact(struct flow_wildcards *wc) { wc->wildcards = 0; wc->tun_id_mask = htonll(UINT64_MAX); wc->nw_src_mask = htonl(UINT32_MAX); wc->nw_dst_mask = htonl(UINT32_MAX); memset(wc->reg_masks, 0xff, sizeof wc->reg_masks); wc->vlan_tci_mask = htons(UINT16_MAX); wc->zero = 0; } /* Returns true if 'wc' is exact-match, false if 'wc' wildcards any bits or * fields. */ bool flow_wildcards_is_exact(const struct flow_wildcards *wc) { int i; if (wc->wildcards || wc->tun_id_mask != htonll(UINT64_MAX) || wc->nw_src_mask != htonl(UINT32_MAX) || wc->nw_dst_mask != htonl(UINT32_MAX) || wc->vlan_tci_mask != htons(UINT16_MAX)) { return false; } for (i = 0; i < FLOW_N_REGS; i++) { if (wc->reg_masks[i] != htonl(UINT32_MAX)) { return false; } } return true; } /* Initializes 'dst' as the combination of wildcards in 'src1' and 'src2'. * That is, a bit or a field is wildcarded in 'dst' if it is wildcarded in * 'src1' or 'src2' or both. */ void flow_wildcards_combine(struct flow_wildcards *dst, const struct flow_wildcards *src1, const struct flow_wildcards *src2) { int i; dst->wildcards = src1->wildcards | src2->wildcards; dst->tun_id_mask = src1->tun_id_mask & src2->tun_id_mask; dst->nw_src_mask = src1->nw_src_mask & src2->nw_src_mask; dst->nw_dst_mask = src1->nw_dst_mask & src2->nw_dst_mask; for (i = 0; i < FLOW_N_REGS; i++) { dst->reg_masks[i] = src1->reg_masks[i] & src2->reg_masks[i]; } dst->vlan_tci_mask = src1->vlan_tci_mask & src2->vlan_tci_mask; } /* Returns a hash of the wildcards in 'wc'. */ uint32_t flow_wildcards_hash(const struct flow_wildcards *wc) { /* If you change struct flow_wildcards and thereby trigger this * assertion, please check that the new struct flow_wildcards has no holes * in it before you update the assertion. */ BUILD_ASSERT_DECL(sizeof *wc == 24 + FLOW_N_REGS * 4); return hash_bytes(wc, sizeof *wc, 0); } /* Returns true if 'a' and 'b' represent the same wildcards, false if they are * different. */ bool flow_wildcards_equal(const struct flow_wildcards *a, const struct flow_wildcards *b) { int i; if (a->wildcards != b->wildcards || a->tun_id_mask != b->tun_id_mask || a->nw_src_mask != b->nw_src_mask || a->nw_dst_mask != b->nw_dst_mask || a->vlan_tci_mask != b->vlan_tci_mask) { return false; } for (i = 0; i < FLOW_N_REGS; i++) { if (a->reg_masks[i] != b->reg_masks[i]) { return false; } } return true; } /* Returns true if at least one bit or field is wildcarded in 'a' but not in * 'b', false otherwise. */ bool flow_wildcards_has_extra(const struct flow_wildcards *a, const struct flow_wildcards *b) { int i; for (i = 0; i < FLOW_N_REGS; i++) { if ((a->reg_masks[i] & b->reg_masks[i]) != b->reg_masks[i]) { return true; } } return (a->wildcards & ~b->wildcards || (a->tun_id_mask & b->tun_id_mask) != b->tun_id_mask || (a->nw_src_mask & b->nw_src_mask) != b->nw_src_mask || (a->nw_dst_mask & b->nw_dst_mask) != b->nw_dst_mask || (a->vlan_tci_mask & b->vlan_tci_mask) != b->vlan_tci_mask); } static bool set_nw_mask(ovs_be32 *maskp, ovs_be32 mask) { if (ip_is_cidr(mask)) { *maskp = mask; return true; } else { return false; } } /* Sets the IP (or ARP) source wildcard mask to CIDR 'mask' (consisting of N * high-order 1-bit and 32-N low-order 0-bits). Returns true if successful, * false if 'mask' is not a CIDR mask. */ bool flow_wildcards_set_nw_src_mask(struct flow_wildcards *wc, ovs_be32 mask) { return set_nw_mask(&wc->nw_src_mask, mask); } /* Sets the IP (or ARP) destination wildcard mask to CIDR 'mask' (consisting of * N high-order 1-bit and 32-N low-order 0-bits). Returns true if successful, * false if 'mask' is not a CIDR mask. */ bool flow_wildcards_set_nw_dst_mask(struct flow_wildcards *wc, ovs_be32 mask) { return set_nw_mask(&wc->nw_dst_mask, mask); } /* Sets the wildcard mask for register 'idx' in 'wc' to 'mask'. * (A 0-bit indicates a wildcard bit.) */ void flow_wildcards_set_reg_mask(struct flow_wildcards *wc, int idx, uint32_t mask) { wc->reg_masks[idx] = mask; }